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Abstract The unique solvability of a biharmonic problem with Steklov-type boundary 
conditions in a half-space is studied under the assumption that the generalized solutions of 
this problem have a nite weighted Dirichlet integral. Depending on the value of the weight 
parameter, uniqueness theorems are proved or exact formulas are given for calculating the 
dimension of the solution space of a biharmonic problem with Steklov-type boundary conditions 
in a half-space. 
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1. INTRODUCTION 

For any integer n ≥ 2, writing a typical point of Rn as x = (xr, xn), where xr = (x1, . . . , xn—1) ∈ 

Rn—1 and xn ∈ R; we denote by Rn the "open half space" of Rn: 

 
and let 

Rn = {x = (xr, xn) ∈ Rn—1 × R : xn > 1} 

 

∂Rn = {x = (xr, xn) ∈ Rn—1 × R : xn = 1} ≡ Rn—1. 

denote its boundary, and let |x| = 
√

x2 + · · · + x2 denote the Euclidean norm of x. 
Let now Ω ≡ Rn with the boundary ∂Ω ≡ ∂Rn . In Ω we consider the problem for the biharmonic 

+ 

equation 
+ 

 

∆2u(x) = 0, x ∈ Ω (1) 

with Steklov-type boundary conditions 

=

 

+ τ u  
∂u ∂∆u 

 

 
= 0, (2) 

 
 

∂ν ∂Ω ∂ν  
∂Ω 

 

where ν = (ν1, . . . , νn) is the outer unit normal vector to ∂Ω, τ ∈ C(∂Ω), τ ≥ 0, τ /≡ 0, Ω = Ω ∪ ∂Ω 
is a closure of Ω. 

Elliptic problems with parameters in the boundary conditions are called Steklov problems from 
their rst appearance in [30]. In the case of the biharmonic operator, these conditions were rst 
considered in [6], [18] and [29], who studied the isoperimetric properties of the rst eigenvalue. 

Standard results on the regularity of elliptic problems are available in the monograph [11], 
which has already become a classic. Here, the authors consider both high-order linear and nonlinear 
boundary value problems, primarily with a biharmonic (polyharmonic) operator as the principal 
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component. Using basic models, they explain in detail the importance and di erences of various 
boundary conditions. In studying linear problems, after a brief overview of existence theory, Lp, 
and Schauder estimates, the authors focus on positivity issues and on obtaining the necessary kernel 
estimates. 

In [3] and [4], the authors study boundary value problems for an inhomogeneous biharmonic 
equation in a half-space Rn , establishing the existence, uniqueness, and regularity of these problems 

in LP -theory with 1 < p < ∞. Note that the authors are interested in singular boundary conditions, 
and they consider data and present solutions that exist in weighted Sobolev spaces. 

In [2], fundamental solutions to di erential operators lead to integral operators providing integral 
representation formulas for solutions to related di erential equations. Proper modi cations of the 
fundamental solutions result in integral operators which are related to certain boundary value 
problems. For complex partial di erential operators of arbitrary order in the plane, fundamental 
solutions are achievable by properly integrating the Cauchy kernel. Particular such complex model 
di erential operators are the polyanalytic and the polyharmonic operators. A hierarchy of integral 
operators is available for these model operators leading to polyanalytic Cauchy Schwarz and to 
polyharmonic Green, Neumann, Robin, and hybrid Green integral operators. 

We also note paper [5], which explains for the biharmonic operator that the higher the order, the 
greater the variety of possible boundary value problems and associated hybrid Green's functions. 
The advantage of convoluted higher order Green's functions is that they allow to decompose the 
boundary value problem for a linear higher order Poisson equation into some for a system of rst 
order Poisson equations. 

In [7], a weak solution of a mixed boundary value problem for a biharmonic equation in the 
plane is studied, in which, using the Green formula, the problem is transformed into a system of 
Fredholm integral equations for unknown data on di erent parts of the boundary. The existence and 
uniqueness of solutions of the system of boundary integral equations in the corresponding Sobolev 
spaces are also established. 

In  [10], the boundary value problems for the biharmonic equation and the Stokes system 
are studied in a half space, and, using the Schwarz re ection principle in weighted Lq-space the 
uniqueness of solutions of the Stokes system or the biharmonic equation is proved. 

