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Abstract The unique solvability of a biharmonic problem with Steklov-type boundary
conditions in a half-space is studied under the assumption that the generalized solutions of
this problem have a nite weighted Dirichlet integral. Depending on the value of the weight
parameter, uniqueness theorems are proved or exact formulas are given for calculating the

dimension of the solution space of a biharmonic problem with Steklov-type boundary conditions
in a half-space.
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1. INTRODUCTION
For any integer n = 2, writing a typical point of R" as x = (x', x»), where x" = (xy, ..., Xn—1) €
R"—! and x, € R; we denote by R the "open half space" of R":
R ={x=(x,x:) € R X R:x,>1}
and let
OR"={x=(xX,x,) ER™1 X R:x,=1} = R

Vi _
denote its boundayy, and Jet x| =, x*#; - - skeh fenpte the Buclidean nopm of x4 o armonic
" ry P
+

equation

A’u(x) = 0, xXEQ (1)
with Steklov-type boundary conditions
ou Sonu TTU - )
ov 44 ov 00

where v = (v, ..., V,) is the outer unit normal vector to dQ, T € C(dQ), T =0,7 /=0,Q=Q U 9Q
is a closure of Q.

Elliptic problems with parameters in the boundary conditions are called Steklov problems from
their rst appearance in [30]. In the case of the biharmonic operator, these conditions were rst
considered in [6], [18] and [29], who studied the isoperimetric properties of the rst eigenvalue.

Standard results on the regularity of elliptic problems are available in the monograph [11],
which has already become a classic. Here, the authors consider both high-order linear and nonlinear
boundary value problems, primarily with a biharmonic (polyharmonic) operator as the principal
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component. Using basic models, they explain in detail the importance and di erences of various
boundary conditions. In studying linear problems, after a brief overview of existence theory, L”,
and Schauder estimates, the authors focus on positivity issues and on obtaining the necessary kernel
estimates.

In [3] and [4], the authors study boundary value problems for an inhomogeneous biharmonic
equation in a half-space R, establishing the existence, uniqueness, and regularity of these problems

in L -theory with 1 < p < oo. Note that the authors are interested in singular boundary conditions,
and they consider data and present solutions that exist in weighted Sobolev spaces.

In [2], fundamental solutions to di erential operators lead to integral operators providing integral
representation formulas for solutions to related di erential equations. Proper modi cations of the
fundamental solutions result in integral operators which are related to certain boundary value
problems. For complex partial di erential operators of arbitrary order in the plane, fundamental
solutions are achievable by properly integrating the Cauchy kernel. Particular such complex model
di erential operators are the polyanalytic and the polyharmonic operators. A hierarchy of integral
operators is available for these model operators leading to polyanalytic Cauchy Schwarz and to
polyharmonic Green, Neumann, Robin, and hybrid Green integral operators.

We also note paper [5], which explains for the biharmonic operator that the higher the order, the
greater the variety of possible boundary value problems and associated hybrid Green's functions.
The advantage of convoluted higher order Green's functions is that they allow to decompose the
boundary value problem for a linear higher order Poisson equation into some for a system of rst
order Poisson equations.

In [7], a weak solution of a mixed boundary value problem for a biharmonic equation in the
plane is studied, in which, using the Green formula, the problem is transformed into a system of
Fredholm integral equations for unknown data on di erent parts of the boundary. The existence and
uniqueness of solutions of the system of boundary integral equations in the corresponding Sobolev
spaces are also established.

In [10], the boundary value problems for the biharmonic equation and the Stokes system
are studied in a half space, and, using the Schwarz re ection principle in weighted L%-space the
uniqueness of solutions of the Stokes system or the biharmonic equation is proved.

In [13] and [14], the Green's function of the biharmonic Navier problem in the unit ball is
studied. The author presents a representation of the Green's function in which the singularity of
the fundamental solution of the biharmonic equation is explicitly expressed. Then, based on the
Green's function, an integral representation of the solution to the Navier problem in the unit ball
is presented.

