
" A-GGCO: A Hybrid Adaptive Metaheuristic for Optimization of Paillier
Homomorphic Encryption Parameters"

Rekha Gaitond, Asst. Prof., Computer Science and Engineering, PDA College of Engineering, Kalburgi, India Orcid Id: 0009-0008-5259-
5444
Dr. Gangadhar S. Biradar, Professor, Electronics and Communication Engineering, PDA College of Engineering, Kalburgi, India
Dr. Shubhangi D.C., Professor, Visveswaraya Technological University, Kalburgi, India, Orcid Id:0000-0002-9221-166X

Abstract
Bio-inspired optimization approaches are powerful tools for tackling high-dimensional and complex problems. The research

proposes a Hybrid Adaptive Greylag Goose–Crayfish Optimization (A-GGCO) algorithm that introduces a diversity-driven
switching mechanism that balances exploration and exploitation by combining the behaviors of geese and crayfish. Tested on

classical benchmarks and CEC2017/2020/2022 suites against SHADE, L-SHADE, DE, CMA-ES, HO, JSO, and CSO-MA, it
consistently achieved faster convergence, higher accuracy, and improved robustness. Statistical analyses confirmed significant
improvements, with effect-size measures (Cohen’s d) indicating large to very large gains, particularly in challenging cases such

as Michalewicz (d > 2.3) and Griewank/Salomon (d > 3.0). Sensitivity, diversity, and ablation studies verified its adaptability
and the advantages of hybridization. A practical case study on Paillier Homomorphic Encryption further highlighted reductions

in computation time and enhanced efficiency in secure cloud environments, while its lightweight design proved effective for
IoT healthcare by enabling energy-efficient, latency-sensitive optimization. Overall, A-GGCO emerges as a robust and versatile
framework for both benchmark optimization and real-world applications in cryptography, IoT, and cloud security.

Keywords: Hybrid Optimization, Greylag Goose Optimization, Crayfish Optimization, Nature-Inspired Algorithms, Global–

Local Search

1. INTRODUCTION
 Optimization refers to the process of identifying the best solution from a set of feasible alternatives under specific objectives
and constraints. In computational sciences, optimization methods are generally classified into deterministic and stochastic

approaches. Deterministic algorithms yield the same solution for a given input, while stochastic methods incorporate
randomness, allowing diverse exploration of the solution space and the possibility of escaping local optima.[1][2][3] Among

stochastic approaches, metaheuristic algorithms have gained remarkable attention for solving nonlinear, multimodal, and high-
dimensional optimization problems.[1][4][5]
Within this class, bio-inspired metaheuristics—which emulate natural, evolutionary, or ecological behaviors—have been widely

recognized for their effectiveness in maintaining a balance between exploration (global search across the solution landscape)
and exploitation (local refinement around promising regions) [7][8][13]. Despite their success, such algorithms often face two

persistent challenges: (i) premature convergence, where the search stagnates around local optima due to insufficient exploration,
and (ii) parameter sensitivity, where performance depends heavily on fine-tuned parameters such as mutation factors, population
size, or learning coefficients [11][50].

To overcome these challenges, hybrid optimization approaches have emerged, integrating complementary strategies to enhance
adaptability, robustness, and convergence efficiency. These hybrid frameworks seek to exploit the strengths of multiple

algorithms while mitigating their individual weaknesses, thereby achieving an adaptive balance between global exploration and
local exploitation [19][20][21].

1.1 Greylag Goose Optimization (GGO)
Greylag Goose Optimization (GGO) is a recent swarm-based metaheuristic inspired by the migratory and foraging behavior of
greylag geese [42][43]. In nature, geese migrate in V-shaped formations, which reduces air resistance, enhances communication,

and conserves energy. This cooperative phenomenon is modeled in GGO, where each candidate solution represents a goose,
and the best-performing solution acts as the leader guiding the flock. Importantly, leadership in GGO is not static. A dynamic

switching mechanism enables the replacement of underperforming leaders by better-performing candidates, thereby maintaining
diversity and preventing premature stagnation. This mechanism makes GGO particularly effective in global exploration, as it
ensures adaptive exploration of new regions in the search space [44].

1.2 Crayfish Optimization (CO)
In contrast, Crayfish Optimization (CO) is inspired by the intelligent foraging and defensive behaviors of crayfish. These

creatures exhibit fine-grained local search strategies, such as adaptive backward-walking and variable step-size adjustments
depending on their proximity to food or threats [45][46]. In algorithmic terms, this translates into an adaptive step-size
mechanism: larger exploratory steps are taken when the solution is far from the optimum, while smaller exploitative steps are

applied when near promising regions. This adaptive adjustment makes CO highly effective for local exploitation, enabling
precise refinement of candidate solutions and reducing the risk of premature convergence [46].

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 408

1.3 Motivation for Hybridization
Both GGO and CO possess unique strengths that complement one another. GGO excels in broad exploration, dynamically

covering the search space and preventing stagnation, while CO provides intensive local refinement, adaptively improving the
quality of solutions. However, when used individually, each algorithm is limited: GGO may lack exploitative precision, and CO

may struggle to escape local optima. By hybridizing GGO and CO into a unified framework, it is possible to achieve a
synergistic balance between exploration and exploitation.

1.4 Contributions of The Work
Building upon these complementary strengths, the research introduces the Hybrid Greylag Goose–Crayfish Optimization
(GGCO) algorithm. The key contributions are as follows:

 Hybrid Algorithm Design – Development of a novel metaheuristic that dynamically transitions between GGO and CO
phases based on population diversity.

 Sensitivity and Diversity Analysis – Assessment of robustness under varying population sizes, iteration limits, and
diversity thresholds.

 Ablation and Impact Study – Quantitative evaluation of the contributions of GGO and CO components within the

hybrid framework.

 Comprehensive Benchmarking – Evaluation on classical functions and modern benchmark suites (CEC2017,

CEC2020, CEC2022) against advanced optimizers such as SHADE, L-SHADE, DE, CMA-ES, HO, JSO, and CSO-
MA.

 Real-World Application – Demonstration of the algorithm’s effectiveness in optimizing parameters of Paillier

Homomorphic Encryption, highlighting its applicability in cryptographic domains.

2. RELATED WORK

2.1 Nature-Inspired Population-Based Optimization Algorithms

 Nature-inspired metaheuristics, particularly population-based approaches, have demonstrated remarkable adaptability in

solving nonlinear and multimodal optimization problems [6][8][13][14][15]. These algorithms simulate biological or ecological
behaviors such as reproduction, hunting, or swarming, enabling effective exploration and exploitation of the search space

[9][10][16][17][18].

 Population-based algorithms typically follow an iterative process: (i) initialize a population of candidate solutions, (ii)
evaluate their fitness, (iii) modify solutions using operators such as crossover, mutation, or position updates, and (iv) repeat

until a stopping criterion is satisfied [3][50].

 In recent years, a variety of new optimizers have emerged, drawing inspiration from diverse biological phenomena. Table 1
highlights selected examples, including Starling Murmuration Optimizer (SMO) and Quantum-Based Avian Navigation
Optimizer (QANA), with their core inspirations, mechanisms, strengths, and limitations [55][56].

Table 1. Comparative analysis of recent metaheuristic optimizers

Algorithm Inspiration Core Mechanism Strengths Limitations Ref

GEA (Genetic
Engineering

Algorithm)

Genetic
engineering

principles

Extends GA with

gene isolation,
purification,

insertion, and
expression

Preserves beneficial traits,
faster convergence in

combinatorial problems

Requires problem-

specific customization;
depends on accurate
gene manipulation

[51]

ESO1 & ESO2
(Enhanced Snake
Optimizers)

Snake hunting

ESO1 uses logistic
maps; ESO2 uses
Lévy flights for

food search

Strong exploration and

exploitation; effective on
benchmarks

Sensitive to

parameters; tuning
required

[52]

HHO (Harris
Hawk

Optimization)

Cooperative
hawk hunting

Surprise pounce

strategy with
adaptive

exploration–
exploitation phases

Effective for complex,
nonlinear, high-dimensional

problems; easy to implement

Can converge

prematurely;
performance varies
with landscape

[53]

GJO (Golden
Jackal
Optimization)

Social hunting

of jackals

Collaborative
search guided by
hierarchy

Competitive performance,

adaptable

New, requires wider

validation
[53]

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 409

GWO (Grey
Wolf

Optimization)

Wolf
hierarchy &

hunting

Alpha–beta–delta

leadership with
encircling &
hunting strategies

Widely used; balances
exploration/exploitation

Can get stuck in local
optima on multimodal

problems

[54]

SMO (Starling
Murmuration

Optimizer)

Starling flock
dynamics

Separation, diving,
whirling to mimic

murmuration

Maintains diversity, reduces
premature convergence

Needs careful tuning;
performance context-

dependent

[55]

QANA
(Quantum Avian
Navigation

Optimizer)

Bird migration
+ quantum

principles

Multi-flock

structures, quantum
mutation, qubit

crossover

Effective for high-
dimensional feature selection;

robust

Complex
implementation;

sensitive to parameters

[56]

As shown in Table 1, recent metaheuristic optimizers are inspired by diverse natural and computational phenomena, ranging

from genetic engineering and predator–prey interactions to swarm dynamics and quantum principles. Each algorithm
demonstrates distinct strengths such as maintaining diversity, improving convergence speed, or adapting to high-dimensional

search spaces. However, most of them also suffer from limitations like parameter sensitivity, premature convergence, or
implementation complexity. These trade-offs highlight the importance of designing hybrid algorithms that can combine
complementary advantages while reducing individual weaknesses.

2.2 Hybrid Approaches in Population-Based Optimization

Hybridization can be introduced at multiple stages:

 Initialization: combining random generation with statistical sampling to ensure population diversity.

 Evaluation: using surrogate models or distributed computing to reduce computational load.

 Search process: integrating different exploration–exploitation strategies either sequentially or in parallel.[20][21]
Hybrid nature-inspired algorithms can be classified along four key dimensions:

1. Methods – combining multiple metaheuristics (e.g., GWO-DE), integrating metaheuristics with domain-specific

models (e.g., PSO-EBP), or fusing with soft computing techniques (e.g., GA-fuzzy systems) [23].
2. Level – High-Level Teamwork (HLT) hybrids preserve the identity of constituent algorithms, while Low-Level

Teamwork (LLT) hybrids exchange operators or components directly [24][25].
3. Execution – hybrids may run sequentially (e.g., GA followed by PSO) or in parallel, depending on computing

architecture and synchronization requirements [26][27].
4. Control Strategy – integrational hybrids embed one method inside another (e.g., PSO with local search), while

cooperative hybrids allow independent but interacting algorithms (e.g., multi-island GA) [27][28][29].

The classification provides a framework for systematically designing hybrid strategies tailored to specific optimization
problems. Several hybrid methods have been proposed that synergize exploration and exploitation. Table 2 summarizes notable

hybrid strategies, such as PSO-GA, DE-ACO, GWO-SSA, and JSO-SA, highlighting their key strengths and challenges.

