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Abstract 
Bio-inspired optimization approaches are powerful tools for tackling high-dimensional and complex problems. The research 

proposes a Hybrid Adaptive Greylag Goose–Crayfish Optimization (A-GGCO) algorithm that introduces a diversity-driven 
switching mechanism that balances exploration and exploitation by combining the behaviors of geese and crayfish. Tested on 

classical benchmarks and CEC2017/2020/2022 suites against SHADE, L-SHADE, DE, CMA-ES, HO, JSO, and CSO-MA, it 
consistently achieved faster convergence, higher accuracy, and improved robustness. Statistical analyses confirmed significant 
improvements, with effect-size measures (Cohen’s d) indicating large to very large gains, particularly in challenging cases such 

as Michalewicz (d > 2.3) and Griewank/Salomon (d > 3.0). Sensitivity, diversity, and ablation studies verified its adaptability 
and the advantages of hybridization. A practical case study on Paillier Homomorphic Encryption further highlighted reductions 

in computation time and enhanced efficiency in secure cloud environments, while its lightweight design proved effective for 
IoT healthcare by enabling energy-efficient, latency-sensitive optimization. Overall, A-GGCO emerges as a robust and versatile 
framework for both benchmark optimization and real-world applications in cryptography, IoT, and cloud security. 

 
Keywords: Hybrid Optimization, Greylag Goose Optimization, Crayfish Optimization, Nature-Inspired Algorithms, Global–
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1. INTRODUCTION 
    Optimization refers to the process of identifying the best solution from a set of feasible alternatives under specific objectives 
and constraints. In computational sciences, optimization methods are generally classified into deterministic and stochastic 

approaches. Deterministic algorithms yield the same solution for a given input, while stochastic methods incorporate 
randomness, allowing diverse exploration of the solution space and the possibility of escaping local optima.[1][2][3] Among 

stochastic approaches, metaheuristic algorithms have gained remarkable attention for solving nonlinear, multimodal, and high-
dimensional optimization problems.[1][4][5] 
Within this class, bio-inspired metaheuristics—which emulate natural, evolutionary, or ecological behaviors—have been widely 

recognized for their effectiveness in maintaining a balance between exploration (global search across the solution landscape) 
and exploitation (local refinement around promising regions) [7][8][13]. Despite their success, such algorithms often face two 

persistent challenges: (i) premature convergence, where the search stagnates around local optima due to insufficient exploration, 
and (ii) parameter sensitivity, where performance depends heavily on fine-tuned parameters such as mutation factors, population 
size, or learning coefficients [11][50]. 

To overcome these challenges, hybrid optimization approaches have emerged, integrating complementary strategies to enhance 
adaptability, robustness, and convergence efficiency. These hybrid frameworks seek to exploit the strengths of multiple 

algorithms while mitigating their individual weaknesses, thereby achieving an adaptive balance between global exploration and 
local exploitation [19][20][21]. 

1.1 Greylag Goose Optimization (GGO) 
Greylag Goose Optimization (GGO) is a recent swarm-based metaheuristic inspired by the migratory and foraging behavior of 
greylag geese [42][43]. In nature, geese migrate in V-shaped formations, which reduces air resistance, enhances communication, 

and conserves energy. This cooperative phenomenon is modeled in GGO, where each candidate solution represents a goose, 
and the best-performing solution acts as the leader guiding the flock. Importantly, leadership in GGO is not static. A dynamic 

switching mechanism enables the replacement of underperforming leaders by better-performing candidates, thereby maintaining 
diversity and preventing premature stagnation. This mechanism makes GGO particularly effective in global exploration, as it 
ensures adaptive exploration of new regions in the search space [44]. 

1.2 Crayfish Optimization (CO) 
In contrast, Crayfish Optimization (CO) is inspired by the intelligent foraging and defensive behaviors of crayfish. These 

creatures exhibit fine-grained local search strategies, such as adaptive backward-walking and variable step-size adjustments 
depending on their proximity to food or threats [45][46]. In algorithmic terms, this translates into an adaptive step-size 
mechanism: larger exploratory steps are taken when the solution is far from the optimum, while smaller exploitative steps are 

applied when near promising regions. This adaptive adjustment makes CO highly effective for local exploitation, enabling 
precise refinement of candidate solutions and reducing the risk of premature convergence [46]. 
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1.3 Motivation for Hybridization 
Both GGO and CO possess unique strengths that complement one another. GGO excels in broad exploration, dynamically 

covering the search space and preventing stagnation, while CO provides intensive local refinement, adaptively improving the 
quality of solutions. However, when used individually, each algorithm is limited: GGO may lack exploitative precision, and CO 

may struggle to escape local optima. By hybridizing GGO and CO into a unified framework, it is possible to achieve a 
synergistic balance between exploration and exploitation. 

1.4 Contributions of The Work 
Building upon these complementary strengths, the research introduces the Hybrid Greylag Goose–Crayfish Optimization 
(GGCO) algorithm. The key contributions are as follows: 

 Hybrid Algorithm Design – Development of a novel metaheuristic that dynamically transitions between GGO and CO 
phases based on population diversity. 

 Sensitivity and Diversity Analysis – Assessment of robustness under varying population sizes, iteration limits, and 
diversity thresholds. 

 Ablation and Impact Study – Quantitative evaluation of the contributions of GGO and CO components within the 

hybrid framework. 

 Comprehensive Benchmarking – Evaluation on classical functions and modern benchmark suites (CEC2017, 

CEC2020, CEC2022) against advanced optimizers such as SHADE, L-SHADE, DE, CMA-ES, HO, JSO, and CSO-
MA. 

 Real-World Application – Demonstration of the algorithm’s effectiveness in optimizing parameters of Paillier 

Homomorphic Encryption, highlighting its applicability in cryptographic domains. 
 

2. RELATED WORK 
  
2.1 Nature-Inspired Population-Based Optimization Algorithms 

   Nature-inspired metaheuristics, particularly population-based approaches, have demonstrated remarkable adaptability in 

solving nonlinear and multimodal optimization problems [6][8][13][14][15]. These algorithms simulate biological or ecological 
behaviors such as reproduction, hunting, or swarming, enabling effective exploration and exploitation of the search space 

[9][10][16][17][18]. 

