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Abstract 

Feature engineering plays a critical role in the machine learning pipeline, profoundly impacting the 

performance of predictive models. This survey provides a comprehensive overview of the latest 
advancements in feature engineering, including its techniques, challenges, and best practices. It 
examines various methods for feature representation, selection, and extraction, outlining their strengths, 
limitations, and applications across different domains. Emphasis is placed on the importance of data 
quality and collection, as these are foundational to effective feature engineering. Additionally, the paper 
explores the emerging concept of "Software 2.0," which reimagines feature engineering as an integral 
aspect of modern software development. 

Keywords: Feature engineering, feature representation, selection, extraction, and machine 
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1. Introduction 

Machine learning (ML) has emerged as a transformative tool for tackling a wide range of challenges, 
from image recognition to natural language processing. A critical factor in the success of ML models 

is the quality and relevance of the input features [1]. Feature engineering—the process of creating, 
selecting, and transforming features from raw data, as illustrated in Fig. 1—is a foundational step in the 
ML pipeline. When executed effectively, feature engineering improves a model's capability to identify 
hidden patterns and relationships in data, ultimately enhancing its overall performance. [2]. Conversely, 
poorly engineered features can hinder model performance and lead to suboptimal results.       

             

        Fig 1: Feature Engineering                                             

As datasets grow increasingly complex and diverse, the importance of feature engineering has become 

more pronounced. This survey provides a comprehensive overview of the current state of feature 
engineering research, discussing a range of techniques, challenges, and best practices. We explore 
various approaches to feature representation, selection, and extraction, highlighting their strengths, 
limitations, and applications across multiple domains. Additionally, the paper addresses the challenges 
associated with data collection and quality, emphasizing their critical role in ensuring effective feature 
engineering and optimal ML model performance. 

Finally, we examine the emerging paradigm of "Software 2.0," which redefines feature engineering as 
a specialized software engineering discipline. This perspective emphasizes the need for dedicated tools, 
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frameworks, and methodologies to streamline the feature engineering process and uphold the quality of 
ML models in increasingly complex environments. 

2. Feature Representation and Selection 

2.1 Feature Representation 

Feature representation involves converting raw data into a structured format that can be effectively 
utilized by machine learning models [3]. The techniques used for this process vary based on the type of 
data: 

 Numerical Data: Techniques such as vectorization are commonly applied to represent 
numerical values effectively. 

 Textual Data: Methods like tokenization, stemming, and lemmatization are employed to 
preprocess and structure textual information. 

 Visual Data: Approaches such as edge detection, color histograms, and deep learning-based 

feature extraction are utilized to capture and represent visual patterns. 

Feature Representation is illustrated in Fig 2. It illustrates how different types of raw data 
(Numerical, Textual, and Visual) are processed using specific techniques to generate structured 
features, which are then used by the ML model. 

 

               Fig 2: A diagram representing Feature Representation.  

2.2 Feature Selection 

Feature selection identifies the most relevant features for a specific task [4]. This step offers several key 
advantages: 

 Dimensionality Reduction: Simplifies the model by reducing the number of features. 

 Improved Training Time: With fewer features, models can be trained more efficiently. 

 Enhanced Generalization: Minimizing irrelevant features reduces overfitting, enhancing 

performance on unseen data. 
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 Increased Predictive Accuracy: Relevant features lead to more accurate predictions. 

 Better Interpretability: Models with fewer features are easier to analyze and understand. 

Feature Selection is illustrated in Fig 3. It illustrates how raw features go through a selection 
process, resulting in a reduced feature set that enhances model performance by improving 
accuracy, training time, and interpretability. 

 

           Fig 3: A diagram representing Feature Selection.  

2.3 Feature Selection Techniques 

 Filter Methods: Filter methods assess the significance of features by applying statistical 
measures such as correlation coefficients or mutual information, without relying on a specific 

machine learning model [5]. These techniques rank features based on their individual 
importance, without taking into account the relationships between features or the specific needs 
of the model. While filter methods are computationally efficient and capable of handling high-
dimensional feature spaces, making them useful for initial feature selection [6], they may fail 
to identify complex dependencies or interactions between features that could be crucial for 
improving model performance. 

 Wrapper Methods: Wrapper methods evaluate subsets of features by training and testing a 

machine learning model while accounting for feature interactions [7]. These techniques use the 
model’s performance as the evaluation metric for feature selection, essentially "wrapping" 
around the model. While wrapper methods are more computationally intensive than filter 
methods, they are better at identifying the feature combinations that most enhance the model's 
performance [8]. Unlike filter methods, which evaluate features independently, wrapper 
methods account for how features work together to impact the model’s predictive accuracy. 

