Journal of Engineering and Technology Management 78 (2025)

" A-GGCO: A Hybrid Adaptive Metaheuristic for Optimization of Paillier
Homomorphic Encryption Parameters"

Rekha Gaitond, Asst. Prof., Computer Science and Engineering, PDA College of Engineering, Kalburgi, India Orcid Id: 0009-0008-5259-
5444

Dr. Gangadhar S. Biradar, Professor, Electronics and Communication Engineering, PDA College of Engineering, Kalburgi, India

Dr. Shubhangi D.C., Professor, Visveswaraya Technological University, Kalburgi, India, Orcid 1d:0000-0002-9221-166X

Abstract

Bio-inspired optimization approaches are powerful tools for tackling high-dimensional and complex problems. The research
proposes a Hybrid Adaptive Greylag Goose—Crayfish Optimization (A-GGCO) algorithm that introduces a diversity-driven
switching mechanism that balances exploration and exploitation by combining the behaviors of geese and crayfish. Tested on
classical benchmarks and CEC2017/2020/2022 suites against SHADE, L-SHADE, DE, CMA-ES, HO, JSO, and CSO-MA, it
consistently achieved faster convergence, higher accuracy, and improved robustness. Statistical analyses confirmed significant
improvements, with effect-size measures (Cohen’s d) indicating large to very large gains, particularly in challenging cases such
as Michalewicz (d > 2.3) and Griewank/Salomon (d > 3.0). Sensitivity, diversity, and ablation studies verified its adaptability
and the advantages of hybridization. A practical case study on Paillier Homomorphic Encryption further highlighted reductions
in computation time and enhanced efficiency in secure cloud environments, while its lightweight design proved effective for
IoT healthcare by enabling energy-efficient, latency-sensitive optimization. Overall, A-GGCO emerges as a robust and versatile
framework for both benchmark optimization and real-world applications in cryptography, IoT, and cloud security.

Keywords: Hybrid Optimization, Greylag Goose Optimization, Crayfish Optimization, Nature-Inspired Algorithms, Global—
Local Search

1. INTRODUCTION

Optimization refers to the process of identifying the best solution from a set of feasible alternatives under specific objectives
and constraints. In computational sciences, optimization methods are generally classified into deterministic and stochastic
approaches. Deterministic algorithms yield the same solution for a given input, while stochastic methods incorporate
randomness, allowing diverse exploration of the solution space and the possibility of escaping local optima.[1][2][3] Among
stochastic approaches, metaheuristic algorithms have gained remarkable attention for solving nonlinear, multimodal, and high-
dimensional optimization problems.[1][4][5]
Within this class, bio-inspired metaheuristics—which emulate natural, evolutionary, or ecological behaviors—have been widely
recognized for their effectiveness in maintaining a balance between exploration (global search across the solution landscape)
and exploitation (local refinement around promising regions) [7][8][13]. Despite their success, such algorithms often face two
persistent challenges: (i) premature convergence, where the search stagnates around local optima due to insufficient exploration,
and (ii) parameter sensitivity, where performance depends heavily on fine-tuned parameters such as mutation factors, population
size, or learning coefficients [11][50].
To overcome these challenges, hybrid optimization approaches have emerged, integrating complementary strategies to enhance
adaptability, robustness, and convergence efficiency. These hybrid frameworks seek to exploit the strengths of multiple
algorithms while mitigating their individual weaknesses, thereby achieving an adaptive balance between global exploration and
local exploitation [19][20][21].
1.1 Greylag Goose Optimization (GGO)
Greylag Goose Optimization (GGO) is a recent swarm-based metaheuristic inspired by the migratory and foraging behavior of
greylag geese [42][43]. In nature, geese migrate in V-shaped formations, which reduces air resistance, enhances communication,
and conserves energy. This cooperative phenomenon is modeled in GGO, where each candidate solution represents a goose,
and the best-performing solution acts as the leader guiding the flock. Importantly, leadership in GGO is not static. A dynamic
switching mechanism enables the replacement of underperforming leaders by better-performing candidates, thereby maintaining
diversity and preventing premature stagnation. This mechanism makes GGO particularly effective in global exploration, as it
ensures adaptive exploration of new regions in the search space [44].
1.2 Crayfish Optimization (CO)
In contrast, Crayfish Optimization (CO) is inspired by the intelligent foraging and defensive behaviors of crayfish. These
creatures exhibit fine-grained local search strategies, such as adaptive backward-walking and variable step-size adjustments
depending on their proximity to food or threats [45][46]. In algorithmic terms, this translates into an adaptive step-size
mechanism: larger exploratory steps are taken when the solution is far from the optimum, while smaller exploitative steps are
applied when near promising regions. This adaptive adjustment makes CO highly effective for local exploitation, enabling
precise refinement of candidate solutions and reducing the risk of premature convergence [46].

PAGE NO: 408

Journal of Engineering and Technology Management 78 (2025)

1.3 Motivation for Hybridization
Both GGO and CO possess unique strengths that complement one another. GGO excels in broad exploration, dynamically
covering the search space and preventing stagnation, while CO provides intensive local refinement, adaptively improving the
quality of solutions. However, when used individually, each algorithm is limited: GGO may lack exploitative precision, and CO
may struggle to escape local optima. By hybridizing GGO and CO into a unified framework, it is possible to achieve a
synergistic balance between exploration and exploitation.
1.4 Contributions of The Work
Building upon these complementary strengths, the research introduces the Hybrid Greylag Goose—Crayfish Optimization
(GGCO) algorithm. The key contributions are as follows:
e Hybrid Algorithm Design — Development of a novel metaheuristic that dynamically transitions between GGO and CO
phases based on population diversity.
e Sensitivity and Diversity Analysis — Assessment of robustness under varying population sizes, iteration limits, and
diversity thresholds.
e Ablation and Impact Study — Quantitative evaluation of the contributions of GGO and CO components within the
hybrid framework.
e Comprehensive Benchmarking — Evaluation on classical functions and modern benchmark suites (CEC2017,
CEC2020, CEC2022) against advanced optimizers such as SHADE, L-SHADE, DE, CMA-ES, HO, JSO, and CSO-
MA.
e Real-World Application — Demonstration of the algorithm’s effectiveness in optimizing parameters of Paillier
Homomorphic Encryption, highlighting its applicability in cryptographic domains.

2. RELATED WORK

2.1 Nature-Inspired Population-Based Optimization Algorithms

Nature-inspired metaheuristics, particularly population-based approaches, have demonstrated remarkable adaptability in
solving nonlinear and multimodal optimization problems [6][8][13][14][15]. These algorithms simulate biological or ecological
behaviors such as reproduction, hunting, or swarming, enabling effective exploration and exploitation of the search space
[o1[10][16][17][18].

Population-based algorithms typically follow an iterative process: (i) initialize a population of candidate solutions, (ii)
evaluate their fitness, (iii) modify solutions using operators such as crossover, mutation, or position updates, and (iv) repeat
until a stopping criterion is satisfied [3][50].

In recent years, a variety of new optimizers have emerged, drawing inspiration from diverse biological phenomena. Table 1
highlights selected examples, including Starling Murmuration Optimizer (SMO) and Quantum-Based Avian Navigation
Optimizer (QANA), with their core inspirations, mechanisms, strengths, and limitations [55][56].

Table 1. Comparative analysis of recent metaheuristic optimizers

Algorithm Inspiration Core Mechanism Strengths Limitations Ref
Extends GA with Requires problem
GEA (Genetic Genetic gene isolation, Preserves beneficial traits, q . p ..
. specific customization;
Engineering engineering purification, faster convergence in [51]
. o depends on accurate
Algorithm) principles insertion, and combinatorial problems . .
. gene manipulation
expression
ESO1 & ESO2 ESOT uses logistic Strong exploration and Sensitive to
. maps; ESO2 uses . . .
(Enhanced Snake | Snake hunting , . exploitation; effective on parameters; tuning [52]
Optimizers) Levy flights for benchmarks required
P food search 4
Surprise pounce Can converee
HHO (Harris . strategy with Effective for complex, &
Cooperative ; . . : . prematurely;
Hawk . adaptive nonlinear, high-dimensional . [53]
. hawk hunting . . performance varies
Optimization) exploration— problems; easy to implement .
S with landscape
exploitation phases
GJO (Golden Social hunting Collabora.tlve Competitive performance, New, requires wider
Jackal . search guided by - [53]
. of jackals . adaptable validation
Optimization) hierarchy

PAGE NO: 409

Journal of Engineering and Technology Management 78 (2025)

Alpha—beta—delta

GWO (Grey WOlf leadership with Widely used; balances Car.l get stuck " local
Wolf hierarchy & . . . optima on multimodal | [54]
S . encircling & exploration/exploitation
Optimization) hunting . . problems
hunting strategies
SMO (Sta.r ling Starling flock Separ.atlon, dl.V "% | Maintains diversity, reduces Needs careful tuning;
Murmuration : whirling to mimic performance context- [55]
- dynamics . premature convergence
Optimizer) murmuration dependent
QANA . Bird migration Multi-flock Effective for high- Complex
(Quantum Avian structures, quantum |
. + quantum . . dimensional feature selection; | implementation; [56]
Navigation . mutation, qubit "
L. principles robust sensitive to parameters
Optimizer) crossover

As shown in Table 1, recent metaheuristic optimizers are inspired by diverse natural and computational phenomena, ranging
from genetic engineering and predator—prey interactions to swarm dynamics and quantum principles. Each algorithm
demonstrates distinct strengths such as maintaining diversity, improving convergence speed, or adapting to high-dimensional
search spaces. However, most of them also suffer from limitations like parameter sensitivity, premature convergence, or
implementation complexity. These trade-offs highlight the importance of designing hybrid algorithms that can combine
complementary advantages while reducing individual weaknesses.

2.2 Hybrid Approaches in Population-Based Optimization

Hybridization can be introduced at multiple stages:
e Initialization: combining random generation with statistical sampling to ensure population diversity.
e Evaluation: using surrogate models or distributed computing to reduce computational load.
e Search process: integrating different exploration—exploitation strategies either sequentially or in parallel.[20][21]
Hybrid nature-inspired algorithms can be classified along four key dimensions:
1. Methods — combining multiple metaheuristics (e.g., GWO-DE), integrating metaheuristics with domain-specific
models (e.g., PSO-EBP), or fusing with soft computing techniques (e.g., GA-fuzzy systems) [23].
2. Level — High-Level Teamwork (HLT) hybrids preserve the identity of constituent algorithms, while Low-Level
Teamwork (LLT) hybrids exchange operators or components directly [24][25].
3. Execution — hybrids may run sequentially (e.g., GA followed by PSO) or in parallel, depending on computing
architecture and synchronization requirements [26][27].
4. Control Strategy — integrational hybrids embed one method inside another (e.g., PSO with local search), while
cooperative hybrids allow independent but interacting algorithms (e.g., multi-island GA) [27][28][29].
The classification provides a framework for systematically designing hybrid strategies tailored to specific optimization
problems. Several hybrid methods have been proposed that synergize exploration and exploitation. Table 2 summarizes notable
hybrid strategies, such as PSO-GA, DE-ACO, GWO-SSA, and JSO-SA, highlighting their key strengths and challenges.

Table 2. Summary of notable hybrid optimization strategies

Hybrid
Algorithm Components Strengths Challenges Ref
Particle Swarm + Avoids early convergence; improved | Complex parameter
PSO-GA Genetic Algorithm speed in multimodal search tuning [12]{23]
DE-ACO Differential Evolution SFrong exploration; efficient in Implemeptatlon [31]
+ Ant Colony discrete problems complexity
. . t les in high
GWO-FOA Grey Wolf + Fruit Fly High accuracy, faster convergence S.mgg s g [32]
dimensions
n — - . -
GWO-SSA Grey Wolf + Salp Effective in fgature selection, Prqblem specific [33]
Swarm parameter tuning design
JSO—SA J ellyﬁsb + Simulated Powerful local search; good High computational [34]
Annealing convergence cost
JSO-TS Jellyfish + Tabu Search | Strong exploitation ability Complex integration [35]
Harris Hawks + Adaptive exploration; diverse search | Parameter balancing
HHO-DE Differential Evolution | patterns needed [371
Whale + Lévy Flight & . . N Chaotic maps increase
WOA-LFCM Chaotic Maps High exploration diversity overhead [38]

PAGE NO: 410

Journal of Engineering and Technology Management 78 (2025)

n - - -
SSA_AM Salp Sw'arm Adaptive Dynat'mc' balance of exploration & Higher complexity [39]
Mechanisms exploitation
n — -
CSA-OBL Chame.lc.aon Swarrp Good diversity, avoids local optima Instg bility in noisy [40]
Opposition Learning settings
Particle Optimization + . . e
HIPO-CM Chaotic Maps Better diversity Scalability issues [41]

3. METHODOLOGY: HYBRID A-GGCO ALGORITHM

This section provides a systematic explanation of how the algorithm operates, including its behavioral inspiration, adaptive
switching mechanism, computational process, and complexity analysis.