   Population-based algorithms typically follow an iterative process: (i) initialize a population of candidate solutions, (ii) 
evaluate their fitness, (iii) modify solutions using operators such as crossover, mutation, or position updates, and (iv) repeat 

until a stopping criterion is satisfied [3][50].  

   In recent years, a variety of new optimizers have emerged, drawing inspiration from diverse biological phenomena. Table 1 
highlights selected examples, including Starling Murmuration Optimizer (SMO) and Quantum-Based Avian Navigation 
Optimizer (QANA), with their core inspirations, mechanisms, strengths, and limitations [55][56]. 

Table 1. Comparative analysis of recent metaheuristic optimizers 

Algorithm Inspiration Core Mechanism Strengths Limitations Ref 

GEA (Genetic 
Engineering 

Algorithm) 

Genetic 
engineering 

principles 

Extends GA with 

gene isolation, 
purification, 

insertion, and 
expression 

Preserves beneficial traits, 
faster convergence in 

combinatorial problems 

Requires problem-

specific customization; 
depends on accurate 
gene manipulation 

[51] 

ESO1 & ESO2 
(Enhanced Snake 
Optimizers) 

Snake hunting 

ESO1 uses logistic 
maps; ESO2 uses 
Lévy flights for 

food search 

Strong exploration and 

exploitation; effective on 
benchmarks 

Sensitive to 

parameters; tuning 
required 

[52] 

HHO (Harris 
Hawk 

Optimization) 

Cooperative 
hawk hunting 

Surprise pounce 

strategy with 
adaptive 

exploration–
exploitation phases 

Effective for complex, 
nonlinear, high-dimensional 

problems; easy to implement 

Can converge 

prematurely; 
performance varies 
with landscape 

[53] 

GJO (Golden 
Jackal 
Optimization) 

Social hunting 

of jackals 

Collaborative 
search guided by 
hierarchy 

Competitive performance, 

adaptable 

New, requires wider 

validation 
[53] 
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GWO (Grey 
Wolf 

Optimization) 

Wolf 
hierarchy & 

hunting 

Alpha–beta–delta 

leadership with 
encircling & 
hunting strategies 

Widely used; balances 
exploration/exploitation 

Can get stuck in local 
optima on multimodal 

problems 

[54] 

SMO (Starling 
Murmuration 

Optimizer) 

Starling flock 
dynamics 

Separation, diving, 
whirling to mimic 

murmuration 

Maintains diversity, reduces 
premature convergence 

Needs careful tuning; 
performance context-

dependent 

[55] 

QANA 
(Quantum Avian 
Navigation 

Optimizer) 

Bird migration 
+ quantum 

principles 

Multi-flock 

structures, quantum 
mutation, qubit 

crossover 

Effective for high-
dimensional feature selection; 

robust 

Complex 
implementation; 

sensitive to parameters 

[56] 

  

As shown in Table 1, recent metaheuristic optimizers are inspired by diverse natural and computational phenomena, ranging 

from genetic engineering and predator–prey interactions to swarm dynamics and quantum principles. Each algorithm 
demonstrates distinct strengths such as maintaining diversity, improving convergence speed, or adapting to high-dimensional 

search spaces. However, most of them also suffer from limitations like parameter sensitivity, premature convergence, or 
implementation complexity. These trade-offs highlight the importance of designing hybrid algorithms that can combine 
complementary advantages while reducing individual weaknesses. 

2.2 Hybrid Approaches in Population-Based Optimization 

Hybridization can be introduced at multiple stages: 

 Initialization: combining random generation with statistical sampling to ensure population diversity. 

 Evaluation: using surrogate models or distributed computing to reduce computational load. 

 Search process: integrating different exploration–exploitation strategies either sequentially or in parallel.[20][21] 
Hybrid nature-inspired algorithms can be classified along four key dimensions: 

1. Methods – combining multiple metaheuristics (e.g., GWO-DE), integrating metaheuristics with domain-specific 

models (e.g., PSO-EBP), or fusing with soft computing techniques (e.g., GA-fuzzy systems) [23]. 
2. Level – High-Level Teamwork (HLT) hybrids preserve the identity of constituent algorithms, while Low-Level 

Teamwork (LLT) hybrids exchange operators or components directly [24][25]. 
3. Execution – hybrids may run sequentially (e.g., GA followed by PSO) or in parallel, depending on computing 

architecture and synchronization requirements [26][27]. 
4. Control Strategy – integrational hybrids embed one method inside another (e.g., PSO with local search), while 

cooperative hybrids allow independent but interacting algorithms (e.g., multi-island GA) [27][28][29]. 

The classification provides a framework for systematically designing hybrid strategies tailored to specific optimization 
problems. Several hybrid methods have been proposed that synergize exploration and exploitation. Table 2 summarizes notable 

hybrid strategies, such as PSO-GA, DE-ACO, GWO-SSA, and JSO-SA, highlighting their key strengths and challenges. 

 

Table 2. Summary of notable hybrid optimization strategies 

Hybrid 

Algorithm 
Components Strengths Challenges Ref 

PSO–GA 
Particle Swarm + 

Genetic Algorithm 

Avoids early convergence; improved 

speed in multimodal search 

Complex parameter 

tuning 
[12][23] 

DE–ACO 
Differential Evolution 

+ Ant Colony 

Strong exploration; efficient in 

discrete problems 

Implementation 

complexity 
[31] 

GWO–FOA Grey Wolf + Fruit Fly High accuracy, faster convergence 
Struggles in high 

dimensions 
[32] 

GWO–SSA 
Grey Wolf + Salp 

Swarm 

Effective in feature selection, 

parameter tuning 

Problem-specific 

design 
[33] 

JSO–SA 
Jellyfish + Simulated 

Annealing 

Powerful local search; good 

convergence 

High computational 

cost 
[34] 

JSO–TS Jellyfish + Tabu Search Strong exploitation ability Complex integration [35] 

HHO–DE 
Harris Hawks + 
Differential Evolution 

Adaptive exploration; diverse search 
patterns 

Parameter balancing 
needed 

[37] 

WOA–LFCM 
Whale + Lévy Flight & 
Chaotic Maps 

High exploration diversity 
Chaotic maps increase 
overhead 

[38] 
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SSA–AM 
Salp Swarm + Adaptive 

Mechanisms 

Dynamic balance of exploration & 

exploitation 
Higher complexity [39] 

CSA–OBL 
Chameleon Swarm + 

Opposition Learning 
Good diversity, avoids local optima 

Instability in noisy 

settings 
[40] 

HIPO–CM 
Particle Optimization + 

Chaotic Maps 
Better diversity Scalability issues [41] 

 

3. METHODOLOGY: HYBRID A-GGCO ALGORITHM 

  This section provides a systematic explanation of how the algorithm operates, including its behavioral inspiration, adaptive 

switching mechanism, computational process, and complexity analysis. 