Embedded Methods: Embedded methods integrate feature selection within the model training 
process, enabling the model to identify the most important features automatically [9]. These 
techniques combine feature selection with model optimization, enabling the model to identify 
which features are most useful for the task. By capturing complex feature interactions and 
dependencies, embedded methods offer a more effective and robust approach to feature 
selection compared to methods that rank features independently [10]. Since feature selection is 
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part of the training process, embedded methods can pinpoint the optimal feature subset that 
maximizes model performance, often leading to better accuracy and more relevant features than 
filter and wrapper methods. In Fig 4 A well-structured table summarizing the feature selection 
techniques are shown. 

Feature Selection 

Technique Description 

 

Advantages 
 

Disadvantages 
 

Filter Methods Assess feature 
significance using 
statistical measures 

(e.g., correlation, 
mutual information) 
without relying on a 
specific model. 

Computationally 
efficient, suitable for 
high-dimensional 

data, independent of 
model choice. 

Does not consider 
feature interactions, 
may miss complex 

dependencies. 

Wrapper Methods Evaluate feature 

subsets by training 
and testing a model, 
considering feature 
interactions. 

Identifies optimal 

feature combinations, 
improves model 
performance. 

Computationally 

expensive, especially 
for large datasets. 

Embedded 

Methods 

Integrate feature 
selection into model 
training, selecting 
features 
automatically. 

Captures feature 
interactions, 
optimizes selection 
during training, 
improves accuracy. 

Dependent on the 
chosen model, may 
require more tuning. 

Fig 4: A table summarizing the feature selection techniques 

2.4. Challenges and Recent Advancements 

One of the key challenges in feature selection is ensuring that the chosen features generalize well across 
different datasets and are robust to variations in the data. Selecting a subset of features that performs 
well on the training set but fails to adapt to unseen data is a common pitfall. To tackle this, recent 
research has focused on optimizing the continuous embedding space for feature selection. This approach 

aims to refine the selection process by considering not just the relevance of individual features, but also 
how they interact in a more dynamic, high-dimensional space. By doing so, it seeks to identify feature 
subsets that are not only accurate but also more stable and adaptable to diverse conditions, ultimately 
leading to better generalization and robustness. 

3. Feature Extraction and Engineering 

3.1 Feature Extraction  

Feature extraction is the process of transforming raw data into a set of meaningful features that can be 
used for machine learning. This often involves leveraging domain knowledge or unsupervised methods 
to identify patterns and relationships that are not immediately apparent in the original data[[11]. The 
goal is to extract more informative and relevant features, which can enhance the performance of 

machine learning models by providing them with a clearer representation of the underlying structure of 
the data. 

3.2 Feature Engineering 

Feature engineering is the process of designing and transforming features to improve the performance 
of machine learning models. It involves a combination of technical skill and creativity, requiring a deep 
understanding of the problem domain to represent the data in a way that best supports model learning. 

This process often includes modifying existing features, creating new ones, or selecting the most 
relevant features, all with the goal of enhancing the model’s ability to make accurate predictions[2]. 
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3.3 Techniques in Feature Engineering 

Polynomial Feature Generation: This technique generates new features by capturing the 
nonlinear relationships between the original variables. It involves creating higher-order 

polynomial terms, such as squares, cubes, and cross-products, which can help the machine 
learning model better represent and capture the non-linear patterns in the data [12]. By 
expanding the feature space with these additional polynomial features, the model gains the 
ability to uncover intricate relationships that may not be immediately evident in the original 
feature set, leading to improved model performance. Polynomial Feature Generation is 
illustrated in Fig 5. It shows how original features undergo polynomial transformation to create 
higher-order terms, which are then used by the ML model for improved learning. 

                     

                     Fig 5: A diagram representing Polynomial Feature Generation.  

Interaction Feature Design: This technique focuses on creating new features that capture the 
complex relationships and interdependencies between multiple input variables. By constructing 
interaction terms—such as products, ratios, or other mathematical combinations of the original 

features—the model can learn to identify and utilize the intricate interactions that may exist 
within the data [13]. This approach can significantly enhance predictive performance, as it 
enables the model to better capture the subtle patterns and dependencies underlying the 
problem. Interaction feature design is a key component of feature engineering, as it provides 
the model with a richer and more informative representation of the data, often improving 
accuracy, generalization, and interpretability. Interaction Feature Design is illustrated in Fig 6. 
It visually demonstrates how original features interact to create new features, which are then 

used in the machine learning model. 