3.1 Adaptive Hybridization Strategy

The key idea behind the hybridization is to achieve a dynamic balance between exploration (searching broadly across the
solution space) and exploitation (intensifying the search near promising regions). To prevent premature convergence and
stagnation, the algorithm utilizes an adaptive diversity threshold that determines whether the search should prioritize global
exploration or local exploitation.

At the initialization stage, a population of n candidate solutions is generated uniformly at random within the problem’s search
space:

X = {X1, X2, ..., Xa} € Uniform (L, U)¢ - ()
where [L,U] defines the lower and upper bounds of the search space and d is the dimensionality of the problem. The best
solution is initialized as Xpest «— None, fpest «— 00.

A minimum diversity threshold is defined as:

Duin = 0.15-JU-LIl //d Q)
Dumin corresponds to 15% of an “equivalent” per-dimension range. It does not map directly to a percentage of the volume of the
search space. Dmi, provides a reference value for deciding whether the algorithm should prioritize exploration or exploitation.

During each iteration, the fitness of every individual is evaluated. If a candidate solution outperforms the current best, the values
of Xpest, foest are updated accordingly. After evaluation, the population diversity is calculated to assess how widely dispersed the
solutions are in the search space. Diversity at iteration t is given by:

1 _ —t 1
Dt =2yn, [l %[, where & =137, xf a

where X'is the mean position of every agent at iteration t.

If the measured diversity D' is greater than the threshold Dy, the global search phase (GGO) is applied. In this phase, the leader
of the flock is selected as the best-performing individual:

Xleader <— argmin f(x;))
If the leader stagnates for several iterations (AT), a leader switching mechanism is applied to reintroduce diversity:
t+1 .t t ¢ :
xl;—lder = Xleader tr. (xrand - Xleader)a where r € Uniform (0,1) (5)

For the remaining geese, positions are updated using a formation update rule, which combines attraction toward the leader,
interaction with a random neighbor x;, and Gaussian noise:

X = x4+ @ (Keager = XD + B+ (X] —x}) + N (6, 09, (6)
where a and P are weighting parameters, and V' (0, 6°) introduces stochastic perturbations to avoid premature convergence.
On the other hand, if the diversity falls below the threshold (D' < D), the algorithm switches to the local search phase (CO).
Here, each individual simulates the backward-walking behavior of crayfish. The adaptive step size is defined as:

Si = 1/ (1 + [|xi = Xpes][) (7
which ensures that individuals closer to the global best move in smaller, exploitative steps, while those farther away move in
larger, exploratory steps. Each position is updated as:

Xi—Xi+Si-R-N (u, 0%, R~U(-1,1)¢

®)
This mechanism ensures that local exploitation is intensified for escaping local optima. If stagnation persists, the step size S; is
dynamically adapted by either expanding or shrinking, allowing the algorithm to escape local traps or focus more precisely on
the search region. A crucial feature of A-GGCO is the adaptive diversity update mechanism, where the threshold is not kept
static but evolves dynamically according to:

Duin(t) = ¥+ Dmin(t=1) + (1=y) D¢,)
with y € [0,1] serving as a smoothing factor. This update strategy prevents the algorithm from remaining locked in either global
or local search for too long and promotes a smooth balance between exploration and exploitation throughout the optimization
process.

PAGE NO: 411

Journal of Engineering and Technology Management 78 (2025)

The iterative search proceeds until the stopping criterion is satisfied, which may be defined as reaching the maximum number
of iterations (Tmax) or the maximum number of evaluations (Emax). Upon termination, the algorithm outputs the best solution
Xpest along with its corresponding fitness value fyes:.

3.2 Algorithm Steps

The operational workflow is summarized in Algorithm-A-GGCO:
1. [Initialization: Generate population and set initial diversity threshold Dpix.
2. Evaluation: Assess fitness and track the global best solution.
3. Diversity Check: Calculate D..
o If D'>Duin : perform GGO-based global exploration.
o Else: perform CO-based local exploitation.
4. Leader Switching & Adaptation: If no progress is observed, perturb leaders (GGO) or adapt step sizes (CO).
5. Threshold Update: Adjust Dmin dynamically based on progress.
6. Termination: Stop when iteration or evaluation limits are reached, and return the best solution.
Steps 3,4, and 5 are detailed in Fig.1.

PAGE NO: 412

Journal of Engineering and Technology Management 78 (2025)

Phase Selection and Agent Movement

Start

|
l

Is Dt > DmMin?

yes | no

Global Search Local Search

Phase (GGO) Phase (CQO)
- -

Identify Leader Compute

Adaptive Step

- w

Leader Generate
Stagnates? Random
Direction

yes no

! ! !

Leader Switching Formation Update Position
Update

! !

Apply Boundary Adapt Step Size
Control
-

Apply Boundary
Control

!

Adaptive
Diversity Update

|

Increment
Iteration

Fig. 1. Leader Switching and Adaptation

This dual-phase framework enables the algorithm to dynamically adjust between broad exploration and focused exploitation.

PAGE NO: 413

Journal of Engineering and Technology Management 78 (2025)

3.3 Complexity Analysis

One of the main challenges in hybrid algorithms is computational complexity. Unlike simple metaheuristics, hybrids require
additional coordination between constituent methods, potentially increasing overhead. However, the performance gain from
improved convergence and robustness often outweighs this cost [30].

Computational complexity of the hybrid GGO—CO algorithm arises from combining GGO’s swarm-based evolutionary
selection with CO’s directional search and obstacle avoidance mechanisms. The primary complexity components include:

e Population initialization: O(PxD), where P is population size and D is problem dimension.
e Fitness evaluation: O(PxTxf), where T is the number of iterations and f is the complexity of the fitness function (often
the most expensive step).
e Position updates (GGO and CO): O(PxDxT).
e Evolutionary selection and ranking: O(TxPlogP).
e Hybrid coordination overhead: O(TxPxD).
Combining these, the total time complexity is: O(PxDxT+TxPlogP+PxTx{)
Since fitness evaluations dominate in most applications, the highest-order term is:
e O(PxTxf) when the fitness function is computationally expensive.
e Otherwise, it simplifies to O(PXDXT).
e The space complexity is O(PxD), required to store the population with minimal additional overhead for hybrid
operations.
This complexity profile highlights that while hybridization adds overhead, its linear scalability with population size,
dimensionality, and iteration count ensures practical efficiency. Compared with mainstream algorithms such as Differential
Evolution (DE), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), SHADE, and L-SHADE, Hybrid GGO-CO
achieves competitive per-iteration complexity (O(NxD)).

Algorithm: A-GGCO: Adaptive Greylag Goose—Crayfish Optimization Algorithm

Input:
e n: Population size
/L, U]: Lower and upper bounds
Tmax: Maximum iterations
Emax: Maximum evaluations
y: Adaptation factor for diversity update
e d: Dimension of problem space
Output:
e xbest: Best solution found
o fbest: Best fitness value

1. Initialization:
Initialize population X = {x1, X2, ..., Xa} € Uniform (L, U)¢
Initialize the best solution found so far:
Xbest <— None, fpest «—
Initialize diversity threshold Dy, = 0.15-[U-LIl /v/d
Set iteration counter t«—0

2. Main loop:
while (t < Tmax or evals < Emax) do

a. Fitness evaluation:
for each x; € X do:
Evaluate the fitness f(x;) using the objective function.
if f(X;) < foest then:
Update best solution:

Xbest «— argmin f(x;)
fbest «— f(Xl)

end if

end for

PAGE NO: 414

Journal of Engineering and Technology Management 78 (2025)

b. Population diversity calculation:
Compute population diversity D"

t _ 1gm t_ ot st _1gmn t
Dt =— i=1||Xi X|| s X = im1 X

where X'is the mean position of every agent at iteration t.

c. Phase selection:
if D' > Dyin then // Global Search Phase (GGO)
a. Identify leader Xjcader «— argmin f(x;)
b. If the leader stagnates (no improvement for AT iterations):

for each goose x; € X do
if X; == Xjcader then // Leader Switching
Randomly select Xrand € X
Xiouder = Xleader T T (Xfand - Xleader)» Where 1 € Uniform (0,1)
else // Formation Update
Select a random neighbor x; € X
XiH—1 = Xlt +oa- (Xlteader - Xlt) + B ' (X]t - Xlt) tNV (9, c?),
Optionally: Add Gaussian noise N (0, 62)
end if
Apply boundary control: x; € [L,U]
end for

else // Local Search Phase (CO)
for each crayfish x; € X do
Compute adaptive step:
Si— 1/ (1 + [Ixi — Xpest|])
Generate random direction vector R € Uniform (-1, 1)¢
Update position:
Xi—X+Si-R-WV (u, %
If stagnation persists: adapt step size S; (expand or shrink).
Apply boundary control: x; € [L,U].

end for
end if
d. Adaptive Diversity Update:
Adjust threshold:
Dhin(t) = v+ Dmin(t—1) + (1—y) -Dy, where y € [0,1],
e. Increment iteration: t < t + 1
end while

3. Termination:
Return Xbest and fbest

4. EXPERIMENTAL ENVIRONMENT

The experimental setup is designed to comprehensively assess the efficacy and robustness of the proposed Hybrid GGCO

algorithm. The evaluation includes two main components:

1. Classical Benchmark Functions: GGCO is initially tested on widely used standard benchmark functions, including
Sphere, Rastrigin, Ackley, Griewank, Levy, Michalewicz, Schwefel, Six-Hump Camel, and Salomon. These functions
help in evaluating the algorithm’s convergence behavior, precision, and ability to balance exploration and exploitation

across various landscapes (unimodal, multimodal, and composite).

2. CEC Benchmark Suites: To further validate the algorithm under complex and realistic optimization conditions, GGCO

is tested on:
o CEC2017 benchmark functions (F1-F20)
o CEC2020 benchmark functions (F1-F10)

PAGE NO: 415

Journal of Engineering and Technology Management 78 (2025)

o CEC2022 benchmark functions (F1-F10)
These suites include constrained, composite, and rotated functions that mimic real-world optimization problems.

For performance comparison, GGCO is evaluated against the following state-of-the-art algorithms:

e Greylag Goose Optimization (GGO)

e Crayfish Optimization (CO)

e Hippopotamus Optimization (HO)

e Jellyfish Search Optimizer (JSO)

e Cat Swarm Optimization - Memetic Algorithm (CSO-MA)

e Differential Evolution (DE)

e Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

e Success-History Adaptive Differential Evolution (SHADE)

e L-SHADE
Each algorithm is tested under the same termination criteria (e.g., maximum number of iterations or function evaluations) and
the same dimensional settings (typically 20D and 30D depending on the benchmark). Algorithm-specific parameters are
carefully tuned or kept at their recommended default settings as suggested in literature to ensure a fair and meaningful
comparison.
The results are presented using a combination of statistical tests (Wilcoxon Rank-Sum, Friedman test), performance metrics
(mean, std, success rate), and visualizations (convergence curves, diversity plots, bar and line plots). These analyses are
supplemented with detailed tables to highlight the strengths and weaknesses of each approach across problem types and
complexity levels.

4.1. Benchmark Functions

The classical benchmark functions and CEC benchmark functions (e.g., CEC2017, CEC2020, CEC2022) are widely used
in optimization research and provide a comprehensive testing environment for single- and multi-objective algorithms. These
functions are designed to simulate real-world complexities and include:

e Unimodal functions: To test exploitation capability.
e Multimodal functions: To test exploration and global search abilities.
e Hybrid functions: To assess performance on problems combining multiple landscapes.
e Composition functions: To challenge algorithms with complex, non-linear fitness landscapes.
The Hybrid GGCO algorithm is tested on a set of widely-used benchmark functions listed in Table 4.1.1 and Table 4.1.2. The
properties of benchmark Functions enable a complete assessment of the algorithm's exploration-exploitation balance and the
algorithm's capability to navigate diverse terrains and promptly discover global optima. [50]

4.2. Performance metrics

To evaluate the efficiency of the proposed Hybrid GGCO algorithm, three core performance metrics are employed:
Convergence Speed (CS), Solution Accuracy (SA), and Robustness (R). These criteria are assessed using the following
mathematical formulations:

1. Convergence Speed (CS): The number of iterations required for the algorithm to reach a solution within a specified
tolerance (€) of the global optimum (fop).
CS =min {k || f(xk) — fopt | < €}, Where:
k = iteration number
f(xx) = objective function value at iteration k
fopt = global optimal value
€ = acceptable tolerance level
2. Solution Accuracy (SA): Last objective value method generates indicates how near global optimum solution is.