For various classes of unbounded domains, the author in [19] [26] studied the properties of
solutions to elliptic boundary value problems with a nite weighted Dirichlet (or energy) integral.
In this paper, the niteness condition for the solution of the biharmonic problem is the Dirichlet
integral with weight:

I

Da(u, Q) = |x]° [0%u|? dx < oo,
¢ al=2
r>
where g € R is a xed number and |02u|? denotes the Frobenius norm of the Hessian matrix
|o]=2
of u.

Depending on n and a, the uniqueness of solutions to boundary value problems for the elasticity
system and the biharmonic (polyharmonic) equation is proven. In the case of non-uniqueness,
the exact numbers of linearly independent solutions of boundary value problems, which are the
dimensions of the spaces of solutions of these same boundary value problems, are found, and explicit
formulas are provided.

Based on Hardy-type inequalities [9], [15] [17], in this paper we prove the uniqueness (or non-
uniqueness) of solutions to the biharmonic problem with Steklov-type boundary conditions in a
half-space.

Notation: C7Q) is the space of in nitely di erentiable functions in Q with compact support
in Q.
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We denote by H"(Q, '), ' C Q, the Sobolev space of functions in Q obtained by the completion
of C”(Q) vanishing in a neighborhood of I with respect to the norm
"1/

> ) _
llu; H7(Q, D) | = |0%ul?dx , m=12...,

Qla|l=m
where 0% = d""'/dx"‘l1 ...0x*, a=(ay,..., ) is @ multi-index, a; > 0 are integers, and |a| =
n
ar+ - +an if =0, we denote H™(Q, I') by H™(Q).

om

H (Q) is the space obtained by the completion of G5 (Q) with respect to the norm ||u; H ™(Q)|[;

om

Hjoc (Q) is the space obtained by the completion of C,{Q) with respect to the family of semi-
norms

Ed -m
Z o, ]2
lu; H(Q N Bo(R))Il = < loul2dx~ , m=12...,
QNBo(R) ld=m

for all open balls Bo(R) :={x : [x| < R} in R" for which Q N Bo(R) +# &.

We set )
[ = J >

[0%ul|? dx, Dolu, Q) =  |x|° |0%u|? dx.

D(u, Q) = a a2

Q1al=2

A cone K in R” with vertex the origin is de ned as a domain such that if x € K, then Ax € K
for all A > 0.

2. DEFINITIONS & AUXILIARY STATEMENTS

De nition 1. A function u is a solution of the Steklov-type problem (1), (2), if u € H} (Q),

0u/dv =0 on 0Q, such that for every function ¢ € G (R"), d¢p/dv =0 on 0Q, the following
integral identity holds
] ]

Au A dx — tugds=0. 3)
Q 00

Note that the solutions of the Steklov-type problem are well de ned for t &€ C(0Q). For

u € H*Q) one may integrate by parts to nd indeed that the solution of (3) satis es to the
Steklov-type problem (1),(2).

Lemma 1. Let u(x) be a solution of equation (1) in Q satisfying the boundary conditions (2) and
the inequality |u(x)| < C(1 + |x|¥) for all x € Q, where C is a positive constant and k > O is an
integer. Then u(x) is a polynomial of degree at most k, i. e., u(x) = P(x) and ord P(x) < k.

Proof. This lemma is an analogue of Liouville's theorem for systems of equations. It is valid for

general Douglis Nirenberg elliptic systems with constant coe cients. In the case when Q = R” it
was proved in [8].

The proof for Q = R} is similar. Namely, in the theory of elliptic systems the following Bernstein
inequality is established:

max  |0%u(x)| < Ci max|ul|, =1, %)
Ix|=1/2, |a|=/ [x]=1

where the constant C: is independent of u.
Let u(x) be a solution of a homogeneous elliptic system with constant coe cients in the half-ball

|x| < 1, x,>0, and for x, = 0 suppose that u(x) satis es the Shapiro Lopatinskii zero boundary
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condition [1] (for more details, see [28]). In (4) putting x = Ay and using the homogeneity of the
system and boundary conditions, we get

max  |0%(x)| < CtA™ max |ul.
Ix|<1/2, |al=/ [x|=A

Hence the hypotheses of Lemma 1 imply that

max a < k—I

o et [0%u(x)| < G AL
Taking / > k and letting A tend to oo, we see that d%u(x) = O for |x| < 1. Hence, u(x) is a
polynomial of degree at most / — 1 for x| < 1. Since the solution of an elliptic system is analytic,

then u(x) is a polynomial in R%. The condition |u(x)| < C(1 + |x|¥) implies that the degree of this
polynomial is at most k. The proof of the Lemma 1 is complete. O