3.1 Adaptive Hybridization Strategy 

  The key idea behind the hybridization is to achieve a dynamic balance between exploration (searching broadly across the 
solution space) and exploitation (intensifying the search near promising regions). To prevent premature convergence and 

stagnation, the algorithm utilizes an adaptive diversity threshold that determines whether the search should prioritize global 
exploration or local exploitation. 

At the initialization stage, a population of n candidate solutions is generated uniformly at random within the problem’s search 
space: 

X = {x1, x2, ..., xn} ∈ Uniform (L, U) d                    -                      (1)                       

where [L,U] defines the lower and upper bounds of the search space and d is the dimensionality of the problem. The best 
solution is initialized as xbest ← None, fbest ← ∞.  

A minimum diversity threshold is defined as: 

Dmin = 0.15⋅∥U−L∥ /√�                                                                        (2)   
Dmin corresponds to 15% of an “equivalent” per-dimension range. It does not map directly to a percentage of the volume of the 

search space. Dmin provides a reference value for deciding whether the algorithm should prioritize exploration or exploitation. 

During each iteration, the fitness of every individual is evaluated. If a candidate solution outperforms the current best, the values 
of xbest, fbest  are updated accordingly. After evaluation, the population diversity is calculated to assess how widely dispersed the 
solutions are in the search space. Diversity at iteration t is given by: 

D� =
�

�
∑ ��x�

� − x
�
���

���  , where  x
�

=
�

�
∑ ��

��
���                                                                                       (3)  

where  x
�
is the mean position of every agent at iteration t. 

If the measured diversity D� is greater than the threshold Dmin, the global search phase (GGO) is applied. In this phase, the leader 
of the flock is selected as the best-performing individual: 

xleader ← argmin f(xi)                                                                                               (4) 
If the leader stagnates for several iterations (ΔT), a leader switching mechanism is applied to reintroduce diversity: 

������� 
��� = �������

�  +  r . ( �����
�  - �������

�  ), where r ∈ Uniform (0,1)                                                 (5) 

For the remaining geese, positions are updated using a formation update rule, which combines attraction toward the leader, 

interaction with a random neighbor xj, and Gaussian noise: 

x�
��� = x�

� + α ⋅ (x������
� − x�

�) + β ⋅ �x�
� − x�

�� + �  (θ, σ²),                                                                           (6) 

where α and β are weighting parameters, and �  (θ, σ²) introduces stochastic perturbations to avoid premature convergence. 

On the other hand, if the diversity falls below the threshold (Dt ≤ Dmin), the algorithm switches to the local search phase (CO). 
Here, each individual simulates the backward-walking behavior of crayfish. The adaptive step size is defined as: 

Si ← 1 / (1 + ||xi − xbest||)                                                                                                                                 (7) 
which ensures that individuals closer to the global best move in smaller, exploitative steps, while those farther away move in 
larger, exploratory steps. Each position is updated as: 

xi ← xi + Si ⋅ R ⋅ �  (μ, σ²), R∼U(−1,1)d                                                                                                                                                                

(8) 

This mechanism ensures that local exploitation is intensified for escaping local optima. If stagnation persists, the step size Si is 
dynamically adapted by either expanding or shrinking, allowing the algorithm to escape local traps or focus more precisely on 

the search region. A crucial feature of A-GGCO is the adaptive diversity update mechanism, where the threshold is not kept 
static but evolves dynamically according to: 

Dmin(t) = γ⋅ Dmin(t−1) + (1−γ) ⋅Dt ,                                                                                                                  (9) 

with γ ∈ [0,1] serving as a smoothing factor. This update strategy prevents the algorithm from remaining locked in either global 
or local search for too long and promotes a smooth balance between exploration and exploitation throughout the optimization 

process. 
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The iterative search proceeds until the stopping criterion is satisfied, which may be defined as reaching the maximum number 
of iterations (Tmax) or the maximum number of evaluations (Emax). Upon termination, the algorithm outputs the best solution 

xbest along with its corresponding fitness value fbest. 
 

3.2 Algorithm Steps 

The operational workflow is summarized in Algorithm-A-GGCO: 
1. Initialization: Generate population and set initial diversity threshold Dmin. 

2. Evaluation: Assess fitness and track the global best solution. 
3. Diversity Check: Calculate Dt. 

o If Dt >Dmin : perform GGO-based global exploration. 

o Else: perform CO-based local exploitation. 
4. Leader Switching & Adaptation: If no progress is observed, perturb leaders (GGO) or adapt step sizes (CO). 

5. Threshold Update: Adjust Dmin dynamically based on progress. 
6. Termination: Stop when iteration or evaluation limits are reached, and return the best solution. 

Steps 3,4, and 5 are detailed in Fig.1. 
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Fig. 1. Leader Switching and Adaptation 
 

This dual-phase framework enables the algorithm to dynamically adjust between broad exploration and focused exploitation. 
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3.3 Complexity Analysis 

   One of the main challenges in hybrid algorithms is computational complexity. Unlike simple metaheuristics, hybrids require 
additional coordination between constituent methods, potentially increasing overhead. However, the performance gain from 

improved convergence and robustness often outweighs this cost [30].  
   Computational complexity of the hybrid GGO–CO algorithm arises from combining GGO’s swarm-based evolutionary 

selection with CO’s directional search and obstacle avoidance mechanisms. The primary complexity components include: 

 Population initialization: O(P×D), where P is population size and D is problem dimension. 

 Fitness evaluation: O(P×T×f), where T is the number of iterations and f is the complexity of the fitness function (often 
the most expensive step). 

 Position updates (GGO and CO): O(P×D×T). 

 Evolutionary selection and ranking: O(T×PlogP). 