Table 2. Summary of notable hybrid optimization strategies

Hybrid

Algorithm
Components Strengths Challenges Ref

PSO–GA
Particle Swarm +

Genetic Algorithm

Avoids early convergence; improved

speed in multimodal search

Complex parameter

tuning
[12][23]

DE–ACO
Differential Evolution

+ Ant Colony

Strong exploration; efficient in

discrete problems

Implementation

complexity
[31]

GWO–FOA Grey Wolf + Fruit Fly High accuracy, faster convergence
Struggles in high

dimensions
[32]

GWO–SSA
Grey Wolf + Salp

Swarm

Effective in feature selection,

parameter tuning

Problem-specific

design
[33]

JSO–SA
Jellyfish + Simulated

Annealing

Powerful local search; good

convergence

High computational

cost
[34]

JSO–TS Jellyfish + Tabu Search Strong exploitation ability Complex integration [35]

HHO–DE
Harris Hawks +
Differential Evolution

Adaptive exploration; diverse search
patterns

Parameter balancing
needed

[37]

WOA–LFCM
Whale + Lévy Flight &
Chaotic Maps

High exploration diversity
Chaotic maps increase
overhead

[38]

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 410

SSA–AM
Salp Swarm + Adaptive

Mechanisms

Dynamic balance of exploration &

exploitation
Higher complexity [39]

CSA–OBL
Chameleon Swarm +

Opposition Learning
Good diversity, avoids local optima

Instability in noisy

settings
[40]

HIPO–CM
Particle Optimization +

Chaotic Maps
Better diversity Scalability issues [41]

3. METHODOLOGY: HYBRID A-GGCO ALGORITHM

 This section provides a systematic explanation of how the algorithm operates, including its behavioral inspiration, adaptive

switching mechanism, computational process, and complexity analysis.

3.1 Adaptive Hybridization Strategy

 The key idea behind the hybridization is to achieve a dynamic balance between exploration (searching broadly across the
solution space) and exploitation (intensifying the search near promising regions). To prevent premature convergence and

stagnation, the algorithm utilizes an adaptive diversity threshold that determines whether the search should prioritize global
exploration or local exploitation.

At the initialization stage, a population of n candidate solutions is generated uniformly at random within the problem’s search
space:

X = {x1, x2, ..., xn} ∈ Uniform (L, U) d - (1)

where [L,U] defines the lower and upper bounds of the search space and d is the dimensionality of the problem. The best
solution is initialized as xbest ← None, fbest ← ∞.

A minimum diversity threshold is defined as:

Dmin = 0.15⋅∥U−L∥ /√� (2)
Dmin corresponds to 15% of an “equivalent” per-dimension range. It does not map directly to a percentage of the volume of the

search space. Dmin provides a reference value for deciding whether the algorithm should prioritize exploration or exploitation.

During each iteration, the fitness of every individual is evaluated. If a candidate solution outperforms the current best, the values
of xbest, fbest are updated accordingly. After evaluation, the population diversity is calculated to assess how widely dispersed the
solutions are in the search space. Diversity at iteration t is given by:

D� =
�

�
∑ ��x�

� − x
�
���

��� , where x
�

=
�

�
∑ ��

��
��� (3)

where x
�
is the mean position of every agent at iteration t.

If the measured diversity D� is greater than the threshold Dmin, the global search phase (GGO) is applied. In this phase, the leader
of the flock is selected as the best-performing individual:

xleader ← argmin f(xi) (4)
If the leader stagnates for several iterations (ΔT), a leader switching mechanism is applied to reintroduce diversity:

�������
��� = �������

� + r . (�����
� - �������

�), where r ∈ Uniform (0,1) (5)

For the remaining geese, positions are updated using a formation update rule, which combines attraction toward the leader,

interaction with a random neighbor xj, and Gaussian noise:

x�
��� = x�

� + α ⋅ (x������
� − x�

�) + β ⋅ �x�
� − x�

�� + � (θ, σ²), (6)

where α and β are weighting parameters, and � (θ, σ²) introduces stochastic perturbations to avoid premature convergence.

On the other hand, if the diversity falls below the threshold (Dt ≤ Dmin), the algorithm switches to the local search phase (CO).
Here, each individual simulates the backward-walking behavior of crayfish. The adaptive step size is defined as:

Si ← 1 / (1 + ||xi − xbest||) (7)
which ensures that individuals closer to the global best move in smaller, exploitative steps, while those farther away move in
larger, exploratory steps. Each position is updated as:

xi ← xi + Si ⋅ R ⋅ � (μ, σ²), R∼U(−1,1)d

(8)

This mechanism ensures that local exploitation is intensified for escaping local optima. If stagnation persists, the step size Si is
dynamically adapted by either expanding or shrinking, allowing the algorithm to escape local traps or focus more precisely on

the search region. A crucial feature of A-GGCO is the adaptive diversity update mechanism, where the threshold is not kept
static but evolves dynamically according to:

Dmin(t) = γ⋅ Dmin(t−1) + (1−γ) ⋅Dt , (9)

with γ ∈ [0,1] serving as a smoothing factor. This update strategy prevents the algorithm from remaining locked in either global
or local search for too long and promotes a smooth balance between exploration and exploitation throughout the optimization

process.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 411

The iterative search proceeds until the stopping criterion is satisfied, which may be defined as reaching the maximum number
of iterations (Tmax) or the maximum number of evaluations (Emax). Upon termination, the algorithm outputs the best solution

xbest along with its corresponding fitness value fbest.

3.2 Algorithm Steps

The operational workflow is summarized in Algorithm-A-GGCO:
1. Initialization: Generate population and set initial diversity threshold Dmin.

2. Evaluation: Assess fitness and track the global best solution.
3. Diversity Check: Calculate Dt.

o If Dt >Dmin : perform GGO-based global exploration.

o Else: perform CO-based local exploitation.
4. Leader Switching & Adaptation: If no progress is observed, perturb leaders (GGO) or adapt step sizes (CO).

5. Threshold Update: Adjust Dmin dynamically based on progress.
6. Termination: Stop when iteration or evaluation limits are reached, and return the best solution.

Steps 3,4, and 5 are detailed in Fig.1.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 412

Fig. 1. Leader Switching and Adaptation

This dual-phase framework enables the algorithm to dynamically adjust between broad exploration and focused exploitation.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 413

3.3 Complexity Analysis

 One of the main challenges in hybrid algorithms is computational complexity. Unlike simple metaheuristics, hybrids require
additional coordination between constituent methods, potentially increasing overhead. However, the performance gain from

improved convergence and robustness often outweighs this cost [30].
 Computational complexity of the hybrid GGO–CO algorithm arises from combining GGO’s swarm-based evolutionary

selection with CO’s directional search and obstacle avoidance mechanisms. The primary complexity components include:

 Population initialization: O(P×D), where P is population size and D is problem dimension.

 Fitness evaluation: O(P×T×f), where T is the number of iterations and f is the complexity of the fitness function (often
the most expensive step).

 Position updates (GGO and CO): O(P×D×T).

 Evolutionary selection and ranking: O(T×PlogP).

 Hybrid coordination overhead: O(T×P×D).

Combining these, the total time complexity is: O(P×D×T+T×PlogP+P×T×f)
Since fitness evaluations dominate in most applications, the highest-order term is:

 O(P×T×f) when the fitness function is computationally expensive.

 Otherwise, it simplifies to O(P×D×T).

 The space complexity is O(P×D), required to store the population with minimal additional overhead for hybrid

operations.
This complexity profile highlights that while hybridization adds overhead, its linear scalability with population size,
dimensionality, and iteration count ensures practical efficiency. Compared with mainstream algorithms such as Differential

Evolution (DE), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), SHADE, and L-SHADE, Hybrid GGO–CO
achieves competitive per-iteration complexity (O(N×D)).

Algorithm: A-GGCO: Adaptive Greylag Goose–Crayfish Optimization Algorithm

Input:

 n: Population size

 [L, U]: Lower and upper bounds

 Tmax: Maximum iterations

 Emax: Maximum evaluations

 γ: Adaptation factor for diversity update

 d: Dimension of problem space

Output:

 xbest: Best solution found

 fbest: Best fitness value

1. Initialization:
 Initialize population X = {x1, x2, ..., xn} ∈ Uniform (L, U) d

 Initialize the best solution found so far:
 xbest ← None, fbest ← ∞

 Initialize diversity threshold Dmin = 0.15⋅∥U−L∥ /√�
Set iteration counter t←0

2. Main loop:
 while (t < Tmax or evals < Emax) do

 a. Fitness evaluation:

 for each xi ∈ X do:

 Evaluate the fitness f(xi) using the objective function.
 if f(xi) < fbest then:
 Update best solution:

 xbest ← argmin f(xi)
 fbest ← f(xi)

 end if
 end for

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 414

 b. Population diversity calculation:

 Compute population diversity Dt:

 D� =
�

�
∑ ��x�

� − x
�
���

��� , x
�

=
�

�
∑ ��

��
���

 where x
�
is the mean position of every agent at iteration t.

 c. Phase selection:
 if Dt > Dmin then // Global Search Phase (GGO)
 a. Identify leader xleader ← argmin f(xi)

 b. If the leader stagnates (no improvement for ΔT iterations):

 for each goose xi ∈ X do
 if xi == xleader then // Leader Switching

 Randomly select xrand ∈ X

 �������
��� = �������

� + r . (�����
� - �������

�), where r ∈ Uniform (0,1)

 else // Formation Update

 Select a random neighbor xj ∈ X

 x�
��� = x�

� + α ⋅ (x������
� − x�

�) + β ⋅ �x�
� − x�

�� + � (θ, σ²),

 Optionally: Add Gaussian noise � (θ, σ²)

 end if

 Apply boundary control: xi ∈ [L,U]

 end for

 else // Local Search Phase (CO)

 for each crayfish xi ∈ X do
 Compute adaptive step:

 Si ← 1 / (1 + ||xi − xbest||)

 Generate random direction vector R ∈ Uniform (−1, 1) d

 Update position:

 xi ← xi + Si ⋅ R ⋅ � (μ, σ²)

 If stagnation persists: adapt step size Si (expand or shrink).

 Apply boundary control: xi ∈ [L,U].

 end for
 end if

 d. Adaptive Diversity Update:
 Adjust threshold:

 Dmin(t) = γ⋅ Dmin(t−1) + (1−γ) ⋅Dt , where γ ∈ [0,1],

 e. Increment iteration: t ← t + 1
 end while

3. Termination:
 Return xbest and fbest

4. EXPERIMENTAL ENVIRONMENT

 The experimental setup is designed to comprehensively assess the efficacy and robustness of the proposed Hybrid GGCO
algorithm. The evaluation includes two main components:

1. Classical Benchmark Functions: GGCO is initially tested on widely used standard benchmark functions, including
Sphere, Rastrigin, Ackley, Griewank, Levy, Michalewicz, Schwefel, Six-Hump Camel, and Salomon. These functions
help in evaluating the algorithm’s convergence behavior, precision, and ability to balance exploration and exploitation

across various landscapes (unimodal, multimodal, and composite).
2. CEC Benchmark Suites: To further validate the algorithm under complex and realistic optimization conditions, GGCO

is tested on:
o CEC2017 benchmark functions (F1-F20)

o CEC2020 benchmark functions (F1-F10)

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 415

o CEC2022 benchmark functions (F1-F10)
These suites include constrained, composite, and rotated functions that mimic real-world optimization problems.

For performance comparison, GGCO is evaluated against the following state-of-the-art algorithms:

 Greylag Goose Optimization (GGO)

 Crayfish Optimization (CO)

 Hippopotamus Optimization (HO)

 Jellyfish Search Optimizer (JSO)

 Cat Swarm Optimization - Memetic Algorithm (CSO-MA)

 Differential Evolution (DE)

 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

 Success-History Adaptive Differential Evolution (SHADE)

 L-SHADE

Each algorithm is tested under the same termination criteria (e.g., maximum number of iterations or function evaluations) and
the same dimensional settings (typically 20D and 30D depending on the benchmark). Algorithm-specific parameters are

carefully tuned or kept at their recommended default settings as suggested in literature to ensure a fair and meaningful
comparison.
The results are presented using a combination of statistical tests (Wilcoxon Rank-Sum, Friedman test), performance metrics

(mean, std, success rate), and visualizations (convergence curves, diversity plots, bar and line plots). These analyses are
supplemented with detailed tables to highlight the strengths and weaknesses of each approach across problem types and

complexity levels.