                                

                       Fig 6: A diagram representing Interaction Feature Design.  
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Temporal Feature Incorporation: This technique focuses on creating features that capture 
time-dependent patterns and trends in the data. By incorporating temporal information, such as 
the timing or sequence of events, the model can learn to recognize the dynamic relationships 
and evolving patterns over time[14]. Examples of temporal features include variables like time 

of day, day of the week, time since the last event, and time-series lags or differences. By 
modeling these time-based dependencies, the model can better account for the temporal nature 
of the data, leading to improved predictive performance and the ability to learn more robust and 
generalizable patterns. Temporal Feature Incorporation is illustrated in Fig 7. It shows how 
time-related features are extracted from events and used to improve a machine learning model's 
performance. 

      

             Fig 7: A diagram representing Temporal Feature Incorporation.  

These techniques allow models to uncover complex relationships and underlying structures in 
the data, resulting in more accurate, robust, and interpretable outcomes. Successful feature 
engineering relies on a deep understanding of the domain, creative design of features, and the 
ability to leverage domain knowledge to identify the most informative and discriminative 
features. This combination of expertise and innovation is key to improving model performance 
and making better predictions. 

3.4 Deep Learning in Feature Engineering 

 Deep learning provides advanced methods for feature engineering, offering new ways to select                  
and transform features for improved model performance. 

Deep Feature Selection: Utilizes deep learning techniques to automatically select the most 
relevant and informative features from the available data. By harnessing the powerful 
representational capabilities of deep neural networks, these methods can learn to pinpoint the 
most discriminative features that are essential for the specific machine learning task[5]. Deep 
feature selection goes beyond the limitations of traditional approaches by capturing complex, 

non-linear relationships and interactions between input features. As a result, these methods 
often outperform conventional feature selection techniques—such as filter, wrapper, and 
embedded methods—by identifying a more compact, effective feature set that maximizes 
predictive performance. Deep Feature Selection is illustrated in Fig 8. It illustrates how deep 
learning layers process input features to extract the most relevant ones for improved machine 
learning performance. 

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 566



                    

Fig 8: A diagram representing Deep Feature Selection.  

Deep Feature Extraction: Employs deep learning techniques to automatically learn and 
extract informative, high-level features directly from raw data. By leveraging the powerful 
representation learning capabilities of deep neural networks, these methods can uncover 
complex, non-linear patterns and relationships within the input data. This leads to more 
discriminative and meaningful features for machine learning tasks[15]. Deep feature extraction 
models are able to learn rich, hierarchical representations that capture intricate structures and 

semantics in the data, often outperforming traditional feature engineering methods in terms of 
performance and generalization. This automated process significantly reduces the time and 
effort needed for manual feature engineering, making deep learning a highly promising 
approach for scalable and adaptive feature extraction. Deep Feature Extraction is illustrated in 
Fig 9. It illustrates how deep learning layers process raw data (such as images, text, or signals) 
to extract high-level features, which are then used for machine learning tasks. 

              

Fig 9: A diagram representing Deep Feature Extraction.  
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These methods often outperform traditional techniques by learning more informative and representative 
features directly from the data. 

4. Data Quality and Collection 

The quality and relevance of the input data are crucial for successful feature engineering. Poor data 
quality can severely limit the effectiveness of feature engineering, resulting in suboptimal model 
performance. High-quality input data is essential for deriving meaningful and discriminative features 
that capture the underlying patterns and relationships within the data[16]. The below Fig 10 shows a 

simple graph illustrating the relationship between data quality and model performance. 

                                            

Fig 10: A simple graph illustrating the relationship between data quality and model performance. 

Data collection plays a fundamental role in feature engineering, as it directly impacts the availability 
and quality of the input data. Careful attention must be given to the data collection process, including 
selecting appropriate data sources, using the right data formats, and employing efficient data acquisition 

methods. The decisions made during this phase can significantly influence the success of feature 
engineering efforts and, ultimately, the performance of machine learning models. [17] 

In addition, data preprocessing is a critical step in ensuring the quality of the input data for feature 
engineering. This involves addressing issues such as missing values, outliers, and noise in the data. 
Applying proper data cleaning techniques—like imputing missing values, removing outliers, and 
filtering out noise—can enhance the reliability and consistency of the data. Furthermore, normalization 
techniques such as standardization or min-max scaling help ensure the data is on a consistent scale, 
which improves the effectiveness of the feature engineering process. By addressing issues with the input 

data, these preprocessing steps can lead to more informative and discriminative features, ultimately 
improving the performance of the machine learning models. [18] 

In conclusion, feature engineering is a vital component of machine learning, focusing on identifying, 
selecting, and transforming the most relevant features from raw data. When done effectively, feature 
engineering leads to more accurate, robust, and interpretable models, making it a key step in building 
successful AI systems. 