In [13] and [14], the Green's function of the biharmonic Navier problem in the unit ball is 
studied. The author presents a representation of the Green's function in which the singularity of 
the fundamental solution of the biharmonic equation is explicitly expressed. Then, based on the 
Green's function, an integral representation of the solution to the Navier problem in the unit ball 
is presented. 

For various classes of unbounded domains, the author in [19] [26] studied the properties of 
solutions to elliptic boundary value problems with a nite weighted Dirichlet (or energy) integral. 
In this paper, the niteness condition for the solution of the biharmonic problem is the Dirichlet 
integral with weight: 

Da(u, Ω) ≡ 
Ω 

|x|a |∂αu|2 dx < ∞, 
|α|=2 

 
 

where a ∈ R is a xed number and |∂αu|2 denotes the Frobenius norm of the Hessian matrix 
|α|=2 

of u. 
Depending on n and a, the uniqueness of solutions to boundary value problems for the elasticity 

system and the biharmonic (polyharmonic) equation is proven. In the case of non-uniqueness, 
the exact numbers of linearly independent solutions of boundary value problems, which are the 
dimensions of the spaces of solutions of these same boundary value problems, are found, and explicit 
formulas are provided. 

Based on Hardy-type inequalities [9], [15] [17], in this paper we prove the uniqueness (or non- 
uniqueness) of solutions to the biharmonic problem with Steklov-type boundary conditions in a 
half-space. 

Notation:  C∞(Ω) is the space of in nitely di erentiable functions in Ω with compact support 
in Ω. 

∫ 
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We denote by Hm(Ω, Γ), Γ ⊂ Ω, the Sobolev space of functions in Ω obtained by the completion 
of C∞(Ω) vanishing in a neighborhood of Γ with respect to the norm 

||u; Hm(Ω, Γ)|| = 

,
∫ 

 

 
|α|≤m 

1/2 

|∂αu|2dx 
 
, m = 1, 2, . . . , 

where ∂α ≡ ∂|α|/∂xα1 . . . ∂xαn , α = (α1, . . . , αn) is a multi-index, αi ≥ 0  are integers, and |α| = 
1 n 

α1 + · · · + αn; if Γ = ∅, we denote Hm(Ω, Γ) by Hm(Ω). 
◦ m 

H (Ω) is the space obtained by the completion of C∞(Ω) with respect to the norm ||u; H 
◦ m 

∞ 

m(Ω)||; 

Hloc (Ω) is the space obtained by the completion of C0 (Ω) with respect to the family of semi- 
norms 

 u; H (Ω ∩ B0(R))  = 
. 

∫ Σ 

1/2 

.
 

 
, m = 1, 2, . . . , 

Ω∩B0(R) |α|≤m 

for all open balls B0(R) := {x : |x| < R} in Rn for which Ω ∩ B0(R) /= ∅. 
We set 

D(u, Ω) ≡ 

∫ 
|∂αu|2 dx, Da(u, Ω) ≡ 

Ω |α|=2 

|x|a |∂αu|2 dx. 
Ω |α|=2 

A cone K in Rn with vertex the origin is de ned as a domain such that if x ∈ K, then λx ∈ K 
for all λ > 0. 

 
2. DEFINITIONS & AUXILIARY STATEMENTS 

De nition 1. A function u is a solution of the Steklov-type problem (1), (2), if u ∈ H2 (Ω), 

∂u/∂ν = 0 on ∂Ω, such that for every function ϕ ∈ C∞(Rn), ∂ϕ/∂ν = 0 on ∂Ω, the following 
integral identity holds 

 

∆u ∆ϕ dx − 
Ω ∂Ω 

 
τ u ϕ ds = 0. (3) 

Note that the solutions of the Steklov-type problem are well de ned for  τ ∈ C(∂Ω).  For 
u ∈ H4(Ω) one may integrate by parts to nd indeed that the solution of (3) satis es to the 
Steklov-type problem (1),(2). 