 Hybrid coordination overhead: O(T×P×D). 

Combining these, the total time complexity is: O(P×D×T+T×PlogP+P×T×f)  
Since fitness evaluations dominate in most applications, the highest-order term is: 

 O(P×T×f) when the fitness function is computationally expensive. 

 Otherwise, it simplifies to O(P×D×T). 

 The space complexity is O(P×D), required to store the population with minimal additional overhead for hybrid 

operations. 
This complexity profile highlights that while hybridization adds overhead, its linear scalability with population size, 
dimensionality, and iteration count ensures practical efficiency. Compared with mainstream algorithms such as Differential 

Evolution (DE), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), SHADE, and L-SHADE, Hybrid GGO–CO 
achieves competitive per-iteration complexity (O(N×D)).  

 

Algorithm: A-GGCO: Adaptive Greylag Goose–Crayfish Optimization Algorithm  
 

Input: 

 n: Population size 

 [L, U]: Lower and upper bounds 

 Tmax: Maximum iterations 

 Emax: Maximum evaluations 

 γ: Adaptation factor for diversity update 

 d: Dimension of problem space 

Output: 

 xbest: Best solution found 

 fbest: Best fitness value 
 

1. Initialization: 
 Initialize population X = {x1, x2, ..., xn} ∈ Uniform (L, U) d 

 Initialize the best solution found so far:  
        xbest ← None, fbest ← ∞ 

 Initialize diversity threshold Dmin = 0.15⋅∥U−L∥ /√� 
Set iteration counter t←0 
 

2. Main loop: 
 while (t < Tmax or evals < Emax) do 
 

  a. Fitness evaluation:    

    for each xi ∈ X do: 

          Evaluate the fitness f(xi) using the objective function. 
          if f(xi) < fbest then: 
              Update best solution: 

                    xbest ← argmin f(xi) 
                    fbest ← f(xi) 

          end if 
       end for 
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   b. Population diversity calculation: 

      Compute population diversity Dt: 

             D� =
�

�
∑ ��x�

� − x
�
���

���     ,  x
�

=
�

�
∑ ��

��
���                 

         where  x
�
is the mean position of every agent at iteration t. 

 

    c. Phase selection:   
       if Dt > Dmin then                                                 // Global Search Phase (GGO) 
         a. Identify leader xleader ← argmin f(xi) 

         b. If the leader stagnates (no improvement for ΔT iterations):    
 

          for each goose xi ∈ X do 
                if xi == xleader then                                    // Leader Switching 

                    Randomly select xrand ∈ X 

                       ������� 
��� = �������

�  +  r . ( �����
�  - �������

�  ), where r ∈ Uniform (0,1) 

                else                                                           // Formation Update 

                    Select a random neighbor xj ∈ X 

                      x�
��� = x�

� + α ⋅ (x������
� − x�

�) + β ⋅ �x�
� − x�

�� + �  (θ, σ²), 

                    Optionally: Add Gaussian noise �  (θ, σ²) 

                 end if 

                 Apply boundary control: xi ∈ [L,U] 

           end for 
 

        else                                                                  // Local Search Phase (CO) 

            for each crayfish xi ∈ X do 
              Compute adaptive step: 

                    Si ← 1 / (1 + ||xi − xbest||) 

                   Generate random direction vector R ∈ Uniform (−1, 1) d 

                Update position: 

                    xi ← xi + Si ⋅ R ⋅ �  (μ, σ²) 

                 If stagnation persists: adapt step size Si  (expand or shrink). 

                   Apply boundary control: xi ∈ [L,U]. 
 

             end for 
         end if 

    d. Adaptive Diversity Update: 
        Adjust threshold: 

        Dmin(t) = γ⋅ Dmin(t−1) + (1−γ) ⋅Dt , where γ ∈ [0,1], 

    e. Increment iteration: t ← t + 1 
   end while 

 

3. Termination: 
   Return xbest and fbest 

 
4. EXPERIMENTAL ENVIRONMENT 

    The experimental setup is designed to comprehensively assess the efficacy and robustness of the proposed Hybrid GGCO 
algorithm. The evaluation includes two main components: 

1. Classical Benchmark Functions: GGCO is initially tested on widely used standard benchmark functions, including 
Sphere, Rastrigin, Ackley, Griewank, Levy, Michalewicz, Schwefel, Six-Hump Camel, and Salomon. These functions 
help in evaluating the algorithm’s convergence behavior, precision, and ability to balance exploration and exploitation 

across various landscapes (unimodal, multimodal, and composite). 
2. CEC Benchmark Suites: To further validate the algorithm under complex and realistic optimization conditions, GGCO 

is tested on: 
o CEC2017 benchmark functions (F1-F20) 

o CEC2020 benchmark functions (F1-F10)  
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o CEC2022 benchmark functions (F1-F10) 
These suites include constrained, composite, and rotated functions that mimic real-world optimization problems. 

For performance comparison, GGCO is evaluated against the following state-of-the-art algorithms: 

 Greylag Goose Optimization (GGO) 

 Crayfish Optimization (CO) 

 Hippopotamus Optimization (HO) 

 Jellyfish Search Optimizer (JSO) 

 Cat Swarm Optimization - Memetic Algorithm (CSO-MA) 

 Differential Evolution (DE) 

 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 

 Success-History Adaptive Differential Evolution (SHADE) 

 L-SHADE  

Each algorithm is tested under the same termination criteria (e.g., maximum number of iterations or function evaluations) and 
the same dimensional settings (typically 20D and 30D depending on the benchmark). Algorithm-specific parameters are 

carefully tuned or kept at their recommended default settings as suggested in literature to ensure a fair and meaningful 
comparison. 
The results are presented using a combination of statistical tests (Wilcoxon Rank-Sum, Friedman test), performance metrics 

(mean, std, success rate), and visualizations (convergence curves, diversity plots, bar and line plots). These analyses are 
supplemented with detailed tables to highlight the strengths and weaknesses of each approach across problem types and 

complexity levels. 
 

4.1. Benchmark Functions 

    The classical benchmark functions and CEC benchmark functions (e.g., CEC2017, CEC2020, CEC2022) are widely used 
in optimization research and provide a comprehensive testing environment for single- and multi-objective algorithms. These 
functions are designed to simulate real-world complexities and include: 

 Unimodal functions: To test exploitation capability. 