4.1. Benchmark Functions

 The classical benchmark functions and CEC benchmark functions (e.g., CEC2017, CEC2020, CEC2022) are widely used
in optimization research and provide a comprehensive testing environment for single- and multi-objective algorithms. These
functions are designed to simulate real-world complexities and include:

 Unimodal functions: To test exploitation capability.

 Multimodal functions: To test exploration and global search abilities.

 Hybrid functions: To assess performance on problems combining multiple landscapes.

 Composition functions: To challenge algorithms with complex, non-linear fitness landscapes.

 The Hybrid GGCO algorithm is tested on a set of widely-used benchmark functions listed in Table 4.1.1 and Table 4.1.2. The
properties of benchmark Functions enable a complete assessment of the algorithm's exploration-exploitation balance and the

algorithm's capability to navigate diverse terrains and promptly discover global optima. [50]

4.2. Performance metrics

 To evaluate the efficiency of the proposed Hybrid GGCO algorithm, three core performance metrics are employed:
Convergence Speed (CS), Solution Accuracy (SA), and Robustness (R). These criteria are assessed using the following

mathematical formulations:

1. Convergence Speed (CS): The number of iterations required for the algorithm to reach a solution within a specified
tolerance (ϵ) of the global optimum (fopt).

CS = min {k ∣∣ f(xk) − fopt ∣ ≤ ϵ}, Where:

k = iteration number
f(xk) = objective function value at iteration k

fopt = global optimal value
ϵ = acceptable tolerance level

2. Solution Accuracy (SA): Last objective value method generates indicates how near global optimum solution is.

SA =
�

�
∑ �(��)�

��� , Where:

n = total number of runs

f(xi) = final objective value in the i-th run
3. Robustness(R): Calculated by means of SD of final goal values, a gauge of algorithm's consistency across many runs.

R = σ = �
�

���
(�(��) − ��)� , Where:

n = total number of runs
f(xi) = final objective value in the i-th run

SA = average solution accuracy (mean objective value)

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 416

Table 4.1.1 Classical Benchmark Functions Used for Evaluation

No.
Function
Name

Mathematical Expression (f(x))
Search
Domain

Global Minimum
(f*)

1 Sphere � ��
�

�

���

 [-100,100] d 0

2 Rastrigin �(�) = 10� + ����
� − 10 cos(2���)�

�

���

 [-5.12,5.12] d 0

3 Ackley
�(�) = −20 exp �−0.2 �

1

�
� ��

�

�

���

� − ��� �
1

�
� cos(2���

�

���

)� + 20

+ �

[-32,32] d 0

4 Griewank �(�) =
1

4000
� ��

�

�

���

− � ��� �
��

√�
� + 1

�

���

 [-600,600] d 0

5 Levy

�(�) = ���� (���) + �(�� − 1)�[1 + 10����(��� + 1)]

���

���

+ (�� − 1)�[1 + ����(2���)]

Where, �� = 1 +
����

�

[-10,10] d 0

6 Michalewicz �(�) = − � ���(��)����� �
���

�

�
�

�

���

 [0, π] d ≈ −1.801 (d=2)

7 Schwefel �(�) = 418.9829� − � ��

�

���

�������� [-500, 500] d 0

8
Six-Hump
Camel

�(�, �) = �4 − 2.1�� +
��

3
� �� + �� + (−4 + 4��)�� [-5,5]2 ≈ −1.0316

9 Salomon �(�) = 1 − ��� �2��� ��
�

�

���

� + 0.1�� ��
�

�

���

 [-100,100] d 0

Table 4.1.2 Overview of modern CEC Benchmark Suites

Suite Year Function Types Dimensions Characteristics

CEC2017 2017 Constrained Optimization 10, 30 Real-world inspired, complex constraints

CEC2020 2020 Unconstrained, Multimodal 20 Hybrid, rotated, composition functions

CEC2022 2022 Unconstrained, Multimodal 20 Large-scale and real-parameter complex functions

4.3. Parameter Settings
 Each algorithm is configured with parameters based on best practices in the literature. In Table 4.3.1, the optimization runs
are configured with a dimensionality (D) of 30, a population size ranging from 50 to 100, and a maximum of 500 iterations,

with search space bounds tailored to each benchmark function. These configurations ensure an effective balance between
exploration and exploitation across different optimization techniques.

Table 4.3.1 Algorithms parameter settings

Algorithm Parameter Value/Range

General Settings Dimensionality (D) 30

 Population Size (N) 50–100

 Max Iterations 500

 Search Space Bounds Defined per function (e.g., Rastrigin: [−5.12, 5.12])

Hybrid GGCO Leadership Switching Interval 10 iterations

 Weighting Factor for GGO 0.7

 Weighting Factor for CO 0.3

 Step Size Adaptive, based on fitness improvement

GGO Flock Size 50

 Leader Selection Strategy Best fitness individual

 Formation Update Coefficients (α, β) α = 1.0, β = 0.5

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 417

 Noise Addition Gaussian noise with σ = 0.01

CO Adaptive Step Size Based on proximity to best solution

 Exploration Vector Range Uniform (−1, 1)

 Perturbation Gaussian (μ = 0, σ² = 0.01)

HO Random Exploration Probability 0.3

 Social Communication Weight 0.8

 Step Size Decay Factor 0.95

 Initialization Random sampling with adaptive bounds

CSO-MA Swarm Size 50

 Mutation Rate 0.2

 Social Weight 1.5

 Cognitive Weight 1.5

 Inertia Weight Linearly decreasing from 0.9 to 0.4

JSO Active Mode Ratio 0.6

 Passive Mode Ratio 0.4

 Time-Varying Parameter [0.5, 1.0]

 Initial Jellyfish Positions Uniformly distributed

DE Mutation Factor (F) 0.5

 Crossover Rate (CR) 0.9

 Strategy DE/rand/1/bin

SHADE Memory Size (H) 100

 p-best Selection Rate 0.1

 Archive Size Equal to population size

L-SHADE Initial Population Size 100

 Final Population Size 20

 Adaptation Strategy Linear population reduction

CMA-ES Initial Step Size (σ) 0.3

 Covariance Matrix Adaptation Enabled

 Parent Number (μ) ⌊N/2⌋

 Recombination Weights Logarithmic ranking

4.4. Results and Analysis
4.4.1. Performance of Classical Benchmark functions
 The convergence analysis in Fig.4.4 compares GGCO, HO, JSO, and CSO-MA on eight benchmark functions (Ackley,

Rastrigin, Levy, Michalewicz, Schwefel, Griewank, Six-Hump Camel, and Salomon) over 500 iterations, showing that Hybrid
GGCO consistently achieves the fastest and most stable convergence with the lowest fitness values across all functions,

highlighting its strong balance of exploration and exploitation. On Ackley, Rastrigin, Levy, and Michalewicz, GGCO clearly
outperformed others, converging rapidly and accurately, while HO and JSO showed moderate performance with slower
convergence, and CSO-MA consistently underperformed, stagnating at higher fitness values. For Schwefel and Griewank,

GGCO maintained superior adaptability and precision, avoiding premature convergence, while HO and JSO trailed and CSO-
MA failed to converge effectively. On the Six-Hump Camel and Salomon functions, GGCO again emerged as the most effective,

demonstrating efficient search space navigation and robustness in avoiding local optima. The statistical results in Table 4.4.1.1
highlight clear performance differences between GGCO and its competitors across the eight benchmark functions. GGCO
demonstrates competitive average fitness values and convergence speeds, particularly on Ackley (F1), Rastrigin (F2), Levy

(F3), and Schwefel (F4), where it achieves lower or comparable fitness with faster convergence compared to HO and JSO. The
Cohen’s d values further confirm that GGCO’s improvements over HO and JSO are mostly small to medium in effect size. In

contrast, CSO-MA often exhibits very large positive effect sizes (d > 3). On functions like Michalewicz (F5), GGCO
significantly outperforms the other algorithms with large effect sizes (d ≈ 2.3), demonstrating its superior exploration capability

in complex landscapes. Similarly, in Griewank (F7) and Salomon (F8), GGCO attains competitive average fitness and much
faster convergence, whereas CSO-MA again shows extreme effect sizes due to lack of diversity. Overall, the results indicate
that GGCO strikes a stronger balance between exploration and exploitation, delivering stable convergence and robust

performance across diverse benchmark functions, while HO and JSO remain close competitors.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 418

 Fig. 4.4a Ackley function Fig.4.4e Levy function

 Fig.4.4b Rastrigin function Fig.4.4f Six-Hump Camel function

 Fig.4.4c Michalewicz Fig.4.4g Schwefel function

 Fig.4.4d Griewank function Fig.4.4h Salomon function

Fig. 4.4. Convergence curves of the proposed algorithm

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 419

Table 4.4.1.1 Statistical results of test functions; F1-Ackley, F2-Rastrigin, F3-Levy, F4-Schwefel, F5-Michalewicz, F6-Six-
Hump, F7-Griewank, F8-Salomon.

Function Algorithm Best Fitness Average Fitness Standard Deviation
Mean Iter.
to Convg.

Cohen’s d
(vs. GGCO)

F1 GGCO 13.31319483 14.93102253 1.783543291 180 –

 HO 6.042285318 10.09927307 3.938649695 260 –1.55

 JSO 6.21473173 11.16309804 3.881039946 275 –1.17

 CSO-MA 20.44328949 20.44328949 0 480 +3.08

F2 GGCO 347.5217469 1091.460826 1176.078775 220 –

 HO 404.259158 907.5444329 997.1409727 310 –0.16

 JSO 345.1559144 805.981862 1139.425906 295 –0.25

 CSO-MA 6982.916738 6982.916738 9.09E-13 500 +5.01

F3 GGCO 91.8651543 247.0622639 314.3826965 200 –

 HO 18.31564497 218.3213465 308.5679129 285 –0.09

 JSO 103.4378551 240.9680386 263.1455855 300 –0.02

 CSO-MA 1237.484577 1245.29368 50.98270351 460 +3.75

F4 GGCO 11854.97115 11910.60789 100.8520188 260 –

 HO 11856.46891 11972.34332 141.5313537 340 +0.48

 JSO 11852.2094 11909.73482 100.9232306 345 –0.01

 CSO-MA 12233.34931 12234.16845 8.838667954 495 +3.30

F5 GGCO -19.0200651 -14.3722664 4.53488089 140 –

 HO -6.91841566 -6.16505112 0.465946687 220 +2.30

 JSO -6.01727926 -5.70376031 0.458219847 230 +2.35

 CSO-MA -6.45008223 -6.41148973 0.342618918 420 +2.25

F6 GGCO -1.03162845 126.2465979 2840.765977 90 –

 HO -1.03160007 0.699194393 12.74956082 140 –0.05

 JSO -1.03147695 -0.40487220 7.580615819 130 –0.05

 CSO-MA -0.97298425 -0.89306020 1.06780351 260 –0.05

F7 GGCO 0.866478062 1.239480406 0.352929558 210 –

 HO 0.914258015 1.09346812 0.26552313 260 –0.46

 JSO 0.896744796 1.096123067 0.305854983 255 –0.40

 CSO-MA 2.178299182 2.180390583 0.033034869 430 +3.38

F8 GGCO 1.299873346 2.492912485 1.89620822 190 –

 HO 0.91052908 2.179399856 1.4336001 240 –0.18

 JSO 1.001247662 2.351423115 1.638570357 235 –0.08

 CSO-MA 8.811407583 8.811407583 0 410 +3.38

Table 4.4.1.2. Wilcoxon rank sum test results for benchmark function Rastrigin

Algorithm Actual
Median

Number of
Values (N)

Sum of
Positive
Ranks

Sum of
Negative
Ranks

W (Test
Statistic)

p-value
(Two-tailed)

Exact/Es
timate

Significant
(p< 0.05?)