 
Lemma 1. Let u(x) be a solution of equation (1) in Ω satisfying the boundary conditions (2) and 

the inequality |u(x)| ≤ C(1 + |x|k) for all x ∈ Ω, where C is a positive constant and k ≥ 0 is an 

integer. Then u(x) is a polynomial of degree at most k, i. e., u(x) = P (x) and ord P (x) ≤ k. 

Proof. This lemma is an analogue of Liouville's theorem for systems of equations. It is valid for 
general Douglis Nirenberg elliptic systems with constant coe cients. In the case when Ω ≡ Rn it 
was proved in [8] . 

The proof for Ω ≡ Rn is similar. Namely, in the theory of elliptic systems the following Bernstein 
inequality is established: 

max 
|x|≤1/2, |α|=l 

|∂αu(x)| ≤ C1 max |u|, l ≥ 1, (4) 
|x|≤1 

where the constant C1 is independent of u. 
Let u(x) be a solution of a homogeneous elliptic system with constant coe cients in the half-ball 

|x| ≤ 1, xn > 0, and for xn = 0 suppose that u(x) satis es the Shapiro Lopatinskii zero boundary 

|∂αu|2 dx 

∫ 
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condition [1] (for more details, see [28]). In (4) putting x = λy and using the homogeneity of the 
system and boundary conditions, we get 

max 
|x|≤1/2, |α|=l 

|∂αu(x)| ≤ C1 λ—l max |u|. 
|x|≤λ 

Hence the hypotheses of Lemma 1 imply that 

max 
|x|≤1, |α|=l 

|∂αu(x)| ≤ C2 λk—l. 

Taking l > k and letting λ tend to ∞, we see that ∂αu(x) = 0 for |x| ≤ 1. Hence, u(x) is a 
polynomial of degree at most l − 1 for |x| ≤ 1. Since the solution of an elliptic system is analytic, 
then u(x) is a polynomial in Rn . The condition |u(x)| ≤ C(1 + |x|k) implies that the degree of this 
polynomial is at most k. The proof of the Lemma 1 is complete. 

 
Let us denote by Kera(∆2) the class of functions that are solutions of the Steklov-type problem 

(1), (2), and satisfy the condition Da(u, Ω) < ∞, and by dim Kera(∆2) the dimension of the class 
Kera(∆2). 

 
3. MAIN RESULTS 

Theorem 1. Let u be a solution of the Steklov-type problem (1), (2) in Ω ≡ Rn with the condition 

D(u, Ω) < ∞. Then u ≡ 0. 

Proof. Let 2 ≤ n ≤ 4. Let u(x) be a solution to equation (1) in Ω ≡ Rn . We extend u(x) to Rn, 

setting u(x) = 0 in Rn \ Ω. Then D(u, Rn) < ∞. 

In the integral identity (3), substituting the function ϕ(x) = u(x)θN (x), where θN (x) = 
θ(ln |x|/ ln N ), θ ∈ C∞(R), 0 ≤ θ ≤ 1, θ(s) = 0 as s ≥ 2, θ(s) = 1 as s ≤ 1, after elementary trans- 
formations, we get 

 
 

 
where 

(∆u)2 θN (x) dx − 
∂Ω 

Ω 

τ |u|2θN (s) ds = J1(u) + J2(u), (5) 

J1(u) = −2 

∫ 

∆u∇u∇θN (x) dx, J2(u) = − 

∫ 

u ∆u ∆θN (x) dx. 
Ω Ω 

Let us show that J1(u) → 0 and J2(u) → 0 as N → ∞. By the Cauchy Schwarz inequality we 
have 

J (u) ≡ −2 

∫ 

∆u∇u∇θ (x) dx ≤ 2C 

∫ 
  |∇u|  |∆u| dx ≤ C J (u)J (u), 

1 N 2 

Ω Ω∩{x:N<|x|<N 2} 
|x|| ln N | 

3 3 4 

J (u) ≡ − 

∫ 

u∆u∆θ (x) dx ≤ C 

∫ 

|∆u| 
|u| 

dx ≤ C J (u)J (u), 
2 N 

Ω 

where 

 
 

4  |x|2| ln N |2 

Ω 

4 3 5 

J3(u) ≡ 
. 
∫ 

1/2 

.
 