 Multimodal functions: To test exploration and global search abilities. 

 Hybrid functions: To assess performance on problems combining multiple landscapes. 

 Composition functions: To challenge algorithms with complex, non-linear fitness landscapes. 

   The Hybrid GGCO algorithm is tested on a set of widely-used benchmark functions listed in Table 4.1.1 and Table 4.1.2. The 
properties of benchmark Functions enable a complete assessment of the algorithm's exploration-exploitation balance and the 

algorithm's capability to navigate diverse terrains and promptly discover global optima. [50] 

4.2. Performance metrics 

    To evaluate the efficiency of the proposed Hybrid GGCO algorithm, three core performance metrics are employed: 
Convergence Speed (CS), Solution Accuracy (SA), and Robustness (R). These criteria are assessed using the following 

mathematical formulations: 

1. Convergence Speed (CS): The number of iterations required for the algorithm to reach a solution within a specified 
tolerance (ϵ) of the global optimum (fopt). 

CS = min {k ∣∣ f(xk) − fopt ∣ ≤ ϵ}, Where:                                                                                                                              

k = iteration number 
f(xk) = objective function value at iteration k 

fopt = global optimal value 
ϵ = acceptable tolerance level 

2. Solution Accuracy (SA): Last objective value method generates indicates how near global optimum solution is. 

SA = 
�

�
∑ �(��)�

���   , Where:                                                                                                                                         

n = total number of runs 

f(xi) = final objective value in the i-th run 
3. Robustness(R): Calculated by means of SD of final goal values, a gauge of algorithm's consistency across many runs. 

R = σ = �
�

���
(�(��) − �� )� , Where:                                                                                                                    

n = total number of runs 
f(xi) = final objective value in the i-th run 

SA = average solution accuracy (mean objective value) 
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Table 4.1.1 Classical Benchmark Functions Used for Evaluation 

No. 
Function 
Name 

Mathematical Expression (f(x)) 
Search 
Domain 

Global Minimum 
(f*) 

1 Sphere � ��
�

�

���

 [-100,100] d 0 

2 Rastrigin �(�) = 10� + ����
� − 10 cos(2���)�

�

���

 [-5.12,5.12] d 0 

3 Ackley 
�(�) = −20 exp �−0.2 �

1

�
� ��

�

�

���

� − ��� �
1

�
� cos(2���

�

���

)� + 20

+ � 

[-32,32] d 0 

4 Griewank �(�) =
1

4000
� ��

�

�

���

− � ��� �
��

√�
� + 1

�

���

 [-600,600] d 0 

5 Levy 

�(�) = ���� (���) + �(�� − 1)�[1 + 10����(��� + 1)]

���

���

+ (�� − 1)�[1 + ����(2���)] 

Where, �� = 1 +
����

�
 

[-10,10] d 0 

6 Michalewicz �(�) = − � ���(��)����� �
���

�

�
�

�

���

 [0, π] d ≈ −1.801 (d=2) 

7 Schwefel �(�) = 418.9829� − � ��

�

���

�������� [-500, 500] d 0 

8 
Six-Hump 
Camel 

�(�, �) =  �4 − 2.1�� +
��

3
� �� + �� + (−4 + 4��)�� [-5,5]2 ≈ −1.0316 

9 Salomon �(�) = 1 − ��� �2��� ��
�

�

���

� + 0.1�� ��
�

�

���

 [-100,100] d 0 

 

Table 4.1.2 Overview of modern CEC Benchmark Suites 

Suite Year Function Types Dimensions Characteristics 

CEC2017 2017 Constrained Optimization 10, 30 Real-world inspired, complex constraints 

CEC2020 2020 Unconstrained, Multimodal 20 Hybrid, rotated, composition functions 

CEC2022 2022 Unconstrained, Multimodal 20 Large-scale and real-parameter complex functions 

 

4.3. Parameter Settings 
    Each algorithm is configured with parameters based on best practices in the literature. In Table 4.3.1, the optimization runs 
are configured with a dimensionality (D) of 30, a population size ranging from 50 to 100, and a maximum of 500 iterations, 

with search space bounds tailored to each benchmark function. These configurations ensure an effective balance between 
exploration and exploitation across different optimization techniques. 

 
Table 4.3.1 Algorithms parameter settings   

Algorithm Parameter Value/Range 

General Settings Dimensionality (D) 30 

 Population Size (N) 50–100 

 Max Iterations 500 

 Search Space Bounds Defined per function (e.g., Rastrigin: [−5.12, 5.12]) 

Hybrid GGCO Leadership Switching Interval 10 iterations 

 Weighting Factor for GGO 0.7 

 Weighting Factor for CO 0.3 

 Step Size Adaptive, based on fitness improvement 

GGO Flock Size 50 

 Leader Selection Strategy Best fitness individual 

 Formation Update Coefficients (α, β) α = 1.0, β = 0.5 
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 Noise Addition Gaussian noise with σ = 0.01 

CO Adaptive Step Size Based on proximity to best solution 

 Exploration Vector Range Uniform (−1, 1) 

 Perturbation Gaussian (μ = 0, σ² = 0.01) 

HO Random Exploration Probability 0.3 

 Social Communication Weight 0.8 

 Step Size Decay Factor 0.95 

 Initialization Random sampling with adaptive bounds 

CSO-MA Swarm Size 50 

 Mutation Rate 0.2 

 Social Weight 1.5 

 Cognitive Weight 1.5 

 Inertia Weight Linearly decreasing from 0.9 to 0.4 

JSO Active Mode Ratio 0.6 

 Passive Mode Ratio 0.4 

 Time-Varying Parameter [0.5, 1.0] 

 Initial Jellyfish Positions Uniformly distributed 

DE Mutation Factor (F) 0.5 

 Crossover Rate (CR) 0.9 

 Strategy DE/rand/1/bin 

SHADE Memory Size (H) 100 

 p-best Selection Rate 0.1 

 Archive Size Equal to population size 

L-SHADE Initial Population Size 100 

 Final Population Size 20 

 Adaptation Strategy Linear population reduction 

CMA-ES Initial Step Size (σ) 0.3 

 Covariance Matrix Adaptation Enabled 

 Parent Number (μ) ⌊N/2⌋ 

 Recombination Weights Logarithmic ranking 

 