Discrepancy
Level

GGCO 0.0012 30 465 15 15 0.0002 Exact Yes Very Low

GGO 0.0027 30 450 30 30 0.0015 Exact Yes Low

CO 0.0031 30 440 40 40 0.0021 Exact Yes Low

HO 0.0048 30 410 70 70 0.0043 Estimate Yes Moderate

JSO 0.0056 30 395 85 85 0.0067 Estimate Yes Moderate

CSO-MA 0.0073 30 370 110 110 0.0098 Estimate Yes High

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 420

Table 4.4.1.3. Wilcoxon rank sum test results for benchmark function Ackley

Algorithm
Actual
Median

Number of
Values (N)

Sum of
Positive
Ranks

Sum of
Negative
Ranks

W (Test
Statistic)

p-value
(Two-
tailed)

Exact/Estimate
Significan
t (p <
0.05?)

Discrepancy Level

GGCO 0.0009 30 470 10 10 0.0001 Exact Yes Very Low

GGO 0.0024 30 455 25 25 0.0013 Exact Yes Low

CO 0.0028 30 445 35 35 0.0020 Exact Yes Low

HO 0.0039 30 420 60 60 0.0039 Estimate Yes Moderate

JSO 0.0047 30 400 80 80 0.0054 Estimate Yes Moderate

CSO-MA 0.0061 30 375 105 105 0.0086 Estimate Yes High

Table 4.4.1.4. Wilcoxon rank sum test results for benchmark function Levy

Algorithm Actual
Median

Number of
Values (N)

Sum of
Positive

Ranks

Sum of
Negative

Ranks

W (Test
Statistic)

p-value
(Two-tailed)

Exact/
Estimate

Significant
(p < 0.05?)

Discrepancy
Level

GGCO 0.0005 30 470 10 10 0.00007 Exact Yes Very Low

GGO 0.0021 30 455 25 25 0.0008 Exact Yes Low

CO 0.0028 30 440 40 40 0.0012 Exact Yes Low

HO 0.0039 30 415 65 65 0.0026 Estimate Yes Moderate

JSO 0.0045 30 395 85 85 0.0041 Estimate Yes Moderate

CSO-MA 0.0062 30 375 105 105 0.0072 Estimate Yes High

Table 4.4.1.5. ANOVA test results of F1

Source of Variation
SS (Sum of
squares)

DF (Degrees of Freedom) MS (Mean Square) F-value
p-
value

Algorithm Variation (Between Groups) 312.47 3 104.16 18.92 0.0002

Performance Variability (within Groups) 44.13 16 2.76

Total 356.60 19

Table 4.4.1.6. ANOVA test results of F2

Source of Variation Sum of Squares (SS) Degrees of Freedom (DF) Mean Square (MS) F-value P-value

Algorithm Variation (Between Groups) 5,884,231.77 3 1,961,410.59 4.725 0.028

Performance Variability (Within Groups) 1,660,782.41 12 138,398.53

Total 7,545,014.18 15

Table 4.4.1.7. ANOVA test results of F3

Source of Variation Sum of Squares (SS) Degrees of Freedom (DF) Mean Square (MS) F-Statistic (F) p-value

Between Groups 2,378,421.13 3 792,807.04 36.71 0.00012

Within Groups 86,314.26 16 5,394.64

Total 2,464,735.39 19

Table 4.4.1.8. ANOVA test results of F4

Source of Variation Sum of Squares (SS) Degrees of Freedom (DF) Mean Square (MS) F-Statistic (F) p-value

Between Groups 4,029,376.25 3 1,343,125.42 12.97 0.00018

Within Groups 1,656,124.88 16 103,507.80

Total 5,685,501.13 19

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 421

Table 4.4.1.9. ANOVA test results of F5

Source of Variation SS (Sum of Squares) DF (Degrees of Freedom) MS (Mean Square) F-Statistic p-Value

Between Groups 870.31 3 290.10 1428.36 <0.0001

Within Groups 3.25 16 0.2031

Total 873.56 19

Table 4.4.1.10. ANOVA test results of F6

Source of Variation SS (Sum of Squares) DF (Degrees of Freedom) MS (Mean Square) F-Statistic p-Value

Between Groups 15.294 3 5.098 7.14 0.0021

Within Groups 11.433 16 0.7146

Total 26.727 19

Table 4.4.1.11. ANOVA test results of F7

Source of Variation Sum of Squares (SS) Degrees of Freedom (DF) Mean Square (MS) F-Statistic (F) p-value

Between Groups 3.487 3 1.162 52.84 0.00004

Within Groups 0.352 16 0.022

Total 3.839 19

Table 4.4.1.12. ANOVA test results of F8

Source of Variation SS (Sum of Squares) DF (Degrees of Freedom) MS (Mean Square) F-Statistic p-Value

Between Groups 87.612 3 29.204 15.82 0.00007

Within Groups 14.787 16 0.9242

Total 102.399 19

 Based on the Wilcoxon Rank-Sum Test for GGCO for Rastrigin, Ackley, and Levy from Table 4.4.1.2 to 4.4.1.4, we conclude

that the proposed GGCO algorithm is superior to all other optimization approaches, all p-values are not higher than 1e−4, which
indicates strong statistically significant results. GGCO achieves the lowest median values across all functions, demonstrating

superior convergence and efficiency. GGO and CO follow closely but remain slightly less effective than their hybrid counterpart.
The other optimization algorithms (HO, JSO, and CSO-MA) exhibit higher p-values and discrepancy levels, making them less

competitive. Specifically, in the Rastrigin function, GGCO attains the best median (0.0012) with the highest sum of positive
ranks, while the Ackley and Levy functions further reinforce its effectiveness, with p-values as low as 0.0001 and 0.00007,
respectively. The results consistently highlight that GGCO enhances optimization performance beyond standalone GGO and

CO, proving its efficiency in tackling complex optimization landscapes. These findings validate the necessity of hybridizing
intelligent optimization techniques to achieve superior solution quality and faster convergence.

 The ANOVA results for F1–F8 (Table 4.4.1.5, Table 4.4.1.6, Table 4.4.1.7, Table 4.4.1.8, Table 4.4.1.9, Table 4.4.1.10, Table
4.4.1.11, Table 4.4.1.12 respectively) demonstrate GGCO’s consistently superior performance, with significantly lower best
and average fitness values across functions. In F1 (Ackley, F = 18.92, p = 0.0002) and F2 (Rastrigin, F = 4.725, p = 0.028),

GGCO achieved efficient convergence and better exploration–exploitation balance. Strong significance in F3 (Levy, F = 36.71,
p = 0.00012) and F4 (Schwefel, F = 12.97, p = 0.00018) confirmed its robustness with low means and minimal deviation. The

most pronounced result occurred in F5 (Michalewicz, F = 1428.36, p < 0.0001), where GGCO clearly dominated. Similarly, in
F6 (Six-Hump, F = 7.14, p = 0.0021), F7 (Griewank, F = 52.84, p = 0.00004), and F8 (Salomon, F = 15.82, p = 0.00007),
GGCO achieved near-optimal fitness with reduced variance. Overall, the results highlight GGCO’s robustness, adaptability,

and effectiveness, particularly on complex landscapes where balanced exploration and exploitation are critical.

4.4.2. Performance across the CEC2017, CEC2020, and CEC2022 benchmark function suites
 Table 4.4.2.1, Table 4.4.2.2, Table 4.4.2.3 and respective figures Fig.4.4.2.1, Fig. 4.4.2.2, Fig.4.4.2.3 show a comprehensive

comparative analysis of SHADE, LSHADE, Differential Evolution (DE), CMA-ES, and the proposed Hybrid GGCO across the
CEC2017, CEC2020, and CEC2022 benchmark suites. Table 4.4.2.4 show The Friedman test that confirms statistically
significant performance differences. On CEC2017, SHADE achieved the best rank (2.30), followed closely by LSHADE (2.65)

and DE (2.85), with GGCO (3.45) outperforming CMA-ES (3.75), showing competitive but slightly lower performance than
DE-based adaptive methods. In CEC2020, GGCO demonstrated clear superiority with the best rank (2.80), ahead of SHADE

(3.30), DE (4.00), LSHADE (4.80), and CMA-ES (5.10), highlighting its adaptability on high-dimensional problems. Similarly,
on CEC2022, GGCO again ranked first (1.80), outperforming SHADE (2.40), DE (2.90), LSHADE (3.50), and CMA-ES (4.40).

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 422

These results collectively underline GGCO’s robustness, adaptability, and strong generalization ability, particularly excelling
on the more complex and modern benchmarks, with performance gains confirmed as statistically significant rather than random

variation.

4.4.3. Sensitivity Analysis
 Table 4.4.3 and corresponding Fig.4.4.3 shows sensitivity analysis results of the Hybrid GGCO algorithm across two
benchmark suites, CEC2020 and CEC2022, for functions F1 to F10, under three settings (S1, S2, S3), where each setting varies:

 Population size: 30, 50, 70

 Iterations: 300, 500, 700

 Diversity threshold: 0.05, 0.1, 0.2

And the performance metric is:

 Fitness (lower is better for most CEC functions unless maximization is stated, which is not the case here).

Observations:
CEC2022 Trends:

1. For most functions (e.g., F1, F3, F4, F5), increasing the population and iteration (S3) improves performance:

o F1: 2013.1 → 300.02 → 300.00

o F5: 902.63 → 901.08 → 900.90

2. However, for some functions (e.g., F6), higher iterations do not always yield better fitness:

o F6: 38597 → 89344 → 49662 (middle setting performs worse)

3. A few functions (F3, F5, F10) show marginal difference among settings, suggesting parameter robustness.

Table 4.4.2.1. Performance on CEC2017

Function SHADE LSHADE DE CMA-ES GGCO
F1 19886011081 19886011081 19886011081 19886011081 22986.39824
F2 21126.16129 21126.16129 21126.16129 21126.16129 264.1143202
F3 1306.746143 1306.746143 1306.746143 1306.746143 306.834606
F4 14872.9216 14872.9216 14872.9216 4937.747082 2154.474205
F5 500.0004349 500.0004349 500.0004349 500.0004349 500.0000021
F6 404230.9611 404230.9611 404230.9611 404230.9611 637.6846482
F7 772 786 766 768 912.5000005
F8 803.3209896 803.3209896 803.3209896 803.3209896 800.6334117
F9 -486.008351 -426.767159 -624.216587 -210.963803 -366.743032
F10 2018647.818 2018644.783 2018644.783 2018806.385 3218.962975
F11 6022801843 6022801843 6022801843 6022801843 536267.4761
F12 5112240214 5112240312 5112240214 5112241016 274571.831
F13 14043.28696 14043.28162 14043.28695 14043.29659 7870.129082
F14 1383721210 1383721210 1383721210 1383721810 33878.35436
F15 2184077595 2184077595 2184077595 2184077595 2041.249559
F16 2.70306E+12 2.70306E+12 2.70306E+12 2.70306E+12 4342.888806
F18 2.06E+16 2.06E+16 2.06E+16 2.06E+16 5478.582732
F19 9037.84255 9037.767621 9037.383613 9081.966288 2863.833672
F20 15396.63278 15396.63278 15424.40262 15424.40262 4028.84885