SA = % * . f(x;) , Where:
n = total number of runs

f(xi) = final objective value in the i-th run
3. Robustness(R): Calculated by means of SD of final goal values, a gauge of algorithm's consistency across many runs.

R=oc= \/ﬁ (f (x;) — SA)? , Where:

n = total number of runs
f(xi) = final objective value in the i-th run
SA = average solution accuracy (mean objective value)

PAGE NO: 416

Journal of Engineering and Technology Management 78 (2025)

Table 4.1.1 Classical Benchmark Functions Used for Evaluation

Function . . Search Global Minimum
No. Name Mathematical Expression (f(x)) Domain ()
d
1| Sphere Z x? [-100,100]¢ | 0
i=1
n
2 Rastrigin f(x)=10n+ Z[xlz —-10 cos(27rxl-)] [-5.12,5.12]¢ | 0
i=1
1 n
3 Ackley f(x) =—-20exp| —0.2 (;Z cos(ani)> + 20 [-32,32]¢ 0
i=1
+e
n n
. 1 2 Xi
4 Griewank fx) = —Z xf — l_[cos (—) +1 [-600,600] 4 0
4000 4 , Vi
i=1 i=1
n-1
f(x) = sin? (nw,) + Z((ui —1)?[1 + 10sin?(rw; + 1)]
5 | Levy =1 [-10,10]¢ 0
+ (w, — 1)?[1 + sin®’2nw,)]
Where, w; =1 + %
= ix?
6 Michalewicz fx)=- Z sin(x;)sin®™ <—l> [0, 7] ¢ ~—1.801 (d=2)
i=1 T
n
7 Schwefel f(x) = 418.9829n — Z x; sin(/x;) [-500,500]¢ | 0
i=1
Six-Hump _ _ 2 x_4 2 _ 24,2 2 ~_
8 Camel flx,y) = (4 21x* + 3)x +xy + (-4 +4y?)y [-5,5] ~-1.0316
9 Salomon f(x) =1—-cos| 2n [-100,100]¢ | O

Table 4.1.2 Overview of modern CEC Benchmark Suites

Suite Year | Function Types Dimensions | Characteristics

CEC2017 | 2017 | Constrained Optimization 10, 30 Real-world inspired, complex constraints
CEC2020 | 2020 | Unconstrained, Multimodal | 20 Hybrid, rotated, composition functions

CEC2022 | 2022 | Unconstrained, Multimodal | 20 Large-scale and real-parameter complex functions

4.3. Parameter Settings

Each algorithm is configured with parameters based on best practices in the literature. In Table 4.3.1, the optimization runs
are configured with a dimensionality (D) of 30, a population size ranging from 50 to 100, and a maximum of 500 iterations,
with search space bounds tailored to each benchmark function. These configurations ensure an effective balance between
exploration and exploitation across different optimization techniques.

Table 4.3.1 Algorithms parameter settings

Algorithm Parameter Value/Range
General Settings | Dimensionality (D) 30

Population Size (N) 50-100

Max Iterations 500

Search Space Bounds Defined per function (e.g., Rastrigin: [-5.12, 5.12])
Hybrid GGCO Leadership Switching Interval 10 iterations

Weighting Factor for GGO 0.7

Weighting Factor for CO 0.3

Step Size Adaptive, based on fitness improvement
GGO Flock Size 50

Leader Selection Strategy Best fitness individual

Formation Update Coefficients (o, f) | o= 1.0, =0.5

PAGE NO: 417

Journal of Engineering and Technology Management 78 (2025)

Noise Addition Gaussian noise with 6 = 0.01
CcoO Adaptive Step Size Based on proximity to best solution

Exploration Vector Range Uniform (-1, 1)

Perturbation Gaussian (u=0, 6> =0.01)
HO Random Exploration Probability 0.3

Social Communication Weight 0.8

Step Size Decay Factor 0.95

Initialization Random sampling with adaptive bounds
CSO-MA Swarm Size 50

Mutation Rate 0.2

Social Weight 1.5

Cognitive Weight 1.5

Inertia Weight Linearly decreasing from 0.9 to 0.4
JSO Active Mode Ratio 0.6

Passive Mode Ratio 0.4

Time-Varying Parameter [0.5,1.0]

Initial Jellyfish Positions Uniformly distributed
DE Mutation Factor (F) 0.5

Crossover Rate (CR) 0.9

Strategy DE/rand/1/bin
SHADE Memory Size (H) 100

p-best Selection Rate 0.1

Archive Size Equal to population size
L-SHADE Initial Population Size 100

Final Population Size 20

Adaptation Strategy Linear population reduction
CMA-ES Initial Step Size (o) 0.3

Covariance Matrix Adaptation Enabled

Parent Number () IN/2|

Recombination Weights Logarithmic ranking

4.4. Results and Analysis
4.4.1. Performance of Classical Benchmark functions

The convergence analysis in Fig.4.4 compares GGCO, HO, JSO, and CSO-MA on eight benchmark functions (Ackley,
Rastrigin, Levy, Michalewicz, Schwefel, Griewank, Six-Hump Camel, and Salomon) over 500 iterations, showing that Hybrid
GGCO consistently achieves the fastest and most stable convergence with the lowest fitness values across all functions,
highlighting its strong balance of exploration and exploitation. On Ackley, Rastrigin, Levy, and Michalewicz, GGCO clearly
outperformed others, converging rapidly and accurately, while HO and JSO showed moderate performance with slower
convergence, and CSO-MA consistently underperformed, stagnating at higher fitness values. For Schwefel and Griewank,
GGCO maintained superior adaptability and precision, avoiding premature convergence, while HO and JSO trailed and CSO-
MA failed to converge effectively. On the Six-Hump Camel and Salomon functions, GGCO again emerged as the most effective,
demonstrating efficient search space navigation and robustness in avoiding local optima. The statistical results in Table 4.4.1.1
highlight clear performance differences between GGCO and its competitors across the eight benchmark functions. GGCO
demonstrates competitive average fitness values and convergence speeds, particularly on Ackley (F1), Rastrigin (F2), Levy
(F3), and Schwefel (F4), where it achieves lower or comparable fitness with faster convergence compared to HO and JSO. The
Cohen’s d values further confirm that GGCO’s improvements over HO and JSO are mostly small to medium in effect size. In
contrast, CSO-MA often exhibits very large positive effect sizes (d > 3). On functions like Michalewicz (F5), GGCO
significantly outperforms the other algorithms with large effect sizes (d = 2.3), demonstrating its superior exploration capability
in complex landscapes. Similarly, in Griewank (F7) and Salomon (F8), GGCO attains competitive average fitness and much
faster convergence, whereas CSO-MA again shows extreme effect sizes due to lack of diversity. Overall, the results indicate
that GGCO strikes a stronger balance between exploration and exploitation, delivering stable convergence and robust
performance across diverse benchmark functions, while HO and JSO remain close competitors.

PAGE NO: 418

Journal of Engineering and Technology Management 78 (2025)

= e Curves for Ackley Function
- Convergence Curves for Levy Function
— GO0
200 I —_— 0
| po
— CIO-MA
173 000 1

Fig. 4.4a Ackley function Fig.4.4e Levy function

Convergence Curve for Six-Hump Camel Function

Convergence Curves for Rastrigin Function
— — GGO-CO
B 1 L 25000 4 | ! i s
o —
pey | — csoMA — CSO-MA
20000 1 T
H000 §
-
; 15000 o
i 10000 4
5000 4
&4
o 100 200 300 400 500
00 00 00 Rerations
Rewations
Fig.4.4b Rastrigin function Fig.4.4f Six-Hump Camel function
Convergence Curves for Michalewlcz Function Convergence Curves for Schwefel Function
-5 T —OGO-CO
12400 =
=50 — CSO-MA
12300
15
¥ 12200
2 -0 3
2
i “1254—+ ?. 12100
i
=150 12000
ars ! 11900
~2040
o 100 200 00 00 200
Reralions
L oo 00 0 00 500
terations

Fig.4.4c Michalewicz Fig.4.4g Schwefel function

Convergence Curve for Salomon Function

Convergence Curves for Griewank Function
8
5
20 6
=
i @
H 2
E 15 E 4]
— GGO-CO —
M 24— HO L8
— 50
—— CSO-MA -
o5
o 100 200 300 400 500
[108 200 %0 400 500 terations
Reration

Fig.4.4d Griewank function Fig.4.4h Salomon function

Fig. 4.4. Convergence curves of the proposed algorithm

PAGE NO: 419

Journal of Engineering and Technology Management 78 (2025)

Table 4.4.1.1 Statistical results of test functions; F1-Ackley, F2-Rastrigin, F3-Levy, F4-Schwefel, F5-Michalewicz, F6-Six-
Hump, F7-Griewank, F8-Salomon.

Mean Iter. | Cohen’sd

Function Algorithm Best Fitness | Average Fitness | Standard Deviation | to Convg. | (vs. GGCO)
F1 GGCO 1331319483 | 14.93102253 1.783543291 180 -

HO 6.042285318 | 10.09927307 3.938649695 260 -1.55

JSO 6.21473173 11.16309804 3.881039946 275 -1.17

CSO-MA 20.44328949 | 20.44328949 0 480 +3.08
F2 GGCO 347.5217469 | 1091.460826 1176.078775 220 -

HO 404.259158 907.5444329 997.1409727 310 —0.16

JSO 345.1559144 | 805.981862 1139.425906 295 —0.25

CSO-MA 6982916738 | 6982.916738 9.09E-13 500 +5.01
F3 GGCO 91.8651543 | 247.0622639 314.3826965 200 -

HO 18.31564497 | 218.3213465 308.5679129 285 —0.09

JSO 103.4378551 | 240.9680386 263.1455855 300 —0.02

CSO-MA 1237.484577 | 1245.29368 50.98270351 460 +3.75
F4 GGCO 11854.97115 | 11910.60789 100.8520188 260 -

HO 11856.46891 | 11972.34332 141.5313537 340 +0.48

JSO 11852.2094 11909.73482 100.9232306 345 —0.01

CSO-MA 12233.34931 | 12234.16845 8.838667954 495 +3.30
F5 GGCO -19.0200651 | -14.3722664 4.53488089 140 -

HO -6.91841566 | -6.16505112 0.465946687 220 +2.30

JSO -6.01727926 | -5.70376031 0.458219847 230 +2.35

CSO-MA -6.45008223 | -6.41148973 0.342618918 420 +2.25
F6 GGCO -1.03162845 | 126.2465979 2840.765977 90 -

HO -1.03160007 | 0.699194393 12.74956082 140 —0.05

JSO -1.03147695 | -0.40487220 7.580615819 130 —0.05

CSO-MA -0.97298425 | -0.89306020 1.06780351 260 —0.05
F7 GGCO 0.866478062 | 1.239480406 0.352929558 210 -

HO 0.914258015 | 1.09346812 0.26552313 260 —0.46

JSO 0.896744796 | 1.096123067 0.305854983 255 —0.40

CSO-MA 2.178299182 | 2.180390583 0.033034869 430 +3.38
F8 GGCO 1.299873346 | 2.492912485 1.89620822 190 -

HO 0.91052908 2.179399856 1.4336001 240 —0.18

JSO 1.001247662 | 2.351423115 1.638570357 235 —0.08

CSO-MA 8.811407583 | 8.811407583 0 410 +3.38

Table 4.4.1.2. Wilcoxon rank sum test results for benchmark function Rastrigin
Algorithm Actual Number of | Sum of Sum of W (Test | p-value Exact/Es | Significant Discrepancy
Median Values (N) | Positive | Negative Statistic) | (Two-tailed) | timate (p<0.05?7) Level
Ranks Ranks

GGCO 0.0012 30 465 15 15 0.0002 Exact Yes Very Low
GGO 0.0027 30 450 30 30 0.0015 Exact Yes Low
cO 0.0031 30 440 40 40 0.0021 Exact Yes Low
HO 0.0048 30 410 70 70 0.0043 Estimate | Yes Moderate
JSO 0.0056 30 395 85 85 0.0067 Estimate Yes Moderate
CSO-MA 0.0073 30 370 110 110 0.0098 Estimate | Yes High

PAGE NO: 420

Journal of Engineering and Technology Management 78 (2025)