 

, J (u) ≡ 
|∇u|2 

|x|2| ln N |2 

1/2 

.
 , 

|x|>N N<|x|<N 2 

|∆u|2dx dx 
∫ 
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∫ ∫ 

∫ 

, 
∫ 

|u|2 

1/2 

J (u) ≡ 

N< |x |<N 2 |x|4| ln N |4 

.
 

, C2, C3, C4 = const . 

Since, by Hardy's inequality [15], 
∫ 

|u|2 |∇u|2 2

  

χ(u) := 

Ω 

and D(u, Ω) < ∞, then 

|x|4| ln N |4 
+ 

|x|2| ln N |2 
+ |∇∇(u)| dx < ∞, 

J3(u) → 0, J4(u) → 0, J5(u) → 0 as N → ∞. 

This means that J1(u) → 0 and J2(u) → 0 as N → ∞. Consequently, passing to the limit in (5) as 
N → ∞, we get 

∫ 

 
Ω 

Using the integral identity 

(∆u)2 θN (x) dx − 
∂Ω 

τ |u|2θN (s) ds → 0. 

(∆u)2 dx − 
∂Ω 

Ω 

τ |u|2ds = 0, 

we obtain that if u is the solution of the homogeneous Steklov-type problem (1),(2), then u(x) = 0 

in Ω, i.e. u(x) = Ax + B for A, x ∈ Rn, where Ax denotes the standard scalar product of A and x. 
The proof that from the given integral identity it follows that ∆u = 0 and, consequently, 

u(x) = Ax + B, is based on the use of the properties of the energy functional and the conditions of 
the homogeneous Steklov-type problem when considering the zero eigenvalue (τ = 0) in the domain 

Ω ≡ Rn . 
Consequently, the only solutions of a homogeneous biharmonic Steklov-type problem in the half- 

space Ω ≡ Rn with a nite weighted Dirichlet integral for τ = 0 are linear functions of the form 
u(x) = Ax + B. 

From the condition of boundedness of the Dirichlet integral D(u, Ω) < ∞ it follows that the only 
admissible solution of the homogeneous Steklov-type problem in the half-space Ω ≡ Rn is the trivial 

solution, that is u(x) ≡ 0 in Ω. 
The relation 

τ |u|2ds = 0 
∂Ω 

implies that u ≡ 0 on a set of a positive measure on ∂Ω. 

Consider the case n > 4. Let u be a solution of equation (1) in Ω ≡ Rn . Extend u to Rn by 

setting u = 0 in Rn \ Ω. Then D(u, Rn) < ∞. 
By Hardy's inequality [17] there exists a constant C such that 

|u − C|2 

|x|4 
+ 

Rn 

|∇(u − C)|2 

|x|2 + |∇∇(u − C)| dx ≤ C5D(u, Rn ) < ∞, (6) 

where C5 = const. 

Let v = u − C. We will show that 

 
 
 
 

 
 2n  

|v| n−4 dx < ∞. (7) 

Rn 

 

∫ 

∫ 

∫ 
2
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|v| n−4 dx 

 



.
 

∫ 
|v| n−4 dy 

 



.
 

+ 

, 

, 

∫ ∫ 

∫ ∫ 

∫ ∫ 

For the unit ball B1(0) = {x : |x| < 1}, by the embedding theorem we obtain [31] 
n−4 
2n 

2n 

  

B1(0) 

, 
∫ 

1/2 , 
∫ 

1/2 , 
∫ 

1/2
 

C6 

B1(0) 

|v|2 

|x|4 
dx

.
 

.


B1(0) 

|∇v|2 

|x|2 
dx

.
 

.


B1(0) 

|∇∇v|2dx
.
 

 , (8) 

where C6 = const. 
Let us make a change of variables y = λx in the integrals of inequality (8). We have 

n−4 
2n 

2n 

  

, 
∫ 

 

1/2 

|y|<λ 

, 
∫ 

1/2 , 
∫ 

 

1/2
 

C7 

|y|<λ 

|v|2 

|y|4 
dy

.
 

.


|y|<λ 

|∇v|2 

|y|2 
dy

.
 