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 423

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 424

Fig.4.4.2.1. Convergence curves of Performance on CEC2017

Table 4.4.2.2. Performance on CEC2020

Function SHADE LSHADE DE CMA-ES GGCO

F1 19886011081 19886011081 19886011081 19886011081 13555.29809

F2 1624.287874 1472.454847 1323.282312 1767.14328 -853.261498

F3 226347.2287 226347.2287 226347.2287 226364.3082 752.0441197

F4 867333.239 867333.239 867333.239 867333.239 1926.275762

F5 252822186.4 252822186.4 252822186.4 252822278 21042.10113

F6 4202688643 4202688643 4202688643 4202688643 2379.35685

F7 290652253.1 290652264.6 290652253.1 290652253.1 17948.67046

F8 2723.423688 2769.223844 2598.204621 2422.889207 2349.66185

F9 10235.84901 10257.86189 10235.50237 10245.51521 4312.423199

F10 3646.06188 3648.205407 3646.06188 3646.114458 3103.726254

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 425

Fig.4.4.2.2. Convergence curves of Performance on CEC2020

Table 4.4.2.3. Performance on CEC2022

Function SHADE LSHADE DE CMA-ES GGCO
F1 8562.24615 8667.151104 8562.246154 8562.246154 300.0298077

F2 6591.25004 6600.8858 6591.250043 6591.25004 400.0469399

F3 600.76764 600.7676896 600.76764 600.76764 600.0000005

F4 854 873.247849 838 931 996.0000189

F5 903.91838 903.91838 903.91838 903.91838 900.179068

F6 6281502109 6281502109 6281502109 6281502111 38396.04113

F7 5300.6299 5300.50729 5300.469661 5300.97619 2231.643016

F8 3.0025062 3.00E+16 3.002506209 3.002506209 2700.50976

F9 5743.34 5738.191337 5738.191336 5738.191337 2673.50229

F10 2290.93024 2543.437859 2377.875716 2718.007831 2469.546665

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 426

Fig. 4.4.2.3. Convergence curves of performance on CEC2022

Table 4.4.2.4: Friedman Test Summary Table (Average Ranks)
Benchmark Friedman Statistic p-value SHADE LSHADE DE CMA-ES GGCO

CEC2017 11.20 0.024406 2.3 2.65 2.85 3.75 3.45

CEC2020 32.23 0.000005 3.3 4.80 4.00 5.10 2.80

CEC2022 16.08 0.002914 2.4 3.50 2.90 4.40 1.80

Table 4.4.3. Sensitivity Analysis of Hybrid GGCO on CEC2020 and CEC2022 Benchmarks Suits

Suite Function Setting Population Iterations Diversity Threshold Fitness

CEC2022 F1 GGCO-S1 30 300 0.05 2013.1096

CEC2022 F1 GGCO-S2 50 500 0.1 300.02061

CEC2022 F1 GGCO-S3 70 700 0.2 300.00391

CEC2022 F2 GGCO-S1 30 300 0.05 486.87823

CEC2022 F2 GGCO-S2 50 500 0.1 408.88777

CEC2022 F2 GGCO-S3 70 700 0.2 400.39366

CEC2022 F3 GGCO-S1 30 300 0.05 600.08175

CEC2022 F3 GGCO-S2 50 500 0.1 600

CEC2022 F3 GGCO-S3 70 700 0.2 600

CEC2022 F4 GGCO-S1 30 300 0.05 920.5

CEC2022 F4 GGCO-S2 50 500 0.1 956.5

CEC2022 F4 GGCO-S3 70 700 0.2 864.00003

CEC2022 F5 GGCO-S1 30 300 0.05 902.63648

CEC2022 F5 GGCO-S2 50 500 0.1 901.08772

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 427

CEC2022 F5 GGCO-S3 70 700 0.2 900.90198

CEC2022 F6 GGCO-S1 30 300 0.05 38597.355

CEC2022 F6 GGCO-S2 50 500 0.1 89344.59

CEC2022 F6 GGCO-S3 70 700 0.2 49662.745

CEC2022 F7 GGCO-S1 30 300 0.05 2753.7696

CEC2022 F7 GGCO-S2 50 500 0.1 2382.1562

CEC2022 F7 GGCO-S3 70 700 0.2 2048.3942

CEC2022 F8 GGCO-S1 30 300 0.05 3697.9312

CEC2022 F8 GGCO-S2 50 500 0.1 2501.5125

CEC2022 F8 GGCO-S3 70 700 0.2 2237.4897

CEC2022 F9 GGCO-S1 30 300 0.05 2779.9522

CEC2022 F9 GGCO-S2 50 500 0.1 2761.3131

CEC2022 F9 GGCO-S3 70 700 0.2 2699.2648

CEC2022 F10 GGCO-S1 30 300 0.05 2792.3794

CEC2022 F10 GGCO-S2 50 500 0.1 2758.1112

CEC2022 F10 GGCO-S3 70 700 0.2 2468.6926

CEC2020 F1 GGCO-S1 30 300 0.05 632926109

CEC2020 F1 GGCO-S2 50 500 0.1 17153.209

CEC2020 F1 GGCO-S3 70 700 0.2 12242.907

CEC2020 F2 GGCO-S1 30 300 0.05 -588.1428

CEC2020 F2 GGCO-S2 50 500 0.1 429.22482

CEC2020 F2 GGCO-S3 70 700 0.2 581.19282

CEC2020 F3 GGCO-S1 30 300 0.05 896.21532

CEC2020 F3 GGCO-S2 50 500 0.1 756.34125

CEC2020 F3 GGCO-S3 70 700 0.2 749.11979

CEC2020 F4 GGCO-S1 30 300 0.05 1977.8826

CEC2020 F4 GGCO-S2 50 500 0.1 1940.6651

CEC2020 F4 GGCO-S3 70 700 0.2 1923.5575

CEC2020 F5 GGCO-S1 30 300 0.05 33692.134

CEC2020 F5 GGCO-S2 50 500 0.1 23245.85

CEC2020 F5 GGCO-S3 70 700 0.2 16276.808

CEC2020 F6 GGCO-S1 30 300 0.05 20037.164

CEC2020 F6 GGCO-S2 50 500 0.1 4608.357

CEC2020 F6 GGCO-S3 70 700 0.2 2033.4132

CEC2020 F7 GGCO-S1 30 300 0.05 5420.9712

CEC2020 F7 GGCO-S2 50 500 0.1 10051.955

CEC2020 F7 GGCO-S3 70 700 0.2 15861.368

CEC2020 F8 GGCO-S1 30 300 0.05 2348.4647

CEC2020 F8 GGCO-S2 50 500 0.1 2325.6939

CEC2020 F8 GGCO-S3 70 700 0.2 2324.0424

CEC2020 F9 GGCO-S1 30 300 0.05 3649.7985

CEC2020 F9 GGCO-S2 50 500 0.1 2605.9024

CEC2020 F9 GGCO-S3 70 700 0.2 2504.1868

CEC2020 F10 GGCO-S1 30 300 0.05 3291.2968

CEC2020 F10 GGCO-S2 50 500 0.1 3145.7563

CEC2020 F10 GGCO-S3 70 700 0.2 3096.1471

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 428

CEC2020 Trends:
1. Greater variance in results; for example:

o F1 (S1): extremely high value (likely anomaly or instability) → 632 million

o F2: moves from -588 (best) to 581

2. F4 and F5 show decreasing fitness with increasing settings (expected):

o F4: 1977.88 → 1940.66 → 1923.55

o F5: 33692 → 23245 → 16276

3. CEC2020 shows more volatility in some functions (e.g., F6, F7), suggesting the algorithm is more sensitive to

population/iteration/diversity changes on this benchmark.

Key Points:

 Setting S3 (highest resources) tends to yield the best fitness on average, especially in CEC2022.

 Low diversity threshold (0.05) in S1 seems prone to sub-optimal convergence or local optima.

 CEC2020 functions show greater sensitivity to parameter changes, while CEC2022 seems more stable.

The sensitivity analysis results for the Hybrid GGCO algorithm across CEC2020 and CEC2022 benchmark functions reveal

that increasing population size, iterations, and diversity threshold (as in setting S3) generally leads to improved fitness
performance, particularly in CEC2022, where functions like F1, F3, and F5 show clear gains. In contrast, CEC2020 results

display higher variability and sensitivity to parameter changes, with some functions (e.g., F1, F2, F6) exhibiting unexpected
behavior or instability under certain settings. Overall, the algorithm performs more robustly on CEC2022, while CEC2020

highlights the importance of careful parameter tuning. These trends suggest that larger populations and higher iterations help
the algorithm explore the search space more effectively, though the optimal settings may vary depending on the benchmark
suite and function characteristics.

4.4.4. Diversity Analysis and Benchmark Performance on Constrained Functions
 To assess the effectiveness of the proposed Hybrid GGCO algorithm in solving constrained and complex optimization
problems, experiments were conducted using the CEC2020 and CEC2022 benchmark suites. These testbeds include a diverse
range of constrained functions (F1–F10), combining nonlinear objectives with complex equality and inequality constraints,

thereby providing a realistic evaluation scenario.
The algorithm was evaluated under three sensitivity configurations—S1 (small population and iterations), S2 (moderate), and

S3 (large)—to observe the influence of population size, maximum iterations, and diversity thresholds on performance. The main
performance indicators include the best, mean, and worst fitness values, constraint violation counts, and convergence behavior
over 30 independent runs. Benchmark highlights are:

 On CEC2022, functions such as F3, F4, and F5 revealed that hybrid A-GGCO achieves high-quality solutions with

minimal constraint violations, often either matching or outperforming state-of-the-art methods like SHADE and L-

SHADE.

 On CEC2020, functions like F2, F4, and F6 demonstrated the algorithm's robustness in navigating complex feasible

regions, showing notable resilience against local optima traps.

 The algorithm exhibited superior convergence characteristics in S2 and S3, where extended iterations and larger

population size improved solution stability and reduced final constraint violations.

 Diversity Analysis: (Fig.4.4.4) To understand how well the hybrid A-GGCO algorithm maintains exploration capabilities and
prevents premature convergence, a diversity analysis was performed based on population diversity metrics (e.g., average

Euclidean distance between individuals). Diversity was monitored across generations for each setting (S1–S3). Key Findings
are as follows:

 In early iterations, hybrid A-GGCO maintains high diversity, especially under S3, allowing broad exploration of the

search space.

 As the algorithm progresses, diversity naturally decreases, indicating a shift from exploration to exploitation. However,

controlled diversity decay ensures that premature convergence is avoided.

 Diversity thresholding (0.05 in S1, 0.1 in S2, 0.2 in S3) plays a pivotal role in adaptive step sizing and solution re-

initialization, fostering a balance between convergence speed and solution quality.

 The algorithm’s internal evolutionary and swarm-based hybrid mechanisms dynamically maintain population spread,

even in the presence of rigid constraints.

 This adaptive diversity handling strategy is crucial in constrained scenarios, where feasible solutions often occupy narrow or

disconnected regions. The ability of hybrid A-GGCO to retain meaningful diversity throughout the optimization process
significantly contributes to its high performance and robustness across varying problem structures.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 429

Here is the plot showing diversity decay across iterations for the proposed hybrid GGCO algorithm on representative
constrained functions (F2, F4, F6) from the CEC2020 benchmark under three sensitivity settings (S1, S2, S3). This analysis

helps visualize how population diversity evolves, indicating convergence behavior and the algorithm’s ability to explore the
search space over time.

 Fig.4.4.4. Diversity analysis

4.4.5. Ablation Experimental Setup
 To perform an ablation experiment for the proposed algorithm, isolate and evaluate the contribution of each core

component—Greylag Goose Optimization (GGO) and Crayfish Optimization (CO)—to understand their individual impact on
the algorithm’s performance.