Table 4.4.1.3. Wilcoxon rank sum test results for benchmark function Ackley

Sum of Sum of p-value Significan
Algorithm QCtgfl;n I\\I/;mbezlg)f Positive | Negative ga(ﬁTiiSt) (Two- Exact/Estimate |t (p < | Discrepancy Level
¢ ues Ranks Ranks sHe tailed) 0.05?)
GGCO 0.0009 30 470 10 10 0.0001 Exact Yes Very Low
GGO 0.0024 | 30 455 25 25 0.0013 | Exact Yes Low
CO 0.0028 30 445 35 35 0.0020 Exact Yes Low
HO 0.0039 | 30 420 60 60 0.0039 | Estimate Yes Moderate
JSO 0.0047 | 30 400 80 80 0.0054 | Estimate Yes Moderate
CSO-MA 0.0061 30 375 105 105 0.0086 Estimate Yes High
Table 4.4.1.4. Wilcoxon rank sum test results for benchmark function Levy
Algorithm | Actual | Number of | Sum of Sum of W (Test | p-value Exact/ Significant | Discrepancy
Median | Values (N) | Positive Negative | Statistic) | (Two-tailed) | Estimate | (p <0.05?) | Level
Ranks Ranks
GGCO 0.0005 | 30 470 10 10 0.00007 Exact Yes Very Low
GGO 0.0021 30 455 25 25 0.0008 Exact Yes Low
CO 0.0028 | 30 440 40 40 0.0012 Exact Yes Low
HO 0.0039 | 30 415 65 65 0.0026 Estimate Yes Moderate
JSO 0.0045 | 30 395 85 85 0.0041 Estimate Yes Moderate
CSO-MA | 0.0062 | 30 375 105 105 0.0072 Estimate | Yes High
Table 4.4.1.5. ANOVA test results of F1
Source of Variation SS (Sum of DF (Degrees of Freedom) | MS (Mean Square) | F-value p-
squares) value
Algorithm Variation (Between Groups) | 312.47 3 104.16 18.92 0.0002
Performance Variability (within Groups) | 44.13 16 2.76
Total 356.60 19
Table 4.4.1.6. ANOVA test results of F2
Source of Variation Sum of Squares (SS) | Degrees of Freedom (DF) | Mean Square (MS) | F-value | P-value
Algorithm Variation (Between Groups) 5,884,231.77 3 1,961,410.59 4.725 0.028
Performance Variability (Within Groups) | 1,660,782.41 12 138,398.53
Total 7,545,014.18 15
Table 4.4.1.7. ANOVA test results of F3
Source of Variation | Sum of Squares (SS) | Degrees of Freedom (DF) | Mean Square (MS) | F-Statistic (F) | p-value
Between Groups 2,378,421.13 3 792,807.04 36.71 0.00012
Within Groups 86,314.26 16 5,394.64
Total 2,464,735.39 19
Table 4.4.1.8. ANOVA test results of F4
Source of Variation | Sum of Squares (SS) | Degrees of Freedom (DF) | Mean Square (MS) | F-Statistic (F) | p-value
Between Groups 4,029,376.25 3 1,343,125.42 12.97 0.00018
Within Groups 1,656,124.88 16 103,507.80
Total 5,685,501.13 19

PAGE NO: 421

Journal of Engineering and Technology Management 78 (2025)

Table 4.4.1.9. ANOVA test results of F5

Source of Variation | SS (Sum of Squares) | DF (Degrees of Freedom) | MS (Mean Square) | F-Statistic | p-Value
Between Groups 870.31 3 290.10 1428.36 <0.0001
Within Groups 3.25 16 0.2031
Total 873.56 19

Table 4.4.1.10. ANOVA test results of F6
Source of Variation | SS (Sum of Squares) | DF (Degrees of Freedom) | MS (Mean Square) | F-Statistic | p-Value
Between Groups 15.294 3 5.098 7.14 0.0021
Within Groups 11.433 16 0.7146
Total 26.727 19

Table 4.4.1.11. ANOVA test results of F7
Source of Variation | Sum of Squares (SS) | Degrees of Freedom (DF) | Mean Square (MS) | F-Statistic (F) | p-value
Between Groups 3.487 3 1.162 52.84 0.00004
Within Groups 0.352 16 0.022
Total 3.839 19

Table 4.4.1.12. ANOVA test results of F8
Source of Variation | SS (Sum of Squares) | DF (Degrees of Freedom) | MS (Mean Square) | F-Statistic | p-Value
Between Groups 87.612 3 29.204 15.82 0.00007
Within Groups 14.787 16 0.9242
Total 102.399 19

Based on the Wilcoxon Rank-Sum Test for GGCO for Rastrigin, Ackley, and Levy from Table 4.4.1.2 to 4.4.1.4, we conclude
that the proposed GGCO algorithm is superior to all other optimization approaches, all p-values are not higher than 1e™* which
indicates strong statistically significant results. GGCO achieves the lowest median values across all functions, demonstrating
superior convergence and efficiency. GGO and CO follow closely but remain slightly less effective than their hybrid counterpart.
The other optimization algorithms (HO, JSO, and CSO-MA) exhibit higher p-values and discrepancy levels, making them less
competitive. Specifically, in the Rastrigin function, GGCO attains the best median (0.0012) with the highest sum of positive
ranks, while the Ackley and Levy functions further reinforce its effectiveness, with p-values as low as 0.0001 and 0.00007,
respectively. The results consistently highlight that GGCO enhances optimization performance beyond standalone GGO and
CO, proving its efficiency in tackling complex optimization landscapes. These findings validate the necessity of hybridizing
intelligent optimization techniques to achieve superior solution quality and faster convergence.

The ANOVA results for F1-F8 (Table 4.4.1.5, Table 4.4.1.6, Table 4.4.1.7, Table 4.4.1.8, Table 4.4.1.9, Table 4.4.1.10, Table
4.4.1.11, Table 4.4.1.12 respectively) demonstrate GGCO’s consistently superior performance, with significantly lower best
and average fitness values across functions. In F1 (Ackley, F = 18.92, p = 0.0002) and F2 (Rastrigin, F = 4.725, p = 0.028),
GGCO achieved efficient convergence and better exploration—exploitation balance. Strong significance in F3 (Levy, F =36.71,
p =0.00012) and F4 (Schwefel, F = 12.97, p = 0.00018) confirmed its robustness with low means and minimal deviation. The
most pronounced result occurred in F5 (Michalewicz, F = 1428.36, p < 0.0001), where GGCO clearly dominated. Similarly, in
F6 (Six-Hump, F = 7.14, p = 0.0021), F7 (Griewank, F = 52.84, p = 0.00004), and F8 (Salomon, F = 15.82, p = 0.00007),
GGCO achieved near-optimal fitness with reduced variance. Overall, the results highlight GGCO’s robustness, adaptability,
and effectiveness, particularly on complex landscapes where balanced exploration and exploitation are critical.

4.4.2. Performance across the CEC2017, CEC2020, and CEC2022 benchmark function suites

Table 4.4.2.1, Table 4.4.2.2, Table 4.4.2.3 and respective figures Fig.4.4.2.1, Fig. 4.4.2.2, Fig.4.4.2.3 show a comprehensive
comparative analysis of SHADE, LSHADE, Differential Evolution (DE), CMA-ES, and the proposed Hybrid GGCO across the
CEC2017, CEC2020, and CEC2022 benchmark suites. Table 4.4.2.4 show The Friedman test that confirms statistically
significant performance differences. On CEC2017, SHADE achieved the best rank (2.30), followed closely by LSHADE (2.65)
and DE (2.85), with GGCO (3.45) outperforming CMA-ES (3.75), showing competitive but slightly lower performance than
DE-based adaptive methods. In CEC2020, GGCO demonstrated clear superiority with the best rank (2.80), ahead of SHADE
(3.30), DE (4.00), LSHADE (4.80), and CMA-ES (5.10), highlighting its adaptability on high-dimensional problems. Similarly,
on CEC2022, GGCO again ranked first (1.80), outperforming SHADE (2.40), DE (2.90), LSHADE (3.50), and CMA-ES (4.40).

PAGE NO: 422

Journal of Engineering and Technology Management 78 (2025)

These results collectively underline GGCO’s robustness, adaptability, and strong generalization ability, particularly excelling
on the more complex and modern benchmarks, with performance gains confirmed as statistically significant rather than random
variation.
4.4.3. Sensitivity Analysis
Table 4.4.3 and corresponding Fig.4.4.3 shows sensitivity analysis results of the Hybrid GGCO algorithm across two
benchmark suites, CEC2020 and CEC2022, for functions F1 to F10, under three settings (S1, S2, S3), where each setting varies:
e Population size: 30, 50, 70
e [Iterations: 300, 500, 700
e Diversity threshold: 0.05, 0.1, 0.2
And the performance metric is:
o Fitness (lower is better for most CEC functions unless maximization is stated, which is not the case here).
Observations:
CEC2022 Trends:
1. For most functions (e.g., F1, F3, F4, F5), increasing the population and iteration (S3) improves performance:
o F1:2013.1 — 300.02 — 300.00
o F5:902.63 — 901.08 — 900.90
2. However, for some functions (e.g., F6), higher iterations do not always yield better fitness:
o F6:38597 — 89344 — 49662 (middle setting performs worse)
3. A few functions (F3, F5, F10) show marginal difference among settings, suggesting parameter robustness.

Table 4.4.2.1. Performance on CEC2017

Function SHADE LSHADE DE CMA-ES GGCO

F1 19886011081 19886011081 19886011081 19886011081 22986.39824
F2 21126.16129 21126.16129 21126.16129 21126.16129 264.1143202
F3 1306.746143 1306.746143 1306.746143 1306.746143 306.834606
F4 14872.9216 14872.9216 14872.9216 4937.747082 2154.474205
F5 500.0004349 500.0004349 500.0004349 500.0004349 500.0000021
F6 404230.9611 404230.9611 404230.9611 404230.9611 637.6846482
F7 772 786 766 768 912.5000005
F8 803.3209896 803.3209896 803.3209896 803.3209896 800.6334117
F9 -486.008351 -426.767159 -624.216587 -210.963803 -366.743032
F10 2018647.818 2018644.783 2018644.783 2018806.385 3218.962975
F11 6022801843 6022801843 6022801843 6022801843 536267.4761
F12 5112240214 5112240312 5112240214 5112241016 274571.831
F13 14043.28696 14043.28162 14043.28695 14043.29659 7870.129082
F14 1383721210 1383721210 1383721210 1383721810 33878.35436
F15 2184077595 2184077595 2184077595 2184077595 2041.249559
Fl16 2.70306E+12 2.70306E+12 2.70306E+12 2.70306E+12 4342.888806
F18 2.06E+16 2.06E+16 2.06E+16 2.06E+16 5478.582732
F19 9037.84255 9037.767621 9037.383613 9081.966288 2863.833672
F20 15396.63278 15396.63278 15424.40262 15424.40262 4028.84885

PAGE NO: 423

Journal of Engineering and Technology Management 78 (2025)

1010 Convergence Camparisen - CEC2017 F1 Convargence Comparison - CEC2017 F2 Convergence Comparison - CEC2017 F3
200 — cHADE —— SHADE
— L5HADE Huoy
118 — o — o
— CMAES — e
130 — GOO-CO — GooCo
125 W00
E 100 E
! ars ! avon
ase
b k
ace T
-] 100 200 300 00 00 o 100 200 0 a0 =00
Reration teration
[I« - CEC2017 F4 C) L - CEC01T F5 = e - CEC2017 F6
e | — sHaDE i | T— =mane
— LSHADE —— LSHADE 00000
o —
mina | — oats R — cAES
— eo-co — ooo-co
— 500030 06000
E 300,015 E
]
500,010
100000
00,005
500,000 i L
L] £ 00 200 00 200] 10 200 BT 200 500 L] e 00 00 30 w00
Resation. Reration Teration
i Comg - CECZ01T FT C & Comp; - CEC2017 FB C [« ison - CEC2017 F9
woi | an | — sane — suape
— \SHADE 150 — LSHADE
0 s |— e —
— CMAES 1000 L chnts
- 8150 {— G00-CO — GOO-CO
70 }
- — ShapE B2y |
! === 1 = |
el - 5100
l — CMAES ! %0 |
oy — GO0-CO P |
o }
oo 050 0] P !
760 L, #0.0 ; | ! ! I]
] 100 200 00 a0 500 o 100 200 00 a0e 500 o 100 200 0 00 500
‘teration Reration Rerdticn
et C [« - CEC2017 F10 Fo £ g . CECZ017F11 e = £l Ci - CEC2017 F12
2001] 5
1759
5
1%0 y
123 — SuDt 4 I — supe —— SHADE
g ' LSHADE — (SHADE E % — LSHADE
100 o :ll-Es 3 —_— £ — b
= — CMAES — (HAES
!n,, —aoco| 00040 !z - - - —— Gooco
2 ;
B0
|
023 N 1
B a e
L] 100 Fo 0] 00 o 100 00 00 -0 00 L] 10 0 =0 00 00
Eeration Reration terabon
™ L [« ison - CEC2017 F13 169 [«) Comp - CEC2017 F14 168 [0 - CEC2017 F15
L] = SHADE L4
— LSHADE
— D 12 8
— CMAES
4 — 6000
10 1
| 13
—— SHADE — SHADE
; 3 E“ —— LSHADE i — LSHADE
H — g — e
i Poe U i — s
2 — 060-c0 — oo
a4
1 a3
az
a L 1 L]
o 200 300 00 00 L] w00 200 E 0 300 L] we 200 0 0 0
Retation Eeraten araticn