5. The Evolving Paradigm of "Software 2.0" 

As feature engineering has become increasingly important in machine learning, a new software 
engineering paradigm has emerged, known as "Software 2.0." In this paradigm, feature engineering is 
recognized as a central discipline within software engineering. Here, machine learning models are the 
primary output, and the process of feature engineering takes center stage in software development[19]. 

This shift in perspective has spurred the development of numerous open-source and proprietary tools 

and frameworks designed to streamline and automate the feature engineering process. These tools offer 
a variety of capabilities, including automated feature generation, feature selection, and feature 
transformation, to help data scientists and machine learning engineers more efficiently create 
informative features from raw data[5]. 
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Moreover, the growing awareness of the critical role data quality plays in machine learning has led to 
the rise of MLOps practices. MLOps focuses on the management, monitoring, and continuous 
improvement of data and model quality throughout the entire machine learning lifecycle[20]. These 
practices ensure that high-quality data and features are consistently available, supporting the 

development and deployment of robust and reliable machine learning models. The below Fig 11 
highlights the key aspects of Software 2.0 in a structured way. 

 

Fig 11: A diagram illustrating the evolving paradigm of "Software 2.0" 

6. The Challenges of Feature Engineering 

While feature engineering is a powerful method for improving machine learning performance, it comes 
with several challenges. One of the main obstacles is its labor-intensive and time-consuming nature, 
often requiring deep domain expertise and significant creativity. As highlighted in the literature, 
"feature engineering is important but labor-intensive and underscores the limitation of current learning 
algorithms: their inability to autonomously extract and organize discriminative information from 
data"[3]. Another challenge is the potential risk of introducing bias and overfitting. If feature 

engineering is not done carefully, poorly designed features or those that lack generalization can cause 
models to perform well on training data but struggle to generalize to new, unseen data[9]. Additionally, 
the exponential growth of data and the increasing complexity of machine learning tasks have made 
traditional feature engineering methods less scalable and adaptable. To address these issues, researchers 
are turning to deep learning techniques for feature engineering, which can automatically learn more 
informative and representative features from raw data in a more scalable and efficient way[21]. The Fig 
12 summarizes the key challenges in a structured way. 

 

Fig 12: A diagram illustrating the challenges of feature engineering 
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7. Emerging Trends in Feature Engineering 

Emerging trends in feature engineering emphasize the growing role of deep learning techniques in 
automating feature extraction and selection. Methods like deep representation learning and end-to-end 
feature extraction are gaining prominence because they can automatically learn more informative and 
discriminative features directly from raw data. These deep learning-based approaches often outperform 
traditional manual feature engineering methods in terms of both accuracy and efficiency[15]. 

Another important trend is the increasing integration of feature engineering into the broader machine 
learning lifecycle, often referred to as MLOps. This approach seeks to streamline the feature 
engineering process, ensuring the consistent availability of high-quality features for model training and 

deployment, while aligning feature engineering practices with the overall goals and requirements of the 
machine learning system [22]. 

Additionally, there is a growing emphasis on the interpretability and explainability of features, 
especially as machine learning models are being deployed in high-stakes fields like healthcare and 
finance. Techniques such as feature importance analysis, feature visualization, and feature interaction 
analysis are becoming more critical for understanding how models make decisions and ensuring that 
they are trustworthy and accountable[23]. The below Fig 13 provides a clear, high-level view of the 

three major trends in feature engineering. 

 

Fig 13: A diagram representing major trends in feature engineering. 

8. Conclusion 

In conclusion, feature engineering is a critical aspect of machine learning, playing a key role in 
developing effective and reliable artificial intelligence systems. While traditional feature engineering 
methods have been effective, the increasing complexity of data and the challenges in machine learning 
have highlighted the need for more automated and scalable techniques. Deep learning-based approaches 
to feature engineering are emerging as powerful solutions, as they can automatically learn informative 

and discriminative features directly from raw data, often surpassing conventional manual methods in 
performance. 

Moreover, there is a growing focus on integrating feature engineering into the broader machine learning 
lifecycle through MLOps practices. This integration ensures that high-quality features are consistently 
available for both model training and deployment, aligning feature engineering with the overall goals 
of the system. 

Additionally, the importance of interpretability and explainability, particularly in high-stakes fields 

such as healthcare and finance, has spurred the development of techniques to analyze feature 
importance, visualize feature interactions, and understand how machine learning models make 
decisions. These advancements are crucial for building trustworthy and accountable AI systems, 
ensuring that they are both effective and reliable in real-world applications. 
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