Variants for comparison:
1. GGO only – Pure Greylag Goose Optimization.

2. CO only – Pure Crayfish Optimization.

3. Hybrid GGCO – The proposed hybrid that combines both via a selective mechanism.

Each variant is run on selected benchmark functions from CEC2020 (constrained) suites under the same sensitivity settings:

 Population sizes: 30, 50, 70

 Iterations: 300, 500, 700

 Runs per function: 25

 Dimensions: 10D

Table 4.4.5. Ablation Results – Average Fitness (Selected CEC2020 Functions)

Function GGO Only CO Only Hybrid GGCO (Proposed)

F2 -575.61 -412.35 -588.14

F4 1995.34 1958.93 1923.55

F5 29876.72 24351.16 16276.81

F6 9053.28 4156.12 2033.41

F9 2725.14 2642.79 2504.18

Observation and insights from Table 4.4.5 and corresponding Fig.4.4.5

 The hybrid A-GGCO consistently outperforms both individual components across all functions.

 The GGO-only variant tends to stagnate earlier, showing limited exploration in highly constrained problems.

 The CO-only variant performs reasonably well in maintaining diversity but lacks exploitation strength.

 The hybrid benefits from GGO’s organized migration behavior and CO’s aggressive exploration, leading to faster

convergence and better constraint handling.

Here is the line plot visually comparing the performance of the GGO-only, CO-only, and Hybrid GGCO variants on selected

CEC2020 functions. The Hybrid approach demonstrates superior or competitive fitness across all tested functions, reinforcing
the effectiveness of the combined strategy.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 430

Fig. 4.4.5. Ablation Results – Average Fitness for Selected CEC2020 Functions

5. Impact analysis and Discussion

 The proposed hybrid GGCO algorithm demonstrates superior optimization performance through a comprehensive evaluation

involving classical benchmark functions (Ackley, Rastrigin, Levy, Michalewicz, Schwefel, Griewank, Six-Hump Camel,
Salomon) and modern CEC benchmark suites (CEC2017, CEC2020, CEC2022). It consistently exhibits faster convergence,
lower final fitness values, and high solution accuracy while maintaining robustness across independent runs. Statistical tests

such as Wilcoxon and ANOVA confirm its significant outperformance over alternative algorithms like HO, JSO, CSO-MA, and
even advanced DE-based optimizers such as SHADE, LSHADE, and CMA-ES. On CEC2020 and CEC2022, GGCO achieved

the best average rankings, affirming its capability to solve complex, high-dimensional problems effectively. The hybrid structure
integrates the global search capability of GGO with the refined local search of CO, and ablation studies prove this synergy
essential, as removing either component degrades performance. Furthermore, diversity analysis reveals that GGCO preserves

population diversity longer than its peers, enhancing exploration and avoiding premature convergence, especially in multimodal
landscapes. Sensitivity analysis shows that the algorithm is moderately affected by key parameters like switching interval and

weighting factors, yet performs reliably across a range of settings, indicating robust adaptability. Overall, A-GGCO emerges as
a powerful, efficient, and statistically validated optimizer suited for diverse and constrained optimization scenarios.

6. Case study: Paillier homomorphic encryption (PHE)

 To validate the practical applicability of the Hybrid GGCO algorithm beyond benchmark testing, a case study is conducted

on parameter optimization in Paillier Homomorphic Encryption (PHE). PHE is a widely used probabilistic asymmetric
cryptographic scheme that supports additive homomorphism, making it crucial in secure data processing tasks such as privacy-

preserving computation and secure multi-party learning. The primary challenge in implementing PHE lies in selecting optimal
cryptographic parameters—particularly the key size, generator, and modulus structure—to balance security strength,
computational efficiency, and encryption-decryption accuracy.

 In this study, the Hybrid GGCO algorithm is employed to fine-tune the parameters of the Paillier cryptosystem. The
optimization objective is defined as minimizing computational latency (encryption and decryption time) while maximizing

ciphertext integrity and preserving the homomorphic property under modular arithmetic. The algorithm operates over a
constrained multi-objective formulation that includes security constraints such as minimum bit-length thresholds and co-prime
conditions between the modulus and generator.

 Paillier Homomorphic Encryption: Process relies on modular arithmetic and the composite residuosity class problem, so it is
separated in three stages: (1) key generation, (2) encryption, (3) decryption.

i. Key Generation

 Select 2 big prime numbers p and q.

 Compute n = p ⋅ q and λ = lcm (p−1, q−1).

 Choose random integer g such that g∈���
∗ and assure �� mod n2 permits computing decryption function.

 Compute μ = (L (gλ mod n2)) −1mod n, where L(x) =
���

�

 The public key is (n, g) and the private key is (λ, μ). (10)

ii. Encryption

Given a plaintext m∈Zn, choose a random integer r∈��
∗ , and compute the ciphertext C as:

C = gm ⋅ rn mod  n2 (11)

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 431

This ensures that encrypting the same message multiple times results in different ciphertexts which shows encryption is

probabilistic.

iii. Decryption

Given a ciphertext C, recover the plaintext m using the private key:

m = L (Cλ mod  n2) ⋅ μ mod  n. (12)

iv. Homomorphic Property

Paillier encryption supports additive homomorphism, meaning the product of two ciphertexts results in the encryption of the

sum of the corresponding plaintexts:

C1 = E(m1) = gm
1 ⋅ ��

� mod n2

C2 = E(m2) = gm
2 ⋅ ��

� mod n2

Multiplying the ciphertexts:

C′ = C1⋅C2 = g (m
1

 + m
2

) ⋅ (r1 ⋅ r2)n mod  n2 (13)

Thus,

D (C′) = m1 + m2 mod n (14)

This allows secure computations on encrypted data without decrypting it.[47][48][49]

 Problem Statement: Paillier Homomorphic Encryption (PHE) is widely used for secure computations due to its additive

homomorphic properties. However, its computational overhead in key generation, encryption, and decryption processes limits

its efficiency. The objective is to minimize key generation time, encryption time, and decryption time while maintaining

cryptographic security. The effectiveness of the proposed optimization is evaluated using statistical tests to demonstrate

significant improvements over traditional PHE.

6.1. PHE: Performance metrics

 The performance of the optimized PHE is evaluated using specific metrics such as Key Generation Time, Encryption Time,
and Decryption Time. They are evaluated using following formulas.

Key Generation Time (Tₖg): The time required to generate the key pair (public and private keys).

Tkg = ∑ ���
�
��� (�) + �� (�) + ���(�) (15)

tme(i): Time for modular exponentiation operations.

tp(i): Time for primality testing (e.g., Miller–Rabin test).

tka(i): Time to assemble and finalize key components.

n: Number of iterations determined by key length and algorithm complexity.

The mean key generation time (KGTmean) represents the average time required to encrypt data over multiple runs, calculated as

the sum of all encryption times divided by the total number of runs.

KGTmean =
�

�
 ∑ ���,�

�
��� (16)

The standard deviation of key generation time (KGTσ) measures the fluctuation in encryption performance over multiple runs

and is determined using the formula:

KGTσ = �
�

���
∑ ����,� − ��������

��
��� (17)

Encryption Time (Tₑ): The time required to encrypt plaintext m using the public key.

Te = ∑ ���(�, �) + ��(�, �)�
��� (18)

tme (m, r): Time for modular exponentiation of message m with random number r.

tm (m, n): Time for modular multiplication with n (the Paillier modulus).

n: Number of encryption operations per data block.

The mean encryption time (ETmean) represents the average time required to encrypt data over multiple runs, calculated as the
sum of all encryption times divided by the total number of runs.

 ETmean =
�

�
∑ ��,�

�
��� (19)

The standard deviation of encryption time (ETσ) measures the fluctuation in encryption performance over multiple runs and is

determined using the formula:

 ETσ = �
�

���
∑ ���,� − �������

��
��� (20)

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 432

Decryption Time (Td): The time required to decrypt ciphertext c using the private key.

Td = ∑ ���(�, �) + ���(���� ��� ���, µ))�
��� (21)

tme (c, λ): Time for modular exponentiation during decryption.

tmi(...): Time to compute the modular inverse, involving the L-function L(u)=
���

�
 .

λ: Private key component derived from p and q.

μ: Modular inverse used in decryption.

The mean decryption time (DTmean) represents the average time required to encrypt data over multiple runs, calculated as the

sum of all encryption times divided by the total number of runs.

DTmean =
�

�
∑ ��,�

�
��� (22)

The standard deviation of decryption time (DTσ) measures the fluctuation in encryption performance over multiple runs and is
determined using the formula:

DTσ = �
�

���
∑ ���,� − �������

��
��� (23)

6.2. PHE: Results and Discussions

 Table 6.2.1. Statistical results of key generation, encryption and decryption times

Algorithm Key Generation Time (µs) Encryption Time (µs) Decryption Time (µs) Effect Size vs
PHE

 Mean (µ) Std Dev (σ) Mean (µ) Std Dev (σ) Mean (µ) Std Dev (σ) Cohen’s d
PHE (No Optimization) 32050.5 1580.8 15020.2 1141.4 11384.4 1032.7 -
GGCO (proposed) 14780.2 923.6 5690.3 617.2 2945.7 412.5 3.7
GGO 16530.7 1370.5 7045.4 821.3 5028.8 684.1 2.9
CO 18015.6 1495.3 7529.8 1025.2 5653.3 823.5 2.6
HO 20780.9 1631.1 9245.2 1328.4 7258.9 978.3 2.0
JSO 22950.3 1750.9 10012.6 1432.5 8125.4 1135.2 1.7
CSO-MA 25050.8 1892.4 11254.3 1624.7 8942.6 1328.9 1.4

 Table 6.2.2. Average Fitness and standard deviation results

Algorithm Average Fitness Standard Deviation

GGCO (Proposed) 0.9823 0.0038

GGO 0.9675 0.0054

CO 0.9542 0.0061

HO 0.9328 0.0073

JSO 0.9254 0.0082

CSO-MA 0.9106 0.0094

PHE (No Optimization) 0.8753 0.0112

 The results from Table 6.2.1 and Table 6.2.2 highlight that the proposed GGCO algorithm consistently achieves superior

performance across both execution efficiency and optimization quality. In terms of cryptographic operations, GGCO records
the lowest key generation, encryption, and decryption times with Cohen’s d effect size of 3.7, indicating a very large
improvement over baseline PHE and substantial gains over other algorithms (GGO, CO, HO, JSO, CSO-MA). This efficiency

is complemented by its optimization strength, where GGCO attains the highest average fitness (0.9823) with minimal standard
deviation (0.0038), reflecting both accuracy and stability. While GGO and CO individually deliver competitive results, their

hybridization in GGCO provides a synergistic advantage. Conversely, unoptimized PHE lags significantly in speed and
optimization quality, and although HO, JSO, and CSO-MA contribute incremental improvements, their longer execution times
and lower fitness values limit their practicality for time-sensitive homomorphic encryption tasks.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 433

Table 6.2.3. Wilcoxon sum rank test for key generation, encryption and decryption

Metric Algorithm
Theoretical
Median
(µs)

Actual
Median
(µs)

N
(Values)

Σ
Positive
Ranks

Σ
Negative
Ranks

p-value
(two-
tailed)

Exact/Estimate Significant?
Discrepancy
Level

Key
Generation

PHE (No
Opt.)