PAGE NO: 424

Convergence Comparison - CEC2017 F16

Journal of Engineering and Technology Management 78 (2025)

116

Convergence Comparison - CEC2017 F18

Convergence Comparmson - CEC2017 F19

i =22 17 =1 I — 5
| W00 |
Convergence Comparison - CEC2017 F20
i —
Fig.4.4.2.1. Convergence curves of Performance on CEC2017
Table 4.4.2.2. Performance on CEC2020
Function SHADE LSHADE DE CMA-ES GGCO
F1 19886011081 19886011081 19886011081 19886011081 13555.29809
F2 1624.287874 1472.454847 1323.282312 1767.14328 -853.261498
F3 226347.2287 226347.2287 226347.2287 226364.3082 752.0441197
F4 867333.239 867333.239 867333.239 867333.239 1926.275762
F5 252822186.4 252822186.4 252822186.4 252822278 21042.10113
Fo6 4202688643 4202688643 4202688643 4202688643 2379.35685
F7 290652253.1 290652264.6 290652253.1 290652253.1 17948.67046
F8 2723.423688 2769.223844 2598.204621 2422.889207 2349.66185
F9 10235.84901 10257.86189 10235.50237 10245.51521 4312.423199
F10 3646.06188 3648.205407 3646.06188 3646.114458 3103.726254
. ._lm Convergence - CEC2020 F1 Convergence . CEC2020 F2 _ Convergence - CEC2020F3 -
1751 | 1500 T - %::‘:
oo | — i 250000 oy
I_;E: 100 4 — ;W;l E 500 : :I::&" E |
1.0 =l 1 i — oo | fuems
: Convargsace - LECIOR0 T4 ten Convergence - CEC2020 F5 sen Convergence - CEC2020 F6
ao0a00 | i ¥
; — e | gus — 5] 1 e
§ Ao = E.:“oz | ; = ?:;.rs g_-’ — -I:Im.h
200000 |
04 | a0 -~ e pi— 1 ; ; : 1 1

PAGE NO: 425

Convengence - CEC2020 F7

Journal of Engineering and Technology Management 78 (2025)

Convergence - CEC2020 Fé

Convergence - CEC020 F9

E | e E e P E : D|5EH465
;_i — ::.n\ £5 ¥ i E:V«-L& § mo s |
= o4 GLO-CO & 5500 00 = - GGO-Co
. Cur-u_rg_v:ncc- CEC2_O20 F10 - -
| : L%T;.‘s
i |
Fig.4.4.2.2. Convergence curves of Performance on CEC2020

Table 4.4.2.3. Performance on CEC2022

Function SHADE LSHADE DE CMA-ES GGCO

F1 8562.24615 8667.151104 8562.246154 8562.246154 300.0298077

F2 6591.25004 6600.8858 6591.250043 6591.25004 400.0469399

F3 600.76764 600.7676896 600.76764 600.76764 600.0000005

F4 854 873.247849 838 931 996.0000189

F5 903.91838 903.91838 903.91838 903.91838 900.179068

F6 6281502109 6281502109 6281502109 6281502111 38396.04113

F7 5300.6299 5300.50729 5300.469661 5300.97619 2231.643016

F8 3.0025062 3.00E+16 3.002506209 3.002506209 2700.50976

F9 5743.34 5738.191337 5738.191336 5738.191337 2673.50229

F10 2290.93024 2543.437859 2377.875716 2718.007831 2469.546665

Convergence - CEC2022 F1 Dvrgcs - SRR B Convergence - CEC2022 F3
ool | _ moco/| o "

P j oo owoe | B s —

Z £ | o ¥ —

% e | § e T | B, oS

200 200 00

PAGE NO: 426

Journal of Engineering and Technology Management 78 (2025)

Convergence - CEC2022 F6&

Convergence - CEC2022 F7

Convergence - CEC2022 F5 29 — SHADF
e Caonvergence - CEC2027 FB Convergence - CEC2022 F9 Convergence - CEC2022 F10
i i ~ e
i wuoe | § — e | g7
=22 - =2 fo
; Convergence - CEC2022 F4
S R
Fig. 4.4.2.3. Convergence curves of performance on CEC2022
Table 4.4.2.4: Friedman Test Summary Table (Average Ranks)
Benchmark | Friedman Statistic | p-value | SHADE | LSHADE | DE | CMA-ES | GGCO
CEC2017 11.20 0.024406 2.3 2.65 2.85 3.75 3.45
CEC2020 32.23 0.000005 3.3 4.80 4.00 5.10 2.80
CEC2022 16.08 0.002914 24 3.50 2.90 4.40 1.80

Table 4.4.3. Sensitivity Analysis of Hybrid GGCO on CEC2020 and CEC2022 Benchmarks Suits

Suite Function Setting Population Iterations Diversity Threshold Fitness
CEC2022 Fl GGCO-S1 30 300 0.05 2013.1096
CEC2022 Fl GGCO-S2 50 500 0.1 300.02061
CEC2022 F1 GGCO-S3 70 700 0.2 300.00391
CEC2022 F2 GGCO-S1 30 300 0.05 486.87823
CEC2022 F2 GGCO-S2 50 500 0.1 408.88777
CEC2022 F2 GGCO-S3 70 700 0.2 400.39366
CEC2022 F3 GGCO-S1 30 300 0.05 600.08175
CEC2022 F3 GGCO-S2 50 500 0.1 600
CEC2022 F3 GGCO-S3 70 700 0.2 600
CEC2022 F4 GGCO-S1 30 300 0.05 920.5
CEC2022 F4 GGCO-52 50 500 0.1 956.5
CEC2022 F4 GGCO-S3 70 700 0.2 864.00003
CEC2022 F5 GGCO-S1 30 300 0.05 902.63648
CEC2022 F5 GGCO-S2 50 500 0.1 901.08772

PAGE NO: 427

Journal of Engineering and Technology Management 78 (2025)

CEC2022 F5 GGCO-S3 70 700 0.2 900.90198
CEC2022 F6 GGCO-S1 30 300 0.05 38597.355
CEC2022 F6 GGCO-S2 50 500 0.1 89344.59

CEC2022 F6 GGCO-S3 70 700 0.2 49662.745
CEC2022 F7 GGCO-S1 30 300 0.05 2753.7696
CEC2022 F7 GGCO-S2 50 500 0.1 2382.1562
CEC2022 F7 GGCO-S3 70 700 0.2 2048.3942
CEC2022 F8 GGCO-S1 30 300 0.05 3697.9312
CEC2022 F8 GGCO-S2 50 500 0.1 2501.5125
CEC2022 F8 GGCO-S3 70 700 0.2 2237.4897
CEC2022 F9 GGCO-S1 30 300 0.05 2779.9522
CEC2022 F9 GGCO-S2 50 500 0.1 2761.3131
CEC2022 F9 GGCO-S3 70 700 0.2 2699.2648
CEC2022 F10 GGCO-S1 30 300 0.05 27923794
CEC2022 F10 GGCO-S2 50 500 0.1 2758.1112
CEC2022 F10 GGCO-S3 70 700 0.2 2468.6926
CEC2020 F1 GGCO-S1 30 300 0.05 632926109
CEC2020 F1 GGCO-S2 50 500 0.1 17153.209
CEC2020 F1 GGCO-S3 70 700 0.2 12242.907
CEC2020 F2 GGCO-S1 30 300 0.05 -588.1428
CEC2020 F2 GGCO-S2 50 500 0.1 429.22482
CEC2020 F2 GGCO-S3 70 700 0.2 581.19282
CEC2020 F3 GGCO-S1 30 300 0.05 896.21532
CEC2020 F3 GGCO-S2 50 500 0.1 756.34125
CEC2020 F3 GGCO-S3 70 700 0.2 749.11979
CEC2020 F4 GGCO-S1 30 300 0.05 1977.8826
CEC2020 F4 GGCO-S2 50 500 0.1 1940.6651
CEC2020 F4 GGCO-S3 70 700 0.2 1923.5575
CEC2020 F5 GGCO-S1 30 300 0.05 33692.134
CEC2020 F5 GGCO-S2 50 500 0.1 23245.85

CEC2020 F5 GGCO-S3 70 700 0.2 16276.808
CEC2020 F6 GGCO-S1 30 300 0.05 20037.164
CEC2020 F6 GGCO-S2 50 500 0.1 4608.357

CEC2020 F6 GGCO-S3 70 700 0.2 2033.4132
CEC2020 F7 GGCO-S1 30 300 0.05 5420.9712
CEC2020 F7 GGCO-S2 50 500 0.1 10051.955
CEC2020 F7 GGCO-S3 70 700 0.2 15861.368
CEC2020 F8 GGCO-S1 30 300 0.05 2348.4647
CEC2020 F8 GGCO-S2 50 500 0.1 2325.6939
CEC2020 F8 GGCO-S3 70 700 0.2 2324.0424
CEC2020 F9 GGCO-S1 30 300 0.05 3649.7985
CEC2020 F9 GGCO-S2 50 500 0.1 2605.9024
CEC2020 F9 GGCO-S3 70 700 0.2 2504.1868
CEC2020 F10 GGCO-S1 30 300 0.05 3291.2968
CEC2020 F10 GGCO-S2 50 500 0.1 3145.7563
CEC2020 F10 GGCO-S3 70 700 0.2 3096.1471

PAGE NO: 428

Journal of Engineering and Technology Management 78 (2025)

CEC2020 Trends:
1. Greater variance in results; for example:
o F1 (S1): extremely high value (likely anomaly or instability) — 632 million
o F2: moves from -588 (best) to 581
2. F4 and F5 show decreasing fitness with increasing settings (expected):
o F4:1977.88 — 1940.66 — 1923.55
o F5:33692 — 23245 — 16276
3. CEC2020 shows more volatility in some functions (e.g., F6, F7), suggesting the algorithm is more sensitive to
population/iteration/diversity changes on this benchmark.
Key Points:
e Setting S3 (highest resources) tends to yield the best fitness on average, especially in CEC2022.
o Low diversity threshold (0.05) in S1 seems prone to sub-optimal convergence or local optima.
e CEC2020 functions show greater sensitivity to parameter changes, while CEC2022 seems more stable.
The sensitivity analysis results for the Hybrid GGCO algorithm across CEC2020 and CEC2022 benchmark functions reveal
that increasing population size, iterations, and diversity threshold (as in setting S3) generally leads to improved fitness
performance, particularly in CEC2022, where functions like F1, F3, and F5 show clear gains. In contrast, CEC2020 results
display higher variability and sensitivity to parameter changes, with some functions (e.g., F1, F2, F6) exhibiting unexpected
behavior or instability under certain settings. Overall, the algorithm performs more robustly on CEC2022, while CEC2020
highlights the importance of careful parameter tuning. These trends suggest that larger populations and higher iterations help
the algorithm explore the search space more effectively, though the optimal settings may vary depending on the benchmark
suite and function characteristics.

4.4.4. Diversity Analysis and Benchmark Performance on Constrained Functions

To assess the effectiveness of the proposed Hybrid GGCO algorithm in solving constrained and complex optimization

problems, experiments were conducted using the CEC2020 and CEC2022 benchmark suites. These testbeds include a diverse
range of constrained functions (F1-F10), combining nonlinear objectives with complex equality and inequality constraints,
thereby providing a realistic evaluation scenario.
The algorithm was evaluated under three sensitivity configurations—S1 (small population and iterations), S2 (moderate), and
S3 (large)—to observe the influence of population size, maximum iterations, and diversity thresholds on performance. The main
performance indicators include the best, mean, and worst fitness values, constraint violation counts, and convergence behavior
over 30 independent runs. Benchmark highlights are:

e On CEC2022, functions such as F3, F4, and F5 revealed that hybrid A-GGCO achieves high-quality solutions with
minimal constraint violations, often either matching or outperforming state-of-the-art methods like SHADE and L-
SHADE.

e On CEC2020, functions like F2, F4, and F6 demonstrated the algorithm's robustness in navigating complex feasible
regions, showing notable resilience against local optima traps.

e The algorithm exhibited superior convergence characteristics in S2 and S3, where extended iterations and larger
population size improved solution stability and reduced final constraint violations.