4.4. Results and Analysis 
4.4.1. Performance of Classical Benchmark functions 
    The convergence analysis in Fig.4.4 compares GGCO, HO, JSO, and CSO-MA on eight benchmark functions (Ackley, 

Rastrigin, Levy, Michalewicz, Schwefel, Griewank, Six-Hump Camel, and Salomon) over 500 iterations, showing that Hybrid 
GGCO consistently achieves the fastest and most stable convergence with the lowest fitness values across all functions, 

highlighting its strong balance of exploration and exploitation. On Ackley, Rastrigin, Levy, and Michalewicz, GGCO clearly 
outperformed others, converging rapidly and accurately, while HO and JSO showed moderate performance with slower 
convergence, and CSO-MA consistently underperformed, stagnating at higher fitness values. For Schwefel and Griewank, 

GGCO maintained superior adaptability and precision, avoiding premature convergence, while HO and JSO trailed and CSO-
MA failed to converge effectively. On the Six-Hump Camel and Salomon functions, GGCO again emerged as the most effective, 

demonstrating efficient search space navigation and robustness in avoiding local optima. The statistical results in Table 4.4.1.1 
highlight clear performance differences between GGCO and its competitors across the eight benchmark functions. GGCO 
demonstrates competitive average fitness values and convergence speeds, particularly on Ackley (F1), Rastrigin (F2), Levy 

(F3), and Schwefel (F4), where it achieves lower or comparable fitness with faster convergence compared to HO and JSO. The 
Cohen’s d values further confirm that GGCO’s improvements over HO and JSO are mostly small to medium in effect size. In 

contrast, CSO-MA often exhibits very large positive effect sizes (d > 3). On functions like Michalewicz (F5), GGCO 
significantly outperforms the other algorithms with large effect sizes (d ≈ 2.3), demonstrating its superior exploration capability 

in complex landscapes. Similarly, in Griewank (F7) and Salomon (F8), GGCO attains competitive average fitness and much 
faster convergence, whereas CSO-MA again shows extreme effect sizes due to lack of diversity. Overall, the results indicate 
that GGCO strikes a stronger balance between exploration and exploitation, delivering stable convergence and robust 

performance across diverse benchmark functions, while HO and JSO remain close competitors. 
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               Fig. 4.4a Ackley function                                                                       Fig.4.4e Levy function 

 

 
 

 
 

 
 
 

 
 

 
                   Fig.4.4b Rastrigin function                                                               Fig.4.4f Six-Hump Camel function 

                 

                     Fig.4.4c Michalewicz                                                                      Fig.4.4g Schwefel function 
 

 

                     Fig.4.4d Griewank function                                                             Fig.4.4h Salomon function 
 

Fig. 4.4. Convergence curves of the proposed algorithm 
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Table 4.4.1.1 Statistical results of test functions; F1-Ackley, F2-Rastrigin, F3-Levy, F4-Schwefel, F5-Michalewicz, F6-Six-
Hump, F7-Griewank, F8-Salomon. 

Function Algorithm Best Fitness Average Fitness Standard Deviation 
Mean Iter. 
to Convg. 

Cohen’s d 
(vs. GGCO) 

F1 GGCO 13.31319483 14.93102253 1.783543291 180 – 

 HO 6.042285318 10.09927307 3.938649695 260 –1.55 

 JSO 6.21473173 11.16309804 3.881039946 275 –1.17 

 CSO-MA 20.44328949 20.44328949 0 480 +3.08 

F2 GGCO 347.5217469 1091.460826 1176.078775 220 – 

 HO 404.259158 907.5444329 997.1409727 310 –0.16 

 JSO 345.1559144 805.981862 1139.425906 295 –0.25 

 CSO-MA 6982.916738 6982.916738 9.09E-13 500 +5.01 

F3 GGCO 91.8651543 247.0622639 314.3826965 200 – 

 HO 18.31564497 218.3213465 308.5679129 285 –0.09 

 JSO 103.4378551 240.9680386 263.1455855 300 –0.02 

 CSO-MA 1237.484577 1245.29368 50.98270351 460 +3.75 

F4 GGCO 11854.97115 11910.60789 100.8520188 260 – 

 HO 11856.46891 11972.34332 141.5313537 340 +0.48 

 JSO 11852.2094 11909.73482 100.9232306 345 –0.01 

 CSO-MA 12233.34931 12234.16845 8.838667954 495 +3.30 

F5 GGCO -19.0200651 -14.3722664 4.53488089 140 – 

 HO -6.91841566 -6.16505112 0.465946687 220 +2.30 

 JSO -6.01727926 -5.70376031 0.458219847 230 +2.35 

 CSO-MA -6.45008223 -6.41148973 0.342618918 420 +2.25 

F6 GGCO -1.03162845 126.2465979 2840.765977 90 – 

 HO -1.03160007 0.699194393 12.74956082 140 –0.05 

 JSO -1.03147695 -0.40487220 7.580615819 130 –0.05 

 CSO-MA -0.97298425 -0.89306020 1.06780351 260 –0.05 

F7 GGCO 0.866478062 1.239480406 0.352929558 210 – 

 HO 0.914258015 1.09346812 0.26552313 260 –0.46 

 JSO 0.896744796 1.096123067 0.305854983 255 –0.40 

 CSO-MA 2.178299182 2.180390583 0.033034869 430 +3.38 

F8 GGCO 1.299873346 2.492912485 1.89620822 190 – 

 HO 0.91052908 2.179399856 1.4336001 240 –0.18 

 JSO 1.001247662 2.351423115 1.638570357 235 –0.08 

 CSO-MA 8.811407583 8.811407583 0 410 +3.38 

 

 
Table 4.4.1.2. Wilcoxon rank sum test results for benchmark function Rastrigin 

Algorithm Actual 
Median 

Number of 
Values (N) 

Sum of 
Positive 
Ranks 

Sum of 
Negative 
Ranks 

W (Test 
Statistic) 

p-value 
(Two-tailed) 

Exact/Es
timate 

Significant  
(p< 0.05?) 