Let us denote by Kerq(A?) the class of functions that are solutions of the Steklov-type problem

(1), (2), and satisfy the condition Ds(u, Q) < o0, and by dim Kerq(A?) the dimension of the class
Kera(A2?).

3. MAIN RESULTS

Theorem 1. Let u be a solution of the Steklov-type problem (1), (2) in Q = R?% with the condition
D(u, Q) < co. Then u = 0.

Proof. Let 2 < n < 4. Let u(x) be a solution to equation (1) in Q = R%.. We extend u(x) to R",
setting u(x) =0 in R" \ Q. Then D(u, R") < oo.
In the integral identity (3), substituting the function ¢(x) = u(x)9n (x), where Oy (x) =

Hin|x|/InN), € C°(R),0<9<1,9(s)=0as s >2,09(s)=1as s < 1, after elementary trans-
formations, we get

J J
(Au)? O (x) dx — T |u |20 (s) ds = J1(u) + Jo(u), (&)
Q
where
J J
Ji(u)=—=2 AuVuVIn(x)dx, Ja(u)=—  ulbulAIn(x)dx.
Q Q

Let us show that J;(u) — 0 and J»(u) — 0 as N — oo. By the Cauchy Schwarz inequality we
have

J(U)=-2 pvuve (Kdx <2C 1aul —YUl gy < € g () (),
1 ] N ZQQ{NHNZ} x| InN| 373 4
N X|<

) ! l

J(u)=— ubuDAS (x)dx<C |Aul dx < C J (u)J (u),

2 N . PEITIE 4 3 5
Q

where
’J‘ .1/2 > J' '1/2
Vul?
J3(u) = ¢ |AulPdx -, Ju(u) = - #dx- )

IX|2[InN[27" "
|x|>N N<|x|<N 2
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> .1/2
I 2
J(u) == —M—dx_ , Gy, G5, C4 = const.
N<|x|<N?2 Ix[4[ In N |4
Since, by Hardy's inequal}ly [15],
lul? |Vul? 5

x(u) :=
Q

+ +|VV()| dx< oo,
x4l nn e gz g YV

and D(u, Q) < oo, then
Jas(u) = 0, Ja(u) — 0, Js(u) - 0 as N — oo,

This means that J1(u) — OandJ>(u) — 0 as N — oco. Consequently, passing to the limit in (5) as
N — oo, we get
/ J

(Au)? O (x) dx — T |ul?Oun(s)ds — 0.
o o0
Using the integral identity

I I
(Au)? dx — T|ul?ds =0,
00

Q
we obtain that if u is the solution of the homogeneous Steklov-type problem (1),(2), then u(x) =0

in Q, i.e. u(x) = Ax+ B for A, x € R", where Ax denotes the standard scalar product of A and x.

The proof that from the given integral identity it follows that Au =0 and, consequently,
u(x) = Ax+ B, is based on the use of the properties of the energy functional and the conditions of
the homogeneous Steklov-type problem when considering the zero eigenvalue (r = 0) in the domain
Q=R

Consequently, the only solutions of a homogeneous biharmonic Steklov-type problem in the half-
space Q = R{ with a nite weighted Dirichlet integral for t = O are linear functions of the form
u(x) = Ax+ B.

From the condition of boundedness of the Dirichlet integral D(u, Q) < oo it follows that the only
admissible solution of the homogeneous Steklov-type problem in the half-space Q = R",is the trivial
solution, that is u(x) = 0 in Q.