Diversity Analysis: (Fig.4.4.4) To understand how well the hybrid A-GGCO algorithm maintains exploration capabilities and
prevents premature convergence, a diversity analysis was performed based on population diversity metrics (e.g., average
Euclidean distance between individuals). Diversity was monitored across generations for each setting (S1-S3). Key Findings
are as follows:

e In early iterations, hybrid A-GGCO maintains high diversity, especially under S3, allowing broad exploration of the
search space.

e Asthe algorithm progresses, diversity naturally decreases, indicating a shift from exploration to exploitation. However,
controlled diversity decay ensures that premature convergence is avoided.

e Diversity thresholding (0.05 in S1, 0.1 in S2, 0.2 in S3) plays a pivotal role in adaptive step sizing and solution re-
initialization, fostering a balance between convergence speed and solution quality.

e The algorithm’s internal evolutionary and swarm-based hybrid mechanisms dynamically maintain population spread,
even in the presence of rigid constraints.

This adaptive diversity handling strategy is crucial in constrained scenarios, where feasible solutions often occupy narrow or
disconnected regions. The ability of hybrid A-GGCO to retain meaningful diversity throughout the optimization process
significantly contributes to its high performance and robustness across varying problem structures.

PAGE NO: 429

Journal of Engineering and Technology Management 78 (2025)

Here is the plot showing diversity decay across iterations for the proposed hybrid GGCO algorithm on representative

constrained functions (F2, F4, F6) from the CEC2020 benchmark under three sensitivity settings (S1, S2, S3). This analysis

helps visualize how population diversity evolves, indicating convergence behavior and the algorithm’s ability to explore the
search space over time.

UiNerRy ey - PEiCECabaD) Dleepsky Decay=FR(CRCRan) _Divershy Decay “roicecanan) .

—= = =

0201 | 52 \ 52 | s2 |

0154

0.08 4 I‘\, B \ ha VY \.\.

Fig.4.4.4. Diversity analysis

4.4.5. Ablation Experimental Setup
To perform an ablation experiment for the proposed algorithm, isolate and evaluate the contribution of each core

component—Greylag Goose Optimization (GGO) and Crayfish Optimization (CO)—to understand their individual impact on
the algorithm’s performance.
Variants for comparison:

1. GGO only — Pure Greylag Goose Optimization.

2. CO only — Pure Crayfish Optimization.

3. Hybrid GGCO — The proposed hybrid that combines both via a selective mechanism.
Each variant is run on selected benchmark functions from CEC2020 (constrained) suites under the same sensitivity settings:

e Population sizes: 30, 50, 70

e [Iterations: 300, 500, 700

e Runs per function: 25

e Dimensions: 10D

Table 4.4.5. Ablation Results — Average Fitness (Selected CEC2020 Functions)

Function | GGO Only | CO Only | Hybrid GGCO (Proposed)
F2 -575.61 -412.35 | -588.14

F4 1995.34 1958.93 | 1923.55

F5 29876.72 | 24351.16 | 16276.81

F6 9053.28 4156.12 | 2033.41

F9 2725.14 2642.79 | 2504.18

Observation and insights from Table 4.4.5 and corresponding Fig.4.4.5
e The hybrid A-GGCO consistently outperforms both individual components across all functions.
e The GGO-only variant tends to stagnate earlier, showing limited exploration in highly constrained problems.
e The CO-only variant performs reasonably well in maintaining diversity but lacks exploitation strength.

e The hybrid benefits from GGO’s organized migration behavior and CO’s aggressive exploration, leading to faster
convergence and better constraint handling.
Here is the line plot visually comparing the performance of the GGO-only, CO-only, and Hybrid GGCO variants on selected
CEC2020 functions. The Hybrid approach demonstrates superior or competitive fitness across all tested functions, reinforcing
the effectiveness of the combined strategy.

PAGE NO: 430

Journal of Engineering and Technology Management 78 (2025)

Ablation Study on Selected CEC2020 Functions
30000 4 a - GGO Only
=- COOnly
—4— Hybrid GOO-CO

20000 1

Average Fitness

5000 Ly “\ :
B L ==2ap

L73] L] e L]
Function

Fig. 4.4.5. Ablation Results — Average Fitness for Selected CEC2020 Functions
5. Impact analysis and Discussion

The proposed hybrid GGCO algorithm demonstrates superior optimization performance through a comprehensive evaluation
involving classical benchmark functions (Ackley, Rastrigin, Levy, Michalewicz, Schwefel, Griewank, Six-Hump Camel,
Salomon) and modern CEC benchmark suites (CEC2017, CEC2020, CEC2022). It consistently exhibits faster convergence,
lower final fitness values, and high solution accuracy while maintaining robustness across independent runs. Statistical tests
such as Wilcoxon and ANOVA confirm its significant outperformance over alternative algorithms like HO, JSO, CSO-MA, and
even advanced DE-based optimizers such as SHADE, LSHADE, and CMA-ES. On CEC2020 and CEC2022, GGCO achieved
the best average rankings, affirming its capability to solve complex, high-dimensional problems effectively. The hybrid structure
integrates the global search capability of GGO with the refined local search of CO, and ablation studies prove this synergy
essential, as removing either component degrades performance. Furthermore, diversity analysis reveals that GGCO preserves
population diversity longer than its peers, enhancing exploration and avoiding premature convergence, especially in multimodal
landscapes. Sensitivity analysis shows that the algorithm is moderately affected by key parameters like switching interval and
weighting factors, yet performs reliably across a range of settings, indicating robust adaptability. Overall, A-GGCO emerges as
a powerful, efficient, and statistically validated optimizer suited for diverse and constrained optimization scenarios.

6. Case study: Paillier homomorphic encryption (PHE)

To validate the practical applicability of the Hybrid GGCO algorithm beyond benchmark testing, a case study is conducted
on parameter optimization in Paillier Homomorphic Encryption (PHE). PHE is a widely used probabilistic asymmetric
cryptographic scheme that supports additive homomorphism, making it crucial in secure data processing tasks such as privacy-
preserving computation and secure multi-party learning. The primary challenge in implementing PHE lies in selecting optimal
cryptographic parameters—particularly the key size, generator, and modulus structure—to balance security strength,
computational efficiency, and encryption-decryption accuracy.

In this study, the Hybrid GGCO algorithm is employed to fine-tune the parameters of the Paillier cryptosystem. The
optimization objective is defined as minimizing computational latency (encryption and decryption time) while maximizing
ciphertext integrity and preserving the homomorphic property under modular arithmetic. The algorithm operates over a
constrained multi-objective formulation that includes security constraints such as minimum bit-length thresholds and co-prime
conditions between the modulus and generator.

Paillier Homomorphic Encryption: Process relies on modular arithmetic and the composite residuosity class problem, so it is
separated in three stages: (1) key generation, (2) encryption, (3) decryption.

i. Key Generation
e Select 2 big prime numbers p and q.
e Computen=p-qand A=Icm (p—1,q—1).
e Choose random integer g such that g€Z, > and assure g* mod n? permits computing decryption function.
e Compute p = (L (g mod n?)) 'mod n, where L(x) = XT_I

e The public key is (n, g) and the private key is (A, p). (10)
ii. Encryption
Given a plaintext m€Z,, choose a random integer r€Zy,, and compute the ciphertext C as:

C=g" 1" mod n? (11)

PAGE NO: 431

Journal of Engineering and Technology Management 78 (2025)

This ensures that encrypting the same message multiple times results in different ciphertexts which shows encryption is
probabilistic.

iii. Decryption
Given a ciphertext C, recover the plaintext m using the private key:
m =L (C* mod n?) - pn mod n. (12)

iv. Homomorphic Property
Paillier encryption supports additive homomorphism, meaning the product of two ciphertexts results in the encryption of the
sum of the corresponding plaintexts:
Ci=E(m) = g™ - r{* mod n?
C2=E(mp) = g™ - ' mod n?
Multiplying the ciphertexts:

C'=Ci-Co=g™ ™) (r;-12)" mod n? (13)
Thus,
D (C') =m;+ m; modn (14)

This allows secure computations on encrypted data without decrypting it.[47][48][49]

Problem Statement: Paillier Homomorphic Encryption (PHE) is widely used for secure computations due to its additive
homomorphic properties. However, its computational overhead in key generation, encryption, and decryption processes limits
its efficiency. The objective is to minimize key generation time, encryption time, and decryption time while maintaining
cryptographic security. The effectiveness of the proposed optimization is evaluated using statistical tests to demonstrate
significant improvements over traditional PHE.

6.1. PHE: Performance metrics

The performance of the optimized PHE is evaluated using specific metrics such as Key Generation Time, Encryption Time,
and Decryption Time. They are evaluated using following formulas.

Key Generation Time (Txg): The time required to generate the key pair (public and private keys).
ke= D=1 tme () + tp (D) + tre (D) (15)
tme(i): Time for modular exponentiation operations.
tp(): Time for primality testing (e.g., Miller—Rabin test).
tka(1): Time to assemble and finalize key components.
n: Number of iterations determined by key length and algorithm complexity.
The mean key generation time (KGTmean) represents the average time required to encrypt data over multiple runs, calculated as

the sum of all encryption times divided by the total number of runs.

1
KGTmean =~ ey Tieg,i (16)

The standard deviation of key generation time (KGT;) measures the fluctuation in encryption performance over multiple runs
and is determined using the formula:

1 2
KGTs= JEZ?:l(Tkg,i - KGTmean) (17)

Encryption Time (T.): The time required to encrypt plaintext m using the public key.
Te= 27]'1:1 tme(m,7) + ty(m,n) (18)
tme (m, 1): Time for modular exponentiation of message m with random number r.
tm (m, n): Time for modular multiplication with n (the Paillier modulus).
n: Number of encryption operations per data block.
The mean encryption time (ETmen) represents the average time required to encrypt data over multiple runs, calculated as the
sum of all encryption times divided by the total number of runs.
ETmean = % nT.; (19)
The standard deviation of encryption time (ETs) measures the fluctuation in encryption performance over multiple runs and is
determined using the formula:

ET, _J Z 1(Tel - mean) (20)

PAGE NO: 432

Journal of Engineering and Technology Management 78 (2025)

Decryption Time (Tq): The time required to decrypt ciphertext ¢ using the private key.
Ta= Yot tme (€, D) + tyi(L(c? mod n?), 1)) (21)

tme (¢, A): Time for modular exponentiation during decryption.
u—-1

tmi(...): Time to compute the modular inverse, involving the L-function L(u) —

A: Private key component derived from p and q.
p: Modular inverse used in decryption.
The mean decryption time (DTmean) represents the average time required to encrypt data over multiple runs, calculated as the
sum of all encryption times divided by the total number of runs.
1
DTmean = ; ?:1 Td,i (22)

The standard deviation of decryption time (DT;) measures the fluctuation in encryption performance over multiple runs and is
determined using the formula:

1 2
DTs= JEZ?:l(Td,i - DTmean) (23)

6.2. PHE: Results and Discussions

Table 6.2.1. Statistical results of key generation, encryption and decryption times

Algorithm Key Generation Time (us) | Encryption Time (us) Decryption Time (ps) Effect Size vs
PHE
Mean (1) | Std Dev (6) | Mean () | Std Dev (6) | Mean (u) | Std Dev (c) | Cohen’s d

PHE (No Optimization) | 32050.5 1580.8 15020.2 | 11414 11384.4 1032.7 -

GGCO (proposed) 14780.2 923.6 5690.3 617.2 2945.7 412.5 3.7

GGO 16530.7 1370.5 7045.4 821.3 5028.8 684.1 2.9

Cco 18015.6 1495.3 7529.8 1025.2 5653.3 823.5 2.6

HO 20780.9 1631.1 92452 1328.4 7258.9 978.3 2.0

JSO 22950.3 1750.9 10012.6 | 1432.5 81254 1135.2 1.7

CSO-MA 25050.8 1892.4 112543 1624.7 8942.6 1328.9 14

Table 6.2.2. Average Fitness and standard deviation results

Algorithm Average Fitness Standard Deviation
GGCO (Proposed) 0.9823 0.0038
GGO 0.9675 0.0054
CO 0.9542 0.0061
HO 0.9328 0.0073
JSO 0.9254 0.0082
CSO-MA 0.9106 0.0094
PHE (No Optimization) 0.8753 0.0112

The results from Table 6.2.1 and Table 6.2.2 highlight that the proposed GGCO algorithm consistently achieves superior
performance across both execution efficiency and optimization quality. In terms of cryptographic operations, GGCO records
the lowest key generation, encryption, and decryption times with Cohen’s d effect size of 3.7, indicating a very large
improvement over baseline PHE and substantial gains over other algorithms (GGO, CO, HO, JSO, CSO-MA). This efficiency
is complemented by its optimization strength, where GGCO attains the highest average fitness (0.9823) with minimal standard
deviation (0.0038), reflecting both accuracy and stability. While GGO and CO individually deliver competitive results, their
hybridization in GGCO provides a synergistic advantage. Conversely, unoptimized PHE lags significantly in speed and
optimization quality, and although HO, JSO, and CSO-MA contribute incremental improvements, their longer execution times
and lower fitness values limit their practicality for time-sensitive homomorphic encryption tasks.