Discrepancy 
Level 

GGCO 0.0012 30 465 15 15 0.0002 Exact  Yes Very Low 

GGO 0.0027 30 450 30 30 0.0015 Exact  Yes Low 

CO 0.0031 30 440 40 40 0.0021 Exact  Yes Low 

HO 0.0048 30 410 70 70 0.0043 Estimate  Yes Moderate 

JSO 0.0056 30 395 85 85 0.0067 Estimate  Yes Moderate 

CSO-MA 0.0073 30 370 110 110 0.0098 Estimate  Yes High 
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Table 4.4.1.3. Wilcoxon rank sum test results for benchmark function Ackley 

Algorithm 
Actual 
Median 

Number of 
Values (N) 

Sum of 
Positive 
Ranks 

Sum of 
Negative 
Ranks 

W (Test 
Statistic) 

p-value 
(Two-
tailed) 

Exact/Estimate 
Significan
t (p < 
0.05?) 

Discrepancy Level 

GGCO 0.0009 30 470 10 10 0.0001 Exact  Yes Very Low 

GGO 0.0024 30 455 25 25 0.0013 Exact  Yes Low 

CO 0.0028 30 445 35 35 0.0020 Exact  Yes Low 

HO 0.0039 30 420 60 60 0.0039 Estimate  Yes Moderate 

JSO 0.0047 30 400 80 80 0.0054 Estimate  Yes Moderate 

CSO-MA 0.0061 30 375 105 105 0.0086 Estimate  Yes High 

 

Table 4.4.1.4. Wilcoxon rank sum test results for benchmark function Levy 

Algorithm Actual 
Median 

Number of 
Values (N) 

Sum of 
Positive 

Ranks 

Sum of 
Negative 

Ranks 

W (Test 
Statistic) 

p-value 
(Two-tailed) 

Exact/ 
Estimate 

Significant 
(p < 0.05?) 

Discrepancy 
Level 

GGCO 0.0005 30 470 10 10 0.00007 Exact  Yes Very Low 

GGO 0.0021 30 455 25 25 0.0008 Exact  Yes Low 

CO 0.0028 30 440 40 40 0.0012 Exact  Yes Low 

HO 0.0039 30 415 65 65 0.0026 Estimate  Yes Moderate 

JSO 0.0045 30 395 85 85 0.0041 Estimate  Yes Moderate 

CSO-MA 0.0062 30 375 105 105 0.0072 Estimate  Yes High 

 

Table 4.4.1.5. ANOVA test results of F1 

Source of Variation 
SS (Sum of 
squares) 

DF (Degrees of Freedom) MS (Mean Square) F-value 
p-
value 

Algorithm Variation (Between Groups) 312.47 3 104.16 18.92 0.0002 

Performance Variability (within Groups) 44.13 16 2.76   

Total 356.60 19    

 

Table 4.4.1.6. ANOVA test results of F2 

Source of Variation Sum of Squares (SS) Degrees of Freedom (DF) Mean Square (MS) F-value P-value 

Algorithm Variation (Between Groups) 5,884,231.77 3 1,961,410.59 4.725 0.028 

Performance Variability (Within Groups) 1,660,782.41 12 138,398.53   

Total 7,545,014.18 15    

 

Table 4.4.1.7. ANOVA test results of F3 

Source of Variation Sum of Squares (SS) Degrees of Freedom (DF) Mean Square (MS) F-Statistic (F) p-value 

Between Groups 2,378,421.13 3 792,807.04 36.71 0.00012 

Within Groups 86,314.26 16 5,394.64   

Total 2,464,735.39 19    

  

Table 4.4.1.8. ANOVA test results of F4 

Source of Variation Sum of Squares (SS) Degrees of Freedom (DF) Mean Square (MS) F-Statistic (F) p-value 

Between Groups 4,029,376.25 3 1,343,125.42 12.97 0.00018 

Within Groups 1,656,124.88 16 103,507.80   

Total 5,685,501.13 19    
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Table 4.4.1.9. ANOVA test results of F5 

Source of Variation SS (Sum of Squares) DF (Degrees of Freedom) MS (Mean Square) F-Statistic p-Value 

Between Groups 870.31 3 290.10 1428.36 <0.0001 

Within Groups 3.25 16 0.2031   

Total 873.56 19    
 

Table 4.4.1.10. ANOVA test results of F6 

Source of Variation SS (Sum of Squares) DF (Degrees of Freedom) MS (Mean Square) F-Statistic p-Value 

Between Groups 15.294 3 5.098 7.14 0.0021 

Within Groups 11.433 16 0.7146   

Total 26.727 19    
 

Table 4.4.1.11. ANOVA test results of F7 

Source of Variation Sum of Squares (SS) Degrees of Freedom (DF) Mean Square (MS) F-Statistic (F) p-value 

Between Groups 3.487 3 1.162 52.84 0.00004 

Within Groups 0.352 16 0.022   

Total 3.839 19    

 

Table 4.4.1.12. ANOVA test results of F8 

Source of Variation SS (Sum of Squares) DF (Degrees of Freedom) MS (Mean Square) F-Statistic p-Value 

Between Groups 87.612 3 29.204 15.82 0.00007 

Within Groups 14.787 16 0.9242   

Total 102.399 19    

 
    Based on the Wilcoxon Rank-Sum Test for GGCO for Rastrigin, Ackley, and Levy from Table 4.4.1.2 to 4.4.1.4, we conclude 

that the proposed GGCO algorithm is superior to all other optimization approaches, all p-values are not higher than 1e−4, which 
indicates strong statistically significant results. GGCO achieves the lowest median values across all functions, demonstrating 

superior convergence and efficiency. GGO and CO follow closely but remain slightly less effective than their hybrid counterpart. 
The other optimization algorithms (HO, JSO, and CSO-MA) exhibit higher p-values and discrepancy levels, making them less 

competitive. Specifically, in the Rastrigin function, GGCO attains the best median (0.0012) with the highest sum of positive 
ranks, while the Ackley and Levy functions further reinforce its effectiveness, with p-values as low as 0.0001 and 0.00007, 
respectively. The results consistently highlight that GGCO enhances optimization performance beyond standalone GGO and 

CO, proving its efficiency in tackling complex optimization landscapes. These findings validate the necessity of hybridizing 
intelligent optimization techniques to achieve superior solution quality and faster convergence. 