.


|y|<λ 

|∇∇v|2dy
.
 

 , 

where the constant C7 does not depend on λ and v. Due to condition (6) we obtain 
 

 2n  

|v| n−4 dy < M, (9) 

|y|<λ 

where the constant M does not depend on λ. 
Since v(x) = C on Rn \ Ω and mesn(Rn \ Ω) = ∞, it follows from inequality (9) that C = 0. 
Let us show that u(x) = 0, x ∈ Ω. Next, substituting into the integral identity (3) the function 

ϕ(x) = u(x)θN (x), where θN (x) = θ(|x|/N ), θ ∈ C∞(Rn), 0 ≤ θ ≤ 1, θ(s) = 0 for s ≥ 2, θ(s) = 1 
for s ≤ 1, as in the proof of (5), we nd 

(∆u)2 θN (x) dx − 
∂Ω 

Ω 

τ |u|2θN (s) ds = J1(u) + J2(u), 

As above, it is easy to notice that J1(u) → 0 and J2(u) → 0 for N → ∞. Hence, 

(∆u)2 θN (x)dx − 
∂Ω 

Ω 

τ |u|2θN (s) ds → 0 as N → ∞. 

Using the integral identity  
 

(∆u)2 dx − 
∂Ω 

Ω 

 

τ |u|2ds = 0, 

we obtain that if u is the solution of the Steklov-type problem (1), (2), then u(x) = 0 in Ω, i.e. 

u(x) = Ax + B for A, x ∈ Rn, where Ax denotes the standard scalar product of A and x. 
The proof that from the given integral identity it follows that ∆u = 0 and, consequently, 

u(x) = Ax + B, is based on the use of the properties of the energy functional and the conditions of 
the homogeneous Steklov-type problem when considering the zero eigenvalue (τ = 0) in the domain 

Ω ≡ Rn . 

. ≤ 

+ + 

. ≤ 

+ + 

∫ 
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Consequently, the only solutions of a homogeneous biharmonic Steklov-type problem in the half- 

space Ω ≡ Rn with a nite weighted Dirichlet integral for τ = 0 are linear functions of the form 
u(x) = Ax + B. 

From the condition of boundedness of the Dirichlet integral D(u, Ω) < ∞ it follows that the only 
admissible solution of the homogeneous Steklov-type problem in the half-space Ω ≡ Rn is the trivial 
solution, that is u(x) ≡ 0 in Ω. 

The relation 

 

 

τ |u|2ds = 0 
∂Ω 

implies that u ≡ 0 on a set of a positive measure on ∂Ω. 
The proof of the theorem is complete. 

 

 
Theorem 2. The Steklov-type problem (1),(2) with the condition Da(u, Ω) < ∞ has only the trivial 
solution for −n ≤ a < ∞. 

Proof. First, let us consider the case when a ≥ 0, n ≥ 2. Indeed, if a ≥ 0, then Kera(∆2) ⊂ Ker(∆2) 
and 

dim Kera(∆2) ≤ dim Ker(∆2). 

Taking into account Theorem 1 it follows that 

dim Kera(∆2) = 0. 

Let us now consider the case when −n ≤ a < 0, n ≥ 2. Let 

u(x) ∈ Kera(∆2), where − n ≤ a < 0. 

According to Lemma 1, the solution u(x) has the form 

u(x) = P (x), 

where P (x) is a polynomial, ord P (x) ≤ k. 

Let us prove that ord P (x) ≤ 1. Let ord P (x) = k and k ≥ 2. Then inside some cone K the 
following inequality holds: 

|∂αP (x)| ≥ C|x|k—2. 
Hence, 

∞ > Da(u, Ω) = Da(P (x), Ω) = 

∫ 

Ω 

|x|a |∂αP (x)|2 dx 
|α|=2 

= 

∫ 

|x|a|∂αP (x)|2 dx ≥ C 

∫ 

|x|a|x|2(k—2) dx. 
Ω K∩{|x|>N} 

The obtained integral converges only if a + 2k − 4 + n < 0, i.e. k < 2, so ord P (x) = 1. 
Therefore, u(x) = P (x) and ord P (x) = 1. It is easy to see that 

D(u, Ω) = D(P (x), Ω) = 0, 

i.e. u(x) ∈ Ker(∆2). Hence, 

Kera(∆2) ⊂ Ker(∆2) for − n ≤ a. 