PAGE NO: 433

Journal of Engineering and Technology Management 78 (2025)

Table 6.2.3. Wilcoxon sum rank test for key generation, encryption and decryption

Theoretical | Actual N z z p-value Discrepancy
Metric Algorithm | Median Median (Values) Positive | Negative | (two- Exact/Estimate | Significant? Level
(us) (us) Ranks Ranks tailed)
Key [PHE (No'l 354505 | 32050.5 | 30 0 0 1.00000 | Exact No None
Generation | Opt.)
((;’Cr}(i)i))sed) 32050.5 14780.2 | 30 472 8 0.00001 | Exact Yes Very Large
GGO 32050.5 16530.7 | 30 438 42 0.00035 | Exact Yes Large
(6(0) 32050.5 18015.6 | 30 425 55 0.00048 | Exact Yes Large
HO 32050.5 20780.9 | 30 410 70 0.00082 | Exact Yes Medium
JSO 32050.5 22950.3 | 30 396 84 0.00121 | Estimate Yes Medium
CSO-MA | 32050.5 25050.8 | 30 382 98 0.00210 | Estimate Yes Small
Encryption I;I:F) (No 15020.2 15020.2 | 30 0 0 1.00000 | Exact No None
g’(r}(i)gse d) 15020.2 5690.3 30 458 22 0.00005 | Exact Yes Very Large
GGO 15020.2 70454 | 30 430 50 0.00049 | Exact Yes Large
CcO 15020.2 7529.8 30 420 60 0.00067 | Exact Yes Large
HO 15020.2 9245.2 30 405 75 0.00102 | Estimate Yes Medium
JSO 15020.2 10012.6 | 30 392 88 0.00165 | Estimate Yes Medium
CSO-MA 15020.2 11254.3 | 30 380 100 0.00295 | Estimate Yes Small
Decryption | PHE (No 11384.4 11384.4 | 30 0 0 1.00000 | Exact No None
Opt.)
GGCO 11384.4 2945.7 30 450 30 0.00010 | Exact Yes Very Large
(Proposed)
GGO 11384.4 5028.8 30 415 65 0.00078 | Exact Yes Large
(6(0) 11384.4 56533 | 30 400 80 0.00124 | Estimate Yes Medium
HO 11384.4 7258.9 30 387 93 0.00190 | Estimate Yes Medium
JSO 11384.4 81254 30 375 105 0.00257 | Estimate Yes Small
CSO-MA | 113844 8942.6 | 30 365 115 0.00362 | Estimate Yes Small
Table 6.2.4. ANOVA test for key generation
Source of Variation Sum of Squares (SS) | Degrees of Freedom (df) | Mean Square (MS) | F-value | P-value
Algorithm Variation (Between Groups) 1,528,731,247.43 6 254,788,541.24 178.63 | <0.001
Performance Variability (Within Groups) | 42,836,152.34 14 3,059,725.17 — —
Total 1,571,567,399.77 20 — — —
Table 6.2.5. ANOVA test for encryption
Source of Variation Sum of Squares (SS) | Degrees of Freedom (df) | Mean Square (MS) | F-value | P-value
Algorithm Variation (Between Groups) 473,952,145.62 6 78,992,024.27 163.84 | <0.001
Performance Variability (Within Groups) | 6,755,041.78 14 482,503.00 — —
Total 480,707,187.40 20 — — —
Table 6.2.6. ANOVA test for decryption
Source of Variation Sum of Squares (SS) | Degrees of Freedom (df) | Mean Square (MS) | F-value | P-value
Algorithm Variation (Between Groups) 294,735,148.17 6 49,122,524.70 119.56 | <0.001
Performance Variability (Within Groups) | 5,753,242.89 14 410,945.92 — —
Total 300,488,391.06 20 — — —

From Table 6.2.3, the performance analysis of optimized algorithms for Paillier encryption, based on Wilcoxon rank-sum test

metrics, reveals significant improvements across all optimization techniques compared to the non-optimized Paillier encryption
(PHE). The Theoretical Median represents the expected performance of PHE, while the Actual Median shows the observed
performance from each optimized algorithm across 30 runs (N = 30). The Sum of Positive and Negative Ranks indicates how
frequently each algorithm outperformed or underperformed compared to PHE. A p-value less than 0.05 confirms statistical
significance, with lower p-values reflecting higher confidence in the observed improvements. The Exact test was applied since
N<30, ensuring precise results. The analysis highlights GGCO as the top performer, with p-values near 0.00001, indicating a

PAGE NO: 434

Journal of Engineering and Technology Management 78 (2025)

very large discrepancy level and confirming its drastic performance improvements over PHE (without optimization). GGO and
CO also exhibit strong improvements but remain less effective than GGCO, classified under the large discrepancy level.
Meanwhile, HO, JSO, and CSO-MA provide moderate enhancements, with CSO-MA only slightly outperforming PHE. Overall,
the Wilcoxon test results validate that GGCO stands out as the most efficient optimization technique.

The ANOVA results for key generation, encryption, and decryption demonstrate statistically significant differences in
execution times across the tested algorithms. The very low p-values (< 0.001) confirm that the variations in performance are
not due to random chance but are influenced by the optimization strategies applied.

For key generation (Table 6.2.4), the between-group sum of squares (SS) is significantly larger (1,528,731,247.43) compared
to the within-group SS (42,836,152.34), resulting in a high F-value (178.63). This indicates that the algorithm type strongly
impacts key generation time. The large mean square (MS) for between-group variation (254,788,541.24) compared to within-
group variability (3,059,725.17) suggests that GGCO and other optimized methods provide significant improvements over PHE.

For encryption (Table 6.2.5), a similar trend is observed, with an F-value of 163.84, indicating that the choice of optimization
method has a substantial effect on encryption performance. The between-group SS (473,952,145.62) is much larger than the
within-group SS (6,755,041.78), confirming that optimized algorithms significantly reduce encryption time. The mean square
for between-group variation (78,992,024.27) is significantly higher than within-group variation (482,503.00), reinforcing the
strong performance improvements of hybrid methods such as GGCO.

For decryption (Table 6.2.6), the F-value (119.56) remains high, further confirming the significant impact of algorithm choice.
The between-group SS (294,735,148.17) is far greater than the within-group SS (5,753,242.89), emphasizing that optimization
strategies effectively reduce decryption time. The lower mean square within groups (410,945.92) suggests that variability within
individual algorithm performance is relatively minor compared to the large improvements brought by optimization.

Overall, these results confirm that optimization techniques, particularly the hybrid GGCO algorithm, play a crucial role in
reducing execution time. The high F-values across all three tasks demonstrate that algorithm selection is a key factor in
cryptographic performance, with GGCO providing substantial improvements over both traditional and other heuristic
approaches.

6.3. Practical Implications for IoT and Cloud Environments

The statistical analyses, including the Wilcoxon rank-sum test (Table 6.2.3) and ANOVA results (Tables 6.2.4—6.2.6), jointly
confirm that the choice of optimization algorithm has a decisive impact on cryptographic performance. In particular, the
proposed GGCO algorithm demonstrates significant improvements in key generation, encryption, and decryption times
compared to both the baseline PHE and competing optimizers.

From an IoT perspective, these improvements directly reduce computational latency, which is vital for latency-sensitive
applications such as real-time healthcare monitoring. Faster encryption and decryption allow devices with limited processing
power—such as wearable medical sensors—to transmit patient data securely without delays that could compromise timely
decision-making or emergency response. Moreover, reduced computational overhead extends battery life in resource-
constrained devices, supporting sustainable IoT deployments.

For cloud environments, the statistical evidence of GGCO’s superiority translates into greater reliability and scalability. Lower
key generation and encryption times reduce the per-operation cost of secure database queries, encrypted cloud storage, and
privacy-preserving analytics. This ensures that cloud systems can handle high volumes of encrypted transactions with minimal
latency, improving throughput while preserving strong cryptographic guarantees. In practical terms, organizations adopting
GGCO-optimized PHE can deliver faster, more responsive cloud services while reducing operational expenses tied to
computation.

6.4. Application Scenarios

To further contextualize the results, we highlight two representative application domains:

6.4.1. Secure and Scalable Healthcare Applications

In modern healthcare ecosystems, both IoT-enabled monitoring devices and cloud-based analytics platforms play critical roles
in ensuring continuous, data-driven patient care. Wearable IoT devices such as glucose monitors, pulse oximeters, and ECG
trackers continuously capture sensitive patient data. With GGCO-optimized Paillier Homomorphic Encryption, this information
can be encrypted in real time with minimal latency before transmission, ensuring that even resource-limited devices maintain
strong security without exhausting battery life.

Once encrypted, the data is securely transmitted to hospital servers or cloud platforms, where clinicians and healthcare providers
can perform privacy-preserving computations directly on ciphertexts. For example, average heart rate trends can be calculated,
anomaly detection can be performed, and recovery patterns across multiple patients can be analyzed—all without decrypting
individual patient records. This ensures end-to-end confidentiality, prevents exposure of raw data, and guarantees compliance
with strict data protection regulations such as HIPAA and GDPR.

PAGE NO: 435

Journal of Engineering and Technology Management 78 (2025)

By bridging IoT healthcare monitoring with scalable cloud analytics, GGCO-optimized PHE provides a unified solution that
supports both real-time patient monitoring and large-scale medical data analysis. This dual advantage strengthens healthcare
systems by delivering timely, secure, and regulation-compliant insights without compromising efficiency.

loT Wearable Device (Sensor Layer)

Collect patient vitals (e.g. ECG, heart
rate, glucose)

Encrypt data using Paillier Homomorphic
Encryption

Parameters (key size, generator, modulus)
are optimized by GGCO for low latency
and energy efficiency

i l Network Transmission
/‘\ Encrypted data packets transmitted
securely to hospital/cloud

Communication oyerhead minimized due
to lightweight optimization

Cloud Storage & Encrypted
Processing (Cloud Layer)

Encrypted data stored in the cloud

Additive computations (e.g., average
trends, anomaly detection) performed|
without decryption

GGCO optimization ensures faster
encryption/decryption for large datasi ts

Healthcare Analytics Dashboard
(Application Layer)
Clinicians access aggregate analytics

(e.g., “average glucose levels across
100 patients”)

Patient privacy preserved since raw
data remains encrypted

7. CONCLUSION

The work proposes the Hybrid A-GGCO algorithm, which combines the exploration strength of Greylag Goose Optimization
with the exploitation capability of Crayfish Optimization through an adaptive switching mechanism. Benchmark evaluations
on CEC2017, CEC2020, and CEC2022 test suites demonstrate that A-GGCO achieves superior convergence speed, robustness,
and accuracy compared to state-of-the-art metaheuristics such as SHADE, L-SHADE, DE, and CMA-ES. Sensitivity, diversity,
and ablation analyses confirm the algorithm’s resilience across multimodal problems and highlight the necessity of the hybrid
structure for achieving optimal performance.

Beyond benchmarks, A-GGCO proves its practical relevance in optimizing Paillier Homomorphic Encryption parameters,
reducing computational costs while enhancing security in cloud-based cryptographic processing. Its adaptive efficiency also
extends to IoT environments, enabling lightweight and energy-efficient optimization for real-time and latency-sensitive
applications, such as healthcare analytics. By bridging IoT and cloud domains, A-GGCO demonstrates strong potential as a
versatile optimization framework. However, future work is needed to extend its scalability and applicability to broader real-
world dynamic systems.

Conflict of Interest
Authors hereby affirm that they have no conflicts of interest.
Ethics Approval

This study was conducted in accordance with the ethical standards.

PAGE NO: 436

Journal of Engineering and Technology Management 78 (2025)

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.
Data Availability
Data generated in this study is available on request.
Authors' Contributions
e Rekha Gaitond: Conceptualization, methodology, writing—original draft.
e Dr. Gangadhar S. Biradar: Supervision, validation, writing—review and editing.
e Dr. Sujata Terdal: Supervision, writing—review and editing.
Acknowledgment

The authors would like to acknowledge the assistance of ChatGPT in providing language editing and refinement of this
manuscript.

Human Participants and/or Animals
Not applicable.

REFERENCES

1. Brownlee J. Clever Algorithms: Nature-Inspired Programming Recipes. Jason Brownlee; 2011.

2. Yang X-S. Introduction to Mathematical Optimization: From Linear Programming to Metaheuristics. 2008.

3. Gogna A, Tayal A. Metaheuristics: review and application. J Exp Theor Artif Intell. 2013;25(4):503-526.
doi:10.1080/0952813X.2013.782347.