The relation

T|ul?ds=0
00
implies that u = 0 on a set of a positive measure on 0Q.

Consider the case n > 4. Let u be a solution of equation (1) in Q = R}. Extend u to R" by
setting u =0 in R” \ Q. Then D(u, R") < co.

By Hardy's inequality [17] there exists a constant C such that

I'ju—cr IVw-oP

2
X FIE IVV(u—0)|  dx < CsD(u, R") < oo, 6)
Rn X
where Cs = const.
Letv=u— C. We will show that
2n
|v|n-4dx < oo. @)
RN

PAGE NO: 1028



Journal of Engineering and Technology Management 78 (2025)

For the unit ball B1(0) = {x: |x| < 1}, by the embedding theorem we obtain [31]

> n
J' 2n
|v|7%dx . <

B1(0)

.1 "1,2 > “1,2 > .1/2.
I e I
GCs: —4db('- + ” - |V Vv|%dx - . (8)

B1(0) IX] go Il Bi0)

where Cs = const.
Let us make a change of variables y = Ax in the integrals of inequality (8). We have

f 2n
lv|"=%dy . <
Iyl<A
.1 "1 > "1/2 > .1/2.
e Ao T |
Gt —40&/- » ay'- + [VVv|idy
bl<A Iyl i<t lyl <A

where the constant C; does not depend on A and v. Due to condition (6) we obtain
I
lv|n-ady < M, &)
lyl<A
where the constant M does not depend on A.
Since v(x) = Con R" \ Q and mes,(R" \ Q) = 00, it follows from inequality (9) that C = 0.
Let us show that u(x) = 0, x € Q. Next, substituting into the integral identity (3) the function
d(x) = u(x)On (x), where O (x) = 9(|x|/N), 3 € C(R"),0<9 <1, 9s)=0 for s =2, 9(s)=1
for s < 1, as in the proof of (5), we nd
J

(Au)? In(x) dx — ot |u|?On(s) ds = Ji(u) + J2(u),
Q
As above, it is easy to notice that Ji(u) — 0 and J>(u) — O for N — oo. Hence,

J
(Au)* I (x)dx — dorlulzﬁw(s)ds —0 as N — oo,
0
Using the integral identity
/ J
(Au*dx —  tlul?ds=0,
00
Q
we obtain that if u is the solution of the Steklov-type problem (1), (2), then u(x) =0 in Q, i.e.

u(x) = Ax+ B for A, x € R", where Ax denotes the standard scalar product of A and x.

The proof that from the given integral identity it follows that Au =0 and, consequently,
u(x) = Ax + B, is based on the use of the properties of the energy functional and the conditions of
the homogeneous Steklov-type problem when considering the zero eigenvalue (r = 0) in the domain

Q=R
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Consequently, the only solutions of a homogeneous biharmonic Steklov-type problem in the half-

space Q = RI with a nite weighted Dirichlet integral for t = 0 are linear functions of the form
u(x) = Ax+ B.

From the condition of boundedness of the Dirichlet integral D(u, Q) < oo it follows that the only
admissible solution of the homogeneous Steklov-type problem in the half-space Q = R",is the trivial

solution, that is u(x) = 0 in Q.
The relation

t|ul?ds=0
o0

implies that u = 0 on a set of a positive measure on Q.
The proof of the theorem is complete.

O

Theorem 2. The Steklov-type problem (1),(2) with the condition Da(u, Q) < 00 has only the trivial
solution for —n < a < 0.

Proof. First, let us consider the case when g = 0, n > 2. Indeed, if @ > 0, then Ker,(A?) C Ker(A?)
and
dim Kerg(A?) < dim Ker(A?).
Taking into account Theorem 1 it follows that
dim Ker,(A?) = 0.
Let us now consider the case when —n < a<0,n > 2. Let
u(x) € Kery(A?), where —n<a<0.

According to Lemma 1, the solution u(x) has the form

u(x) = P(x),
where P (x) is a polynomial, ord P (x) < k.