On the other hand, it is obvious that 

Ker(∆2) ⊂ Kera(∆2) for a < 0. 

∫ 
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Σ 

n n n − 1 n − 1 

k k 

n n 

n n n − 1 n − 1 

 

So then 

and 

 
Kera(∆2) = Ker(∆2) 

 
dim Kera(∆2) = dim Ker(∆2). 

By virtue of Theorem 1, we have dim Ker(∆2) = 0. Hence, 

dim Kera(∆2) = 0. 

The theorem is proved. 

Theorem 3. The Steklov-type problem (1),(2) with the condition Da(u, Ω) < ∞ has k(r, n) linearly 
independent solutions for −2r − n + 2 ≤ a < −2r − n + 4, r ≥ 2, where 

k(r, n) =

  
r + n

  

−

  
r + n − 4

  

−

  
r + n − 2

  

−

  
r + n − 4

 

; 

here
 n is the (n, k) binomial coe cient,

 n =0 for k > n. 

Proof. Let u is a solution of the Steklov-type problem (1), (2) and Da(u, Ω) < ∞. 
Then, according to Lemma 1, the solution u(x) is a polynomial of order no higher than k, i.e. 

u(x) = P (x), ord P (x) ≤ k. 
Let us show that k = r. Let ord P (x) = s > r. Then inside some cone K the following inequality 

holds: 

|∂αP (x)| ≥ C|x|s—2. 
Hence, 

∞ > Da(u, Ω) = Da(P (x), Ω) = 

∫ 

Ω 

|x|a |∂αP (x)|2dx 
|α|=2 

= 

∫ 

|x|a|∂αP (x)|2dx ≥ C 

∫ 

|x|a|x|2(s—2)dx. 
Ω K∩{|x|>N} 

The resulting integral converges only if a + 2s − 4 + n < 0, i.e. 
(4 − a − n) 

s < ≤ r + 1. 
2 

Since s is an integer, then s ≤ r. Thus, k = r and u(x) = P (x), ord P (x) ≤ r. 
The dimension of all polynomials in Rn of degree not higher than r  is equal to

 r+n  
[27]. 

Then the dimension of all biharmonic polynomials in Rn of degree not higher than r 
 

r + n
  

−

  
r + n − 4

 

, 

n 
is equal to 

since the biharmonic equation represents the equality to zero of some polynomial of degree (r − 4) 
in Rn. 

The conditions for the vanishing of a polynomial and its derivatives with respect to xn on the 
hyperplane xn = 1 represent the equality to zero of some polynomials in (n − 1) variables of degree 
r − 1 and r − 3, respectively. 

Consequently, the dimension of the space of solutions of the Steklov-type problem (1), (2) is 
equal to 

k(r, n) =

  
r + n

  

−

  
r + n − 4

  

−

  
r + n − 2

  

−

  
r + n − 4

 

. 
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The theorem is proved. 

 
4. DISCUSSION 

The study of elliptic boundary value problems in domains with both compact and non-compact 
boundaries is a very relevant area of research in mathematical physics. 

The next development for such problems will be to consider boundary value problems for elliptic 
equations and systems in domains with non-smooth boundaries, under the condition that the 
weighted Dirichlet (or energy) integral is bounded at in nity. 

As is known, elliptic problems with parameters in the boundary conditions were rst considered 
in the scienti c works of Steklov, and therefore, for both the Laplace equation and the biharmonic 
equation, such problems are known as Steklov or Steklov-type problems. 

The biharmonic problem with Steklov-type boundary conditions at τ = 0 becomes the Farwig 
problem [25], which was rst generalized for the polyharmonic equation in [26]. 

Biharmonic problems in the presence of parameter τ in the boundary conditions are of a general 
nature and nd practical application in engineering, medicine and other elds. 

 
5. CONCLUSIONS 

In conclusion, it is worth adding that in the future, elliptic problems with boundary conditions 
both with and without a parameter will be considered, but in domains with a non-smooth boundary. 
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