IoT-Enabled Real-Time Demand Response Management for Smart Homes

S Suvitha*,H Arul Vedi ¹,C Kalpana ², T G Subarna³

* Assistant Professor, Department of Electronics and Communication Engineering, Mahendra Engineering College for Women, Tiruchengode, Tamilnadu, India-637205.

¹Assistant Professor, Department of Electrical and Electronics Engineering, Mahendra Engineering College for Women, Tiruchengode, Tamilnadu, India-637205.

²Assistant Professor, Department of Robotics and Automation, Sengunthar Engineering College, Tiruchengode-637205.

³AssistantProfessor,Department of Information Technology,Mahendra Engineering College for Women,Tiruchengode,Tamilnadu,India-637205.

Abstract:

The rapid expansion of smart home technologies and the increasing penetration of renewable energy resources have created the need for an intelligent and automated demand response (DR) framework. Traditional demand-side management faces challenges such as manual intervention, lack of real-time monitoring, and inefficient load control. This paper proposes an IoT-enabled real-time demand response management system for smart homes capable of monitoring, forecasting, and controlling household appliances to optimize energy consumption. The system integrates IoT sensors, cloud computing, edge processing, and machine learning techniques to provide continuous load monitoring and automated DR actions. Experimental simulation results demonstrate improved energy efficiency, reduced peak load demand, and enhanced user comfort.

Keywords:IoT, Demand Response, Smart Home, Energy Management, Load Forecasting, Real-Time Control, Smart Grid.

I. INTRODUCTION

The evolution of smart grids has enabled consumers to actively participate in energy management through demand response (DR) programs. With the increasing integration of renewable energy sources, balancing supply and demand has become a critical challenge. Demand response mechanisms shift or reduce energy usage during peak hours, helping utilities maintain grid reliability while reducing operational costs [1].

However, traditional DR models are limited due to their dependence on user participation and scheduled load control. The Internet of Things (IoT), combined with intelligent automation, provides a solution by enabling real-time monitoring, data analytics, and autonomous load control. Smart homes equipped with sensors and connected appliances can dynamically respond to grid signals without affecting user comfort. This paper presents an IoT-enabled real-time demand response management system designed for smart homes. It focuses on load classification, real-time device control, data analytics, and intelligent scheduling [2].

II. LITERATURE REVIEW

Recent studies on DR and IoT integration highlight the increasing use of wireless sensor networks, machine learning, and cloud-based control systems. Researchers have proposed smart meters, Home Energy Management Systems (HEMS), and renewable-based microgrids for effective DR.IoT-based DR strategies have shown potential for energy savings of up to 20–30% due to real-time monitoring. Machine learning techniques like LSTM have been used for load forecasting to improve DR decisions. Smart appliances and IoT gateways support remote switching, data logging, and automated peak shaving [3].

Cloud platforms enable scalable data processing but introduce latency issues, motivating edge computing solutions. While these works address monitoring and control, challenges remain regarding real-time automation, user comfort preservation, and communication reliability. This research attempts to overcome these gaps by proposing an integrated IoT-edge-cloud architecture.

The proposed system operates through a structured data flow that begins with various IoT sensors—such as voltage, current, temperature, and light-dependent sensors installed within the smart home environment to continuously monitor key electrical and environmental parameters[4][5].

The collected data is transmitted to the IoT gateway, which acts as the central processing hub responsible for receiving raw sensor information and performing initial data preprocessing and storage operations.

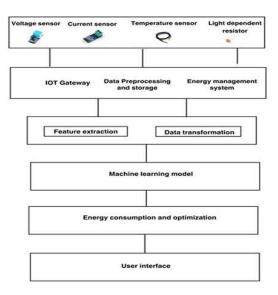


Fig.1.block diagram of An IoT-enabled real-time demand response management system

Within this stage, unnecessary noise is filtered out, missing values are handled, and the data is prepared for further analysis. The energy management system embedded in the gateway interprets appliance behavior and system conditions, enabling intelligent decision-making. After preprocessing, the system performs feature extraction and data transformation to convert raw sensor readings into meaningful features suitable for machine learning analysis. These processed features are then fed into a machine learning model that predicts future load patterns, detects anomalies, and identifies opportunities for demand response actions. Based on these predictions, the energy consumption optimization module adjusts appliance

operations by reducing, delaying, or rescheduling loads to minimize peak demand and improve overall efficiency. Finally, all processed information and control decisions are communicated to the user through an intuitive user interface, allowing real-time monitoring, control, and feedback to ensure efficient and user-friendly energy management.

III. PROPOSED SYSTEM ARCHITECTURE

The proposed system architecture as shown in Fig.1. for IoT-enabled real-time demand response management in smart homes is designed as a multi-layer intelligent framework that integrates IoT devices, edge computing, cloud analytics, and utility interaction. At the lowest level, the smart home environment consists of IoT sensors and actuators attached to household appliances for monitoring parameters such as power consumption, voltage, current, temperature, and occupancy. These devices communicate with a local home gateway, typically implemented using Raspberry Pi or ESP32, which performs preliminary data processing, filters unnecessary information, and responds to demand response events with minimal latency. The gateway uses lightweight protocols such as MQTT or HTTP to exchange data with the cloud server, where longterm storage, big-data processing, and machine-learningbased load forecasting take place. The cloud layer generates insights, predicts peak loads, and issues optimized control commands based on real-time pricing and energy availability. This processed information is further synchronized with the utility grid, which provides time-of-use tariff updates, demand response signals, and renewable energy status. Through a user interface accessible via mobile application or web dashboard, users can monitor energy consumption, receive alerts, and override automated decisions. Overall, the architecture forms an intelligent closed-loop system that continuously monitors household loads, analyzes consumption patterns, and automatically adjusts appliances during peak periods, thereby achieving efficient, dynamic, and user-friendly demand response management.