4. Singh P, Choudhary SK. Introduction: Optimization and Metaheuristics Algorithms. In: Malik H, Igbal A, Joshi P, Agrawal S,
Bakhsh FI, editors. Metaheuristic and Evolutionary Computation: Algorithms and Applications. Studies in Computational
Intelligence, vol 916. Singapore: Springer; 2021. p. 1-16. doi:10.1007/978-981-15-7571-6_1.

5. Roni MHK, Rana MS, Pota HR, et al. Recent trends in bio-inspired meta-heuristic optimization techniques in control applications
for electrical systems: a review. Int J Dynam Control. 2022;10:999-1011. doi:10.1007/s40435-021-00892-3.

6. Trojovsky P, Dehghani M. A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses
behavior. Sci Rep. 2023;13:8775. doi:10.1038/s41598-023-35863-5.

7. Houssein EH, Gad AG, Hussain K, Suganthan PN. Major advances in particle swarm optimization: Theory, analysis, and
application. Swarm Evol Comput. 2021;100868. doi:10.1016/j.swevo0.2021.100868.

8. Kumar A, Nadeem M, Banka H. Nature inspired optimization algorithms: a comprehensive overview. Evolving Systems.
2023;14:141-156. doi:10.1007/s12530-022-09432-6.

9. Yang X-S, editor. Nature-Inspired Algorithms and Applied Optimization. Springer International Publishing; 2018. ISBN: 978-3-
319-67669-2. doi:10.1007/978-3-319-67669-2.

10. Yang XS. A new metaheuristic bat-inspired algorithm. In: Nature-Inspired Cooperative Strategies for Optimization. Studies in
Computational Intelligence, vol 284. Springer, Germany; 2010. doi:10.1007/978-3-642-12538-6_6.

11. Chandra SS, Anand HS. Nature-inspired metaheuristic algorithms for optimization problems. Computing, Springer nature,
2022;104:251-269. doi:10.1007/s00607-021-00955-5.

12. Mafarja M, Qasem A, Heidari AA, Aljarah I, Faris H, Mirjalili S. Efficient hybrid nature-inspired binary optimizers for feature
selection. Cogn Comput. 2019. doi:10.1007/s12559-019-09668-6.

13. Boussaid I, Lepagnot J, Siarry P. A4 survey on optimization metaheuristics. Inf Sci. 2013;237:82-117.
https://doi.org/10.1016/j.ins.2013.02.041

14. Azizi M, Aickelin U, Khorshidi HA, Shishehgarkhaneh MB. Energy valley optimizer: a novel metaheuristic algorithm for global
and engineering optimization. Sci Rep. 2023;13:1-16.

15. Zhang W, Pan K, Li S, Wang Y. Special Forces Algorithm: A novel meta-heuristic method for global optimization. Math Comput
Simul. 2023;202:1-15.

16. Deng L, Liu S. Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design.
Expert Syst Appl. 2023;213:118904.

17. Abdel-Basset M, Mohamed R, Jameel M, Abouhawwash M. Spider wasp optimizer: a novel meta-heuristic optimization
algorithm. Artif Intell Rev. 2023;56:1-34.

18. Guan Z, Ren C, Niu J, Wang P, Shang Y. Great Wall Construction Algorithm: A novel meta-heuristic algorithm for engineer
problems. Expert Syst Appl. 2023;229:120015.

19. Stowik A, Cpatka K. Hybrid approaches to nature-inspired population-based intelligent optimization for industrial applications.
IEEE Trans Ind Inform. 2022;18(1):546-558. doi:10.1109/T11.2021.3067719.

20. Yang XS. Nature-Inspired Algorithms and Applied Optimization. Springer; 2018. doi:10.1007/978-3-319-67669-2.

PAGE NO: 437

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Journal of Engineering and Technology Management 78 (2025)

Kumar A, Nadeem M, Banka H. Nature inspired optimization algorithms: a comprehensive overview. Evolving Systems.
2023;14(2):141-156. doi:10.1007/s12530-022-09432-6.

Mafarja M, Qasem A, Heidari AA, et al. Efficient hybrid nature-inspired binary optimizers for feature selection. Cogn Comput.
2019;11(4):556-577. doi:10.1007/s12559-019-09668-6.

Xue Y, Aouari A, Mansour RF, Su S. A hybrid algorithm based on PSO and GA for feature selection. J Cyber Secur.
2021;3:Article 017018. doi:10.32604/jcs.2021.0170

S. Chen, Q.-K. Pan, X. Hu, M.F. Tasgetiren. “NEH-Based heuristics for the distributed blocking flowshop with makespan
criterion” in Proc. of 39th Chinese Control Conference (CCC), pp. 1710-1715, Shenyang, China, 2020.

M. Ghosh, R. Guha, I. Alam, P. Lohariwal, D. Jalan, R. Sarkar. “Binary genetic swarm optimization: a combination of GA and
PSO for feature selection”. Journal of Intelligent Systems, vol. 29(1), 2019, doi: 10.1515/jisys-2019-0062.

T. Dokeroglu, S. Pehlivan, B. Avenoglu. “Robust parallel hybrid artificial bee colony algorithms for the multi-dimensional
numerical optimization”. Journal of Supercomputing, vol. 76, pp. 7026-7046, 2020.

Chelbi S, Dhahri H, Bouaziz R. Node placement optimization using particle swarm optimization and iterated local search
algorithm in wireless sensor networks. Int J Commun Syst. 2021;34(8):e4813. doi:10.1002/dac.4813.

da Silveira LA, Soncco-Alvarez JL, de Lima TA, Ayala-Rincén M. Parallel Island Model Genetic Algorithms applied in NP-
Hard problems. Proc IEEE Congr Evol Comput (CEC). 2019:3262-3269. doi:10.1109/CEC.2019.8790257.

da Silveira LA, Soncco-Alvarez JL, de Lima TA, Ayala-Rincon M. Parallel Multi-Island Genetic Algorithm for Sorting Unsigned
Genomes by Reversals. Proc IEEE Congr Evol Comput (CEC). 2018:1-8. doi:10.1109/CEC.2018.8477968.

Igbinovia FO, Krupka J. Computational Complexity of Algorithms for Optimization of Multi-Hybrid Renewable Energy
Systems. Proc IEEE Int Conf Power Syst Technol (POWERCON). 2018:1-8. doi:10.1109/POWERCON.2018.8591905.

Abi S, Benhala B, Bouyghf H. A Hybrid DE-ACO Algorithm for the Global Optimization. Proc IEEE Int Conf Electron Control
Optim Comput Sci (ICECOCS). 2020:1-6. doi:10.1109/ICECOCS50124.2020.9314533.

Zhu M, Xu W, Ma W. A novel prestress design method for cable-strut structures with Grey Wolf-Fruit Fly hybrid optimization
algorithm. Structures. 2024;67:106932. doi:10.1016/j.istruc.2024.106932.

Mohapatra S, Mohapatra P. Hybrid grey wolf optimization and salp swarm algorithm for global optimization problems. A/P Conf
Proc. 2025;3253:030023. doi:10.1063/5.0249625.

Attiya I, Abualigah L, Alshathri S, Elsadek D, Abd Elaziz M. Dynamic Jellyfish Search Algorithm based on simulated annealing
and disruption operators for global optimization with applications to cloud task scheduling. Mathematics. 2022;10(11):1894.
doi:10.3390/math10111894.

Yildizdan, G., Bas, E. A Novel Binary Artificial Jellyfish Search Algorithm for Solving 0—1 Knapsack Problems. Neural Process
Lett 55, 8605-8671 (2023). https://doi.org/10.1007/s11063-023-11171-x

Chou, JS., Molla, A. Recent advances in use of bio-inspired jellyfish search algorithm for solving optimization problems. Sci
Rep 12, 19157 (2022). https://doi.org/10.1038/s41598-022-23121-z

Tripathy BK, Maddikunta PKR, Pham QV, Gadekallu TR, Dev K, Pandya S, ElHalawany BM. Harris Hawk Optimization: A
survey on variants and applications. Comput Intell Neurosci. 2022;2022:2218594. doi:10.1155/2022/2218594.

Zhou Y, Ling Y, Luo Q. Lévy flight trajectory-based whale optimization algorithm for engineering optimization. Eng Comput.
2018 Oct 25;36(1):1-23. doi:10.1108/EC-10-2018-0456.

Zhou X, Hu W, Zhang Z, Ye J, Zhao C, Bian X. Adaptive mutation sparrow search algorithm-Elman-AdaBoost model for
predicting the deformation of subway tunnels. Underground Space. 2024;17:320-360. doi:10.1016/j.undsp.2023.09.014.

Braik MS, Hammouri Al, Awadallah MA, Al-Betar MA, Khtatneh K. An improved hybrid chameleon swarm algorithm for
feature selection in medical diagnosis. Biomed Signal Process Control. 2023;85:105073. doi:10.1016/j.bspc.2023.105073.

Han T, Wang H, Li T, Liu Q, Huang Y. MHO: A modified hippopotamus optimization algorithm for global optimization and
engineering design problems. Biomimetics (Basel). 2025;10(2):90. doi:10.3390/biomimetics10020090.

Scheiber IBR, Kotrschal K, Weill BM. Benefits of family reunions: Social support in secondary greylag goose families. Horm
Behav. 2009;55(1):133-138. doi: 10.1016/j.yhbeh.2008.09.006.

Mansson J, Liljeback N, Nilsson L, Olsson C, Kruckenberg H, Elmberg J. Migration patterns of Swedish Greylag geese Anser
anser—implications for flyway management in a changing world. Eur J Wildl Res. 2022;68:15. doi: 10.1007/s10344-022-01561-
2.

El-Kenawy EM, Khodadadi N, Mirjalili S, Abdelhamid AA, Eid MM, Ibrahim A. Greylag Goose Optimization: Nature-inspired
optimization algorithm. Expert Syst Appl. 2024 Mar 15;238(Pt E):122147. doi: 10.1016/j.eswa.2023.122147.

Xiao B, Wang R, Deng Y, Yang Y, Lu D. Simplified Crayfish Optimization Algorithm. In: 2024 IEEE 7th Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC); 2024; Chongqing, China. p. 392-396. doi:
10.1109/IAEAC59436.2024.10503709.

Jia H, Rao H, Wen C, et al. Crayfish optimization algorithm. Artif Intell Rev. 2023;56(Suppl 2):1919-1979. doi: 10.1007/s10462-
023-10567-4.

Altaece MM, Alanezi M. Enhancing cloud computing security by Paillier homomorphic encryption. Int J Electr Comput Eng.
2021;11(2):1771-1779. doi: 10.11591/ijece.v11i2.pp1771-1779.

Mohammed SJ, Taha DB. Paillier cryptosystem enhancement for homomorphic encryption technique. Multimed Tools Appl.
2024;83:22567-22579. doi: 10.1007/s11042-023-16301-0.

Algarni AA. A secure approach for data integration in cloud using Paillier homomorphic encryption. Albaha Univ J Basic Appl
Sci. 2021;5(2):15-21.

Sharma P, Raju S. Metaheuristic optimization algorithms: a comprehensive overview and classification of benchmark test
functions. Soft Comput. 2024;28:3123-3186. https://doi.org/10.1007/s00500-023-09276-5.

Majid Sohrabi, Amir M. Fathollahi-Fard, Vasilii A. Gromov, Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems, Neural and Evolutionary Computing, arXiv:2309.16413, 2023
https://doi.org/10.48550/arXiv.2309.16413

Yao L, Yuan P, Tsai CY, Zhang T, Lu Y, Ding S. ESO: An enhanced snake optimizer for real-world engineering problems.
Expert Syst Appl. 2023;225:120594. doi:10.1016/j.eswa.2023.120594.

PAGE NO: 438

53.

54.

55.

56.

Journal of Engineering and Technology Management 78 (2025)

Yuan X, Gao Y, Zeng J. A hybrid grey wolf optimizer and chimp optimization algorithm for global optimization. arXiv [preprint].
2025. arXiv:2501.14769. doi:10.48550/arXiv.2501.14769.

Faris H, Aljarah I, Al-Betar MA, Mirjalili S. Grey wolf optimizer: a review of recent variants and applications. Neural Comput
Appl. 2018;30(2):413-35.

Nadimi-Shahraki MH, Asghari Varzaneh Z, Zamani H, Mirjalili S. Binary Starling Murmuration Optimizer algorithm to select
effective features from medical data. Appl Sci. 2023;13(7):4193. doi:10.3390/app13074193

Nadimi-Shahraki MH, Fatahi A, Zamani H, Mirjalili S. Binary approaches of quantum-based avian navigation optimizer to select
effective features from high-dimensional medical data. Mathematics. 2023;11(4):957. doi:10.3390/math11040957

PAGE NO: 439