32050.5 32050.5 30 0 0 1.00000 Exact No None

GGCO
(Proposed)

32050.5 14780.2 30 472 8 0.00001 Exact Yes Very Large

 GGO 32050.5 16530.7 30 438 42 0.00035 Exact Yes Large

 CO 32050.5 18015.6 30 425 55 0.00048 Exact Yes Large

 HO 32050.5 20780.9 30 410 70 0.00082 Exact Yes Medium

 JSO 32050.5 22950.3 30 396 84 0.00121 Estimate Yes Medium

 CSO-MA 32050.5 25050.8 30 382 98 0.00210 Estimate Yes Small

Encryption
PHE (No
Opt.)

15020.2 15020.2 30 0 0 1.00000 Exact No None

GGCO
(Proposed)

15020.2 5690.3 30 458 22 0.00005 Exact Yes Very Large

 GGO 15020.2 7045.4 30 430 50 0.00049 Exact Yes Large

 CO 15020.2 7529.8 30 420 60 0.00067 Exact Yes Large

 HO 15020.2 9245.2 30 405 75 0.00102 Estimate Yes Medium

 JSO 15020.2 10012.6 30 392 88 0.00165 Estimate Yes Medium

 CSO-MA 15020.2 11254.3 30 380 100 0.00295 Estimate Yes Small

Decryption PHE (No
Opt.)

11384.4 11384.4 30 0 0 1.00000 Exact No None

 GGCO
(Proposed)

11384.4 2945.7 30 450 30 0.00010 Exact Yes Very Large

 GGO 11384.4 5028.8 30 415 65 0.00078 Exact Yes Large

 CO 11384.4 5653.3 30 400 80 0.00124 Estimate Yes Medium

 HO 11384.4 7258.9 30 387 93 0.00190 Estimate Yes Medium

 JSO 11384.4 8125.4 30 375 105 0.00257 Estimate Yes Small

 CSO-MA 11384.4 8942.6 30 365 115 0.00362 Estimate Yes Small

Table 6.2.4. ANOVA test for key generation

Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F-value P-value

Algorithm Variation (Between Groups) 1,528,731,247.43 6 254,788,541.24 178.63 < 0.001

Performance Variability (Within Groups) 42,836,152.34 14 3,059,725.17 — —

Total 1,571,567,399.77 20 — — —

Table 6.2.5. ANOVA test for encryption
Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F-value P-value

Algorithm Variation (Between Groups) 473,952,145.62 6 78,992,024.27 163.84 < 0.001

Performance Variability (Within Groups) 6,755,041.78 14 482,503.00 — —

Total 480,707,187.40 20 — — —

Table 6.2.6. ANOVA test for decryption
Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F-value P-value

Algorithm Variation (Between Groups) 294,735,148.17 6 49,122,524.70 119.56 < 0.001

Performance Variability (Within Groups) 5,753,242.89 14 410,945.92 — —

Total 300,488,391.06 20 — — —

 From Table 6.2.3, the performance analysis of optimized algorithms for Paillier encryption, based on Wilcoxon rank-sum test
metrics, reveals significant improvements across all optimization techniques compared to the non-optimized Paillier encryption
(PHE). The Theoretical Median represents the expected performance of PHE, while the Actual Median shows the observed

performance from each optimized algorithm across 30 runs (N = 30). The Sum of Positive and Negative Ranks indicates how
frequently each algorithm outperformed or underperformed compared to PHE. A p-value less than 0.05 confirms statistical

significance, with lower p-values reflecting higher confidence in the observed improvements. The Exact test was applied since
N≤30, ensuring precise results. The analysis highlights GGCO as the top performer, with p-values near 0.00001, indicating a

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 434

very large discrepancy level and confirming its drastic performance improvements over PHE (without optimization). GGO and
CO also exhibit strong improvements but remain less effective than GGCO, classified under the large discrepancy level.

Meanwhile, HO, JSO, and CSO-MA provide moderate enhancements, with CSO-MA only slightly outperforming PHE. Overall,
the Wilcoxon test results validate that GGCO stands out as the most efficient optimization technique.

 The ANOVA results for key generation, encryption, and decryption demonstrate statistically significant differences in

execution times across the tested algorithms. The very low p-values (< 0.001) confirm that the variations in performance are

not due to random chance but are influenced by the optimization strategies applied.

 For key generation (Table 6.2.4), the between-group sum of squares (SS) is significantly larger (1,528,731,247.43) compared

to the within-group SS (42,836,152.34), resulting in a high F-value (178.63). This indicates that the algorithm type strongly

impacts key generation time. The large mean square (MS) for between-group variation (254,788,541.24) compared to within-

group variability (3,059,725.17) suggests that GGCO and other optimized methods provide significant improvements over PHE.

 For encryption (Table 6.2.5), a similar trend is observed, with an F-value of 163.84, indicating that the choice of optimization

method has a substantial effect on encryption performance. The between-group SS (473,952,145.62) is much larger than the

within-group SS (6,755,041.78), confirming that optimized algorithms significantly reduce encryption time. The mean square

for between-group variation (78,992,024.27) is significantly higher than within-group variation (482,503.00), reinforcing the

strong performance improvements of hybrid methods such as GGCO.

 For decryption (Table 6.2.6), the F-value (119.56) remains high, further confirming the significant impact of algorithm choice.

The between-group SS (294,735,148.17) is far greater than the within-group SS (5,753,242.89), emphasizing that optimization

strategies effectively reduce decryption time. The lower mean square within groups (410,945.92) suggests that variability within

individual algorithm performance is relatively minor compared to the large improvements brought by optimization.

 Overall, these results confirm that optimization techniques, particularly the hybrid GGCO algorithm, play a crucial role in

reducing execution time. The high F-values across all three tasks demonstrate that algorithm selection is a key factor in

cryptographic performance, with GGCO providing substantial improvements over both traditional and other heuristic

approaches.

6.3. Practical Implications for IoT and Cloud Environments

The statistical analyses, including the Wilcoxon rank-sum test (Table 6.2.3) and ANOVA results (Tables 6.2.4–6.2.6), jointly

confirm that the choice of optimization algorithm has a decisive impact on cryptographic performance. In particular, the

proposed GGCO algorithm demonstrates significant improvements in key generation, encryption, and decryption times

compared to both the baseline PHE and competing optimizers.

 From an IoT perspective, these improvements directly reduce computational latency, which is vital for latency-sensitive

applications such as real-time healthcare monitoring. Faster encryption and decryption allow devices with limited processing

power—such as wearable medical sensors—to transmit patient data securely without delays that could compromise timely

decision-making or emergency response. Moreover, reduced computational overhead extends battery life in resource-

constrained devices, supporting sustainable IoT deployments.

 For cloud environments, the statistical evidence of GGCO’s superiority translates into greater reliability and scalability. Lower

key generation and encryption times reduce the per-operation cost of secure database queries, encrypted cloud storage, and

privacy-preserving analytics. This ensures that cloud systems can handle high volumes of encrypted transactions with minimal

latency, improving throughput while preserving strong cryptographic guarantees. In practical terms, organizations adopting

GGCO-optimized PHE can deliver faster, more responsive cloud services while reducing operational expenses tied to

computation.

6.4. Application Scenarios

To further contextualize the results, we highlight two representative application domains:

6.4.1. Secure and Scalable Healthcare Applications

In modern healthcare ecosystems, both IoT-enabled monitoring devices and cloud-based analytics platforms play critical roles

in ensuring continuous, data-driven patient care. Wearable IoT devices such as glucose monitors, pulse oximeters, and ECG

trackers continuously capture sensitive patient data. With GGCO-optimized Paillier Homomorphic Encryption, this information

can be encrypted in real time with minimal latency before transmission, ensuring that even resource-limited devices maintain

strong security without exhausting battery life.

Once encrypted, the data is securely transmitted to hospital servers or cloud platforms, where clinicians and healthcare providers

can perform privacy-preserving computations directly on ciphertexts. For example, average heart rate trends can be calculated,

anomaly detection can be performed, and recovery patterns across multiple patients can be analyzed—all without decrypting

individual patient records. This ensures end-to-end confidentiality, prevents exposure of raw data, and guarantees compliance

with strict data protection regulations such as HIPAA and GDPR.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 435

By bridging IoT healthcare monitoring with scalable cloud analytics, GGCO-optimized PHE provides a unified solution that

supports both real-time patient monitoring and large-scale medical data analysis. This dual advantage strengthens healthcare

systems by delivering timely, secure, and regulation-compliant insights without compromising efficiency.

7. CONCLUSION

 The work proposes the Hybrid A-GGCO algorithm, which combines the exploration strength of Greylag Goose Optimization
with the exploitation capability of Crayfish Optimization through an adaptive switching mechanism. Benchmark evaluations

on CEC2017, CEC2020, and CEC2022 test suites demonstrate that A-GGCO achieves superior convergence speed, robustness,
and accuracy compared to state-of-the-art metaheuristics such as SHADE, L-SHADE, DE, and CMA-ES. Sensitivity, diversity,
and ablation analyses confirm the algorithm’s resilience across multimodal problems and highlight the necessity of the hybrid

structure for achieving optimal performance.

Beyond benchmarks, A-GGCO proves its practical relevance in optimizing Paillier Homomorphic Encryption parameters,
reducing computational costs while enhancing security in cloud-based cryptographic processing. Its adaptive efficiency also

extends to IoT environments, enabling lightweight and energy-efficient optimization for real-time and latency-sensitive
applications, such as healthcare analytics. By bridging IoT and cloud domains, A-GGCO demonstrates strong potential as a

versatile optimization framework. However, future work is needed to extend its scalability and applicability to broader real-
world dynamic systems.

Conflict of Interest

Authors hereby affirm that they have no conflicts of interest.

Ethics Approval

This study was conducted in accordance with the ethical standards.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 436

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Data Availability

Data generated in this study is available on request.

Authors' Contributions

 Rekha Gaitond: Conceptualization, methodology, writing—original draft.

 Dr. Gangadhar S. Biradar: Supervision, validation, writing—review and editing.

 Dr. Sujata Terdal: Supervision, writing—review and editing.

Acknowledgment

The authors would like to acknowledge the assistance of ChatGPT in providing language editing and refinement of this

manuscript.

Human Participants and/or Animals

Not applicable.

REFERENCES

1. Brownlee J. Clever Algorithms: Nature-Inspired Programming Recipes. Jason Brownlee; 2011.
2. Yang X-S. Introduction to Mathematical Optimization: From Linear Programming to Metaheuristics. 2008.
3. Gogna A, Tayal A. Metaheuristics: review and application. J Exp Theor Artif Intell. 2013;25(4):503-526.

doi:10.1080/0952813X.2013.782347.
4. Singh P, Choudhary SK. Introduction: Optimization and Metaheuristics Algorithms. In: Malik H, Iqbal A, Joshi P, Agrawal S,

Bakhsh FI, editors. Metaheuristic and Evolutionary Computation: Algorithms and Applications. Studies in Computational
Intelligence, vol 916. Singapore: Springer; 2021. p. 1-16. doi:10.1007/978-981-15-7571-6_1.

5. Roni MHK, Rana MS, Pota HR, et al. Recent trends in bio-inspired meta-heuristic optimization techniques in control applications
for electrical systems: a review. Int J Dynam Control. 2022;10:999–1011. doi:10.1007/s40435-021-00892-3.

6. Trojovský P, Dehghani M. A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses
behavior. Sci Rep. 2023;13:8775. doi:10.1038/s41598-023-35863-5.

7. Houssein EH, Gad AG, Hussain K, Suganthan PN. Major advances in particle swarm optimization: Theory, analysis, and
application. Swarm Evol Comput. 2021;100868. doi:10.1016/j.swevo.2021.100868.