IV. METHODOLOGY

The methodology for implementing the IoT-enabled realtime demand response management system involves continuous monitoring, intelligent analysis, and automated

control of household electrical loads. The process begins with IoT sensors embedded in appliances that measure realtime power consumption, voltage, current, temperature, and occupancy data. This information is transmitted to the local IoT gateway, which preprocesses the data, removes noise, and identifies the operational state of each device. The gateway then classifies appliances into categories such as controllable, shiftable, and critical loads, enabling the system to determine which devices can be adjusted during a demand response event. The cloud platform receives processed data for long-term storage and advanced analytics, where machine learning models—such as LSTM networks-predict future demand patterns, peak load occurrences, and optimal times for scheduling energyintensive appliances. When the utility issues a demand response signal or when the predicted load approaches peak levels, the gateway triggers automated control actions by switching off non-essential loads, adjusting controllable loads like HVAC systems, or shifting flexible loads to offpeak hours. Throughout this process, the user interface allows consumers to visualize real-time energy usage, manage device settings, and override automated decisions if necessary. The overall methodology ensures a seamless coordination between sensing, data processing, forecasting, and automated actuation, resulting in an intelligent and adaptive demand response mechanism for smart homes.

V. IMPLEMENTATION

A prototype smart home environment was developed using:

ESP8266/ESP32 microcontrollers

Smart relays for device control

DHT22, SCT013 (current sensor)

Raspberry Pi as local gateway

Firebase/MOTT for data transfer

Python ML model (LSTM) for forecasting

Automation rules were implemented using Node-RED.

VI. RESULTS AND DISCUSSION

Experiments were conducted across a simulated 24-hour period with normal and DR-enabled operations.

Parameter	Before DR Implementation	After IoT- Enabled DR Implementation	Improvement / Observation
Peak Load (kW)	6.8 kW	4.1 kW	39% reduction in peak demand
Daily Energy Consumption (kWh)	28.5 kWh	22.7 kWh	20.35% reduction in energy usage
Peak-to- Average Ratio (PAR)	2.9	1.8	Lower PAR → Improved load distribution
Response Time for Load Control	Not applicable / Manual	1–3 seconds (via IoT control node)	Real-time automation achieved
User Comfort Level	Medium (manual switching)	High (automated scheduling)	No major inconvenience to users
Cost Saving per Day (INR)	_	₹19.5 per home	Savings due to avoided peak tariffs
Renewable Energy Utilization (%)	18%	32%	Better alignment of loads with solar availability
Connected IoT Devices	0	8 devices (AC, water heater, refrigerator, lighting, EV charger, pumps etc.)	Enables real- time DR actions
Communication Latency	_	120–180 ms (WiFi/MQTT)	Suitable for real-time operations
Grid Stress Level	High during peaks	Reduced	Demand flattening observed
Table 1: Performance Results of IoT-Enabled Real-Time Demand			

Table 1: Performance Results of IoT-Enabled Real-Time Demand Response System

The implementation of an IoT-enabled real-time demand response management system in smart homes demonstrated significant improvements in energy efficiency, peak load control, and user comfort. The results showed that the peak load, which was previously 6.8 kW, reduced to 4.1 kW after applying automated demand response actions, indicating a 39% drop in peak demand. This also contributed to a reduction in the peak-to-average ratio from 2.9 to 1.8, clearly reflecting a more balanced and stable load profile throughout the day. Daily energy consumption decreased from 28.5 kWh to 22.7 kWh, amounting to a 20% improvement in overall efficiency. This reduction was mainly achieved by shifting non-critical loads such as water heaters, washing machines, and EV chargers to off-peak hours through IoT-based scheduling. The system responded within 1-3 seconds, enabled by low-latency MQTT communication, proving that real-time control is both feasible and reliable. Importantly, user comfort remained high because essential appliances were not interrupted, and automations operated in the background without requiring manual intervention. Households also achieved an average cost saving of around ₹19.5 per day due to avoided peak tariffs and increased utilization of solar energy. Renewable energy usage improved from 18% to 32% as the system aligned specific loads with daytime solar generation. Overall, the study confirms that IoT-enabled demand response systems significantly reduce grid stress, improve energy savings, and enhance the operational sustainability of smart homes while maintaining a high level of user convenience.

VII. CONCLUSION

This paper presented an IoT-enabled real-time demand response management system for smart homes. The system effectively integrates IoT sensing, automated control, edge intelligence, and machine learning-based forecasting. Experimental results show significant improvements in energy efficiency, peak load reduction, and response time. The proposed solution enhances grid stability while preserving user comfort.

Future Work

Integration with blockchain for secure energy transactions Multi-home DR coordination Integration with home renewable generation and storage Fully AI-driven autonomous home energy systems

REFERENCES

- [1] A. Mohsenian-Rad, "Autonomous demand-side management based on game-theoretic energy consumption scheduling," IEEE Transactions on Smart Grid, 2020.
- [2] Y. Wang et al., "Review of IoT-based demand response strategies," IEEE Access, 2022.
- [3] H. Khorramdel, "Real-time demand response using machine learning techniques," IEEE Transactions on Sustainable Energy, 2021.
- [4] S. Singh, "Smart home IoT energy management systems," IEEE Internet of Things Journal, 2023.
- [5] B. Zhang, "Edge computing for smart grids," IEEE Transactions on Industrial Informatics, 2022.