Let us prove that ord P(x) < 1. Let ord P(x) = k and k = 2. Then inside some cone K the
following inequality holds:

|0%P (x)| = C|x|*2
Hence,

J > i
00 > Do(u, Q) = DalP (x), Q) = _ |X|"|a|=2 |0°P (x)|? dix
/ )

= Ixl?lo°P(x)[?dx = C Ix] ] x| 26—2) g,
Q KN{Ix|>N}

The obtained integral converges only if a+ 2k —4+n <0, i.e. k<2,s0o0rdP(x) =1.
Therefore, u(x) = P(x) and ord P(x) = 1. It is easy to see that

D(u, Q) =D(P(x), Q) =0,
i.e. u(x) € Ker(A?). Hence,

Kerg(A%?) C Ker(A?) for —n<a.
On the other hand, it is obvious that

Ker(A?) C Kerq(A?) for a<O.
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So then
Kerqs(A?) = Ker(A?)
and
dim Kery(A?) = dim Ker(A?).
By virtue of Theorem 1, we have dim Ker(A?) = 0. Hence,
dim Kerq(A?) = 0.

The theorem is proved. O

Theorem 3. The Steklov-type problem (1),(2) with the condition Dy(u, Q) < oo has k(r, n) linearly
independent solutions for —2r —n+2 <a<—2r—n+4,r = 2, where
r+n r+n—4 r+n—2 r+n—4

kir, n) = n n B n—1 N n—1 ’

here Z is the (n, k) binomial coe cient, /,: =0 for k > n.

Proof. Let u is a solution of the Steklov-type problem (1), (2) and Ds(u, Q) < oo.

Then, according to Lemma 1, the solution u(x) is a polynomial of order no higher than k, i.e.
u(x) = P(x), ord P(x) < k.

Let us show that k = r. Let ord P(x) =s > r. Then inside some cone K the following inequality
holds:

[o°P (x)| = C|x|*2

Hence,
00 > Dy(u, Q) = Da(P(x), Q) = XI° |0°P (x) |2dx
Q |a|=2
I |
= |x]9]0%P (x)|2dx = C | x| x| 22,
Q KN{Ix|>N}

The resulting integral converges only if a+2s — 4+n <0, i.e.

(4—a—n)
s< —  <r+1.
2

Since s is an integer, then s < r. Thus, k =r and u(x) = P(x), ord P(x) < r.
The dimension of all polynomials in R” of degree not higher than r is equal to ™" [27].
n

Then the dimension of all biharmonic polynomials in R" of degree not higher than r is equal to

r+n r+n—4

n n

7

since the biharmonic equation represents the equality to zero of some polynomial of degree (r — 4)
in R".

The conditions for the vanishing of a polynomial and its derivatives with respect to x, on the
hyperplane x, = 1 represent the equality to zero of some polynomials in (n — 1) variables of degree
r — 1 and r — 3, respectively.

Consequently, the dimension of the space of solutions of the Steklov-type problem (1), (2) is
equal to

k(r, n) = rt+n  r+n—4  r+n—2  r+n-—4
T n n n—1 n—1
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The theorem is proved.

4. DISCUSSION

The study of elliptic boundary value problems in domains with both compact and non-compact
boundaries is a very relevant area of research in mathematical physics.

The next development for such problems will be to consider boundary value problems for elliptic
equations and systems in domains with non-smooth boundaries, under the condition that the
weighted Dirichlet (or energy) integral is bounded at in nity.

As is known, elliptic problems with parameters in the boundary conditions were rst considered
in the scienti ¢ works of Steklov, and therefore, for both the Laplace equation and the biharmonic
equation, such problems are known as Steklov or Steklov-type problems.

The biharmonic problem with Steklov-type boundary conditions at T = 0 becomes the Farwig
problem [25], which was rst generalized for the polyharmonic equation in [26].

Biharmonic problems in the presence of parameter t in the boundary conditions are of a general
nature and nd practical application in engineering, medicine and other elds.

5. CONCLUSIONS

In conclusion, it is worth adding that in the future, elliptic problems with boundary conditions
both with and without a parameter will be considered, but in domains with a non-smooth boundary.
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