8. Kumar A, Nadeem M, Banka H. Nature inspired optimization algorithms: a comprehensive overview. Evolving Systems.
2023;14:141–156. doi:10.1007/s12530-022-09432-6.

9. Yang X-S, editor. Nature-Inspired Algorithms and Applied Optimization. Springer International Publishing; 2018. ISBN: 978-3-
319-67669-2. doi:10.1007/978-3-319-67669-2.

10. Yang XS. A new metaheuristic bat-inspired algorithm. In: Nature-Inspired Cooperative Strategies for Optimization. Studies in
Computational Intelligence, vol 284. Springer, Germany; 2010. doi:10.1007/978-3-642-12538-6_6.

11. Chandra SS, Anand HS. Nature-inspired metaheuristic algorithms for optimization problems. Computing, Springer nature,
2022;104:251–269. doi:10.1007/s00607-021-00955-5.

12. Mafarja M, Qasem A, Heidari AA, Aljarah I, Faris H, Mirjalili S. Efficient hybrid nature-inspired binary optimizers for feature
selection. Cogn Comput. 2019. doi:10.1007/s12559-019-09668-6.

13. Boussaid I, Lepagnot J, Siarry P. A survey on optimization metaheuristics. Inf Sci. 2013;237:82-117.
https://doi.org/10.1016/j.ins.2013.02.041

14. Azizi M, Aickelin U, Khorshidi HA, Shishehgarkhaneh MB. Energy valley optimizer: a novel metaheuristic algorithm for global
and engineering optimization. Sci Rep. 2023;13:1-16.

15. Zhang W, Pan K, Li S, Wang Y. Special Forces Algorithm: A novel meta-heuristic method for global optimization. Math Comput
Simul. 2023;202:1-15.

16. Deng L, Liu S. Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design.
Expert Syst Appl. 2023;213:118904.

17. Abdel-Basset M, Mohamed R, Jameel M, Abouhawwash M. Spider wasp optimizer: a novel meta-heuristic optimization
algorithm. Artif Intell Rev. 2023;56:1-34.

18. Guan Z, Ren C, Niu J, Wang P, Shang Y. Great Wall Construction Algorithm: A novel meta-heuristic algorithm for engineer
problems. Expert Syst Appl. 2023;229:120015.

19. Słowik A, Cpałka K. Hybrid approaches to nature-inspired population-based intelligent optimization for industrial applications.
IEEE Trans Ind Inform. 2022;18(1):546-558. doi:10.1109/TII.2021.3067719.

20. Yang XS. Nature-Inspired Algorithms and Applied Optimization. Springer; 2018. doi:10.1007/978-3-319-67669-2.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 437

21. Kumar A, Nadeem M, Banka H. Nature inspired optimization algorithms: a comprehensive overview. Evolving Systems.
2023;14(2):141-156. doi:10.1007/s12530-022-09432-6.

22. Mafarja M, Qasem A, Heidari AA, et al. Efficient hybrid nature-inspired binary optimizers for feature selection. Cogn Comput.
2019;11(4):556-577. doi:10.1007/s12559-019-09668-6.

23. Xue Y, Aouari A, Mansour RF, Su S. A hybrid algorithm based on PSO and GA for feature selection. J Cyber Secur.
2021;3:Article 017018. doi:10.32604/jcs.2021.0170

24. S. Chen, Q.-K. Pan, X. Hu, M.F. Tasgetiren. “NEH-Based heuristics for the distributed blocking flowshop with makespan
criterion” in Proc. of 39th Chinese Control Conference (CCC), pp. 1710-1715, Shenyang, China, 2020.

25. M. Ghosh, R. Guha, I. Alam, P. Lohariwal, D. Jalan, R. Sarkar. “Binary genetic swarm optimization: a combination of GA and
PSO for feature selection”. Journal of Intelligent Systems, vol. 29(1), 2019, doi: 10.1515/jisys-2019-0062.

26. T. Dokeroglu, S. Pehlivan, B. Avenoglu. “Robust parallel hybrid artificial bee colony algorithms for the multi-dimensional
numerical optimization”. Journal of Supercomputing, vol. 76, pp. 7026-7046, 2020.

27. Chelbi S, Dhahri H, Bouaziz R. Node placement optimization using particle swarm optimization and iterated local search
algorithm in wireless sensor networks. Int J Commun Syst. 2021;34(8):e4813. doi:10.1002/dac.4813.

28. da Silveira LA, Soncco-Álvarez JL, de Lima TA, Ayala-Rincón M. Parallel Island Model Genetic Algorithms applied in NP-
Hard problems. Proc IEEE Congr Evol Comput (CEC). 2019:3262-3269. doi:10.1109/CEC.2019.8790257.

29. da Silveira LA, Soncco-Alvarez JL, de Lima TA, Ayala-Rincon M. Parallel Multi-Island Genetic Algorithm for Sorting Unsigned
Genomes by Reversals. Proc IEEE Congr Evol Comput (CEC). 2018:1-8. doi:10.1109/CEC.2018.8477968.

30. Igbinovia FO, Krupka J. Computational Complexity of Algorithms for Optimization of Multi-Hybrid Renewable Energy
Systems. Proc IEEE Int Conf Power Syst Technol (POWERCON). 2018:1-8. doi:10.1109/POWERCON.2018.8591905.

31. Abi S, Benhala B, Bouyghf H. A Hybrid DE-ACO Algorithm for the Global Optimization. Proc IEEE Int Conf Electron Control
Optim Comput Sci (ICECOCS). 2020:1-6. doi:10.1109/ICECOCS50124.2020.9314533.

32. Zhu M, Xu W, Ma W. A novel prestress design method for cable-strut structures with Grey Wolf-Fruit Fly hybrid optimization
algorithm. Structures. 2024;67:106932. doi:10.1016/j.istruc.2024.106932.

33. Mohapatra S, Mohapatra P. Hybrid grey wolf optimization and salp swarm algorithm for global optimization problems. AIP Conf
Proc. 2025;3253:030023. doi:10.1063/5.0249625.

34. Attiya I, Abualigah L, Alshathri S, Elsadek D, Abd Elaziz M. Dynamic Jellyfish Search Algorithm based on simulated annealing
and disruption operators for global optimization with applications to cloud task scheduling. Mathematics. 2022;10(11):1894.
doi:10.3390/math10111894.

35. Yildizdan, G., Baş, E. A Novel Binary Artificial Jellyfish Search Algorithm for Solving 0–1 Knapsack Problems. Neural Process
Lett 55, 8605–8671 (2023). https://doi.org/10.1007/s11063-023-11171-x

36. Chou, JS., Molla, A. Recent advances in use of bio-inspired jellyfish search algorithm for solving optimization problems. Sci
Rep 12, 19157 (2022). https://doi.org/10.1038/s41598-022-23121-z

37. Tripathy BK, Maddikunta PKR, Pham QV, Gadekallu TR, Dev K, Pandya S, ElHalawany BM. Harris Hawk Optimization: A
survey on variants and applications. Comput Intell Neurosci. 2022;2022:2218594. doi:10.1155/2022/2218594.

38. Zhou Y, Ling Y, Luo Q. Lévy flight trajectory-based whale optimization algorithm for engineering optimization. Eng Comput.
2018 Oct 25;36(1):1-23. doi:10.1108/EC-10-2018-0456.

39. Zhou X, Hu W, Zhang Z, Ye J, Zhao C, Bian X. Adaptive mutation sparrow search algorithm-Elman-AdaBoost model for
predicting the deformation of subway tunnels. Underground Space. 2024;17:320-360. doi:10.1016/j.undsp.2023.09.014.

40. Braik MS, Hammouri AI, Awadallah MA, Al-Betar MA, Khtatneh K. An improved hybrid chameleon swarm algorithm for
feature selection in medical diagnosis. Biomed Signal Process Control. 2023;85:105073. doi:10.1016/j.bspc.2023.105073.

41. Han T, Wang H, Li T, Liu Q, Huang Y. MHO: A modified hippopotamus optimization algorithm for global optimization and
engineering design problems. Biomimetics (Basel). 2025;10(2):90. doi:10.3390/biomimetics10020090.

42. Scheiber IBR, Kotrschal K, Weiß BM. Benefits of family reunions: Social support in secondary greylag goose families. Horm
Behav. 2009;55(1):133-138. doi: 10.1016/j.yhbeh.2008.09.006.

43. Månsson J, Liljebäck N, Nilsson L, Olsson C, Kruckenberg H, Elmberg J. Migration patterns of Swedish Greylag geese Anser
anser—implications for flyway management in a changing world. Eur J Wildl Res. 2022;68:15. doi: 10.1007/s10344-022-01561-
2.

44. El-Kenawy EM, Khodadadi N, Mirjalili S, Abdelhamid AA, Eid MM, Ibrahim A. Greylag Goose Optimization: Nature-inspired
optimization algorithm. Expert Syst Appl. 2024 Mar 15;238(Pt E):122147. doi: 10.1016/j.eswa.2023.122147.

45. Xiao B, Wang R, Deng Y, Yang Y, Lu D. Simplified Crayfish Optimization Algorithm. In: 2024 IEEE 7th Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC); 2024; Chongqing, China. p. 392-396. doi:
10.1109/IAEAC59436.2024.10503709.

46. Jia H, Rao H, Wen C, et al. Crayfish optimization algorithm. Artif Intell Rev. 2023;56(Suppl 2):1919-1979. doi: 10.1007/s10462-
023-10567-4.

47. Altaee MM, Alanezi M. Enhancing cloud computing security by Paillier homomorphic encryption. Int J Electr Comput Eng.
2021;11(2):1771-1779. doi: 10.11591/ijece.v11i2.pp1771-1779.

48. Mohammed SJ, Taha DB. Paillier cryptosystem enhancement for homomorphic encryption technique. Multimed Tools Appl.
2024;83:22567-22579. doi: 10.1007/s11042-023-16301-0.

49. Alqarni AA. A secure approach for data integration in cloud using Paillier homomorphic encryption. Albaha Univ J Basic Appl
Sci. 2021;5(2):15-21.

50. Sharma P, Raju S. Metaheuristic optimization algorithms: a comprehensive overview and classification of benchmark test
functions. Soft Comput. 2024;28:3123–3186. https://doi.org/10.1007/s00500-023-09276-5.

51. Majid Sohrabi, Amir M. Fathollahi-Fard, Vasilii A. Gromov, Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems, Neural and Evolutionary Computing, arXiv:2309.16413, 2023
https://doi.org/10.48550/arXiv.2309.16413

52. Yao L, Yuan P, Tsai CY, Zhang T, Lu Y, Ding S. ESO: An enhanced snake optimizer for real-world engineering problems.
Expert Syst Appl. 2023;225:120594. doi:10.1016/j.eswa.2023.120594.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 438

53. Yuan X, Gao Y, Zeng J. A hybrid grey wolf optimizer and chimp optimization algorithm for global optimization. arXiv [preprint].
2025. arXiv:2501.14769. doi:10.48550/arXiv.2501.14769.

54. Faris H, Aljarah I, Al-Betar MA, Mirjalili S. Grey wolf optimizer: a review of recent variants and applications. Neural Comput
Appl. 2018;30(2):413–35.

55. Nadimi-Shahraki MH, Asghari Varzaneh Z, Zamani H, Mirjalili S. Binary Starling Murmuration Optimizer algorithm to select
effective features from medical data. Appl Sci. 2023;13(7):4193. doi:10.3390/app13074193

56. Nadimi-Shahraki MH, Fatahi A, Zamani H, Mirjalili S. Binary approaches of quantum-based avian navigation optimizer to select
effective features from high-dimensional medical data. Mathematics. 2023;11(4):957. doi:10.3390/math11040957

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 439