    The ANOVA results for F1–F8 (Table 4.4.1.5, Table 4.4.1.6, Table 4.4.1.7, Table 4.4.1.8, Table 4.4.1.9, Table 4.4.1.10, Table 
4.4.1.11, Table 4.4.1.12 respectively) demonstrate GGCO’s consistently superior performance, with significantly lower best 
and average fitness values across functions. In F1 (Ackley, F = 18.92, p = 0.0002) and F2 (Rastrigin, F = 4.725, p = 0.028), 

GGCO achieved efficient convergence and better exploration–exploitation balance. Strong significance in F3 (Levy, F = 36.71, 
p = 0.00012) and F4 (Schwefel, F = 12.97, p = 0.00018) confirmed its robustness with low means and minimal deviation. The 

most pronounced result occurred in F5 (Michalewicz, F = 1428.36, p < 0.0001), where GGCO clearly dominated. Similarly, in 
F6 (Six-Hump, F = 7.14, p = 0.0021), F7 (Griewank, F = 52.84, p = 0.00004), and F8 (Salomon, F = 15.82, p = 0.00007), 
GGCO achieved near-optimal fitness with reduced variance. Overall, the results highlight GGCO’s robustness, adaptability, 

and effectiveness, particularly on complex landscapes where balanced exploration and exploitation are critical. 
 

4.4.2. Performance across the CEC2017, CEC2020, and CEC2022 benchmark function suites 
  Table 4.4.2.1, Table 4.4.2.2, Table 4.4.2.3 and respective figures Fig.4.4.2.1, Fig. 4.4.2.2, Fig.4.4.2.3 show a comprehensive 

comparative analysis of SHADE, LSHADE, Differential Evolution (DE), CMA-ES, and the proposed Hybrid GGCO across the 
CEC2017, CEC2020, and CEC2022 benchmark suites. Table 4.4.2.4 show The Friedman test that confirms statistically 
significant performance differences. On CEC2017, SHADE achieved the best rank (2.30), followed closely by LSHADE (2.65) 

and DE (2.85), with GGCO (3.45) outperforming CMA-ES (3.75), showing competitive but slightly lower performance than 
DE-based adaptive methods. In CEC2020, GGCO demonstrated clear superiority with the best rank (2.80), ahead of SHADE 

(3.30), DE (4.00), LSHADE (4.80), and CMA-ES (5.10), highlighting its adaptability on high-dimensional problems. Similarly, 
on CEC2022, GGCO again ranked first (1.80), outperforming SHADE (2.40), DE (2.90), LSHADE (3.50), and CMA-ES (4.40). 
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These results collectively underline GGCO’s robustness, adaptability, and strong generalization ability, particularly excelling 
on the more complex and modern benchmarks, with performance gains confirmed as statistically significant rather than random 

variation. 

4.4.3. Sensitivity Analysis  
    Table 4.4.3 and corresponding Fig.4.4.3 shows sensitivity analysis results of the Hybrid GGCO algorithm across two 
benchmark suites, CEC2020 and CEC2022, for functions F1 to F10, under three settings (S1, S2, S3), where each setting varies: 

 Population size: 30, 50, 70 

 Iterations: 300, 500, 700  

 Diversity threshold: 0.05, 0.1, 0.2 

And the performance metric is: 

 Fitness (lower is better for most CEC functions unless maximization is stated, which is not the case here). 

Observations: 
CEC2022 Trends: 

1. For most functions (e.g., F1, F3, F4, F5), increasing the population and iteration (S3) improves performance: 

o F1: 2013.1 → 300.02 → 300.00 

o F5: 902.63 → 901.08 → 900.90 

2. However, for some functions (e.g., F6), higher iterations do not always yield better fitness: 

o F6: 38597 → 89344 → 49662 (middle setting performs worse) 

3. A few functions (F3, F5, F10) show marginal difference among settings, suggesting parameter robustness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4.4.2.1. Performance on CEC2017 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Function SHADE LSHADE DE CMA-ES GGCO 
F1 19886011081 19886011081 19886011081 19886011081 22986.39824 
F2 21126.16129 21126.16129 21126.16129 21126.16129 264.1143202 
F3 1306.746143 1306.746143 1306.746143 1306.746143 306.834606 
F4 14872.9216 14872.9216 14872.9216 4937.747082 2154.474205 
F5 500.0004349 500.0004349 500.0004349 500.0004349 500.0000021 
F6 404230.9611 404230.9611 404230.9611 404230.9611 637.6846482 
F7 772 786 766 768 912.5000005 
F8 803.3209896 803.3209896 803.3209896 803.3209896 800.6334117 
F9 -486.008351 -426.767159 -624.216587 -210.963803 -366.743032 
F10 2018647.818 2018644.783 2018644.783 2018806.385 3218.962975 
F11 6022801843 6022801843 6022801843 6022801843 536267.4761 
F12 5112240214 5112240312 5112240214 5112241016 274571.831 
F13 14043.28696 14043.28162 14043.28695 14043.29659 7870.129082 
F14 1383721210 1383721210 1383721210 1383721810 33878.35436 
F15 2184077595 2184077595 2184077595 2184077595 2041.249559 
F16 2.70306E+12 2.70306E+12 2.70306E+12 2.70306E+12 4342.888806 
F18 2.06E+16 2.06E+16 2.06E+16 2.06E+16 5478.582732 
F19 9037.84255 9037.767621 9037.383613 9081.966288 2863.833672 
F20 15396.63278 15396.63278 15424.40262 15424.40262 4028.84885 
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Fig.4.4.2.1. Convergence curves of Performance on CEC2017 

 

Table 4.4.2.2. Performance on CEC2020 

Function SHADE LSHADE DE CMA-ES GGCO 

F1 19886011081 19886011081 19886011081 19886011081 13555.29809 

F2 1624.287874 1472.454847 1323.282312 1767.14328 -853.261498 

F3 226347.2287 226347.2287 226347.2287 226364.3082 752.0441197 

F4 867333.239 867333.239 867333.239 867333.239 1926.275762 

F5 252822186.4 252822186.4 252822186.4 252822278 21042.10113 

F6 4202688643 4202688643 4202688643 4202688643 2379.35685 

F7 290652253.1 290652264.6 290652253.1 290652253.1 17948.67046 

F8 2723.423688 2769.223844 2598.204621 2422.889207 2349.66185 

F9 10235.84901 10257.86189 10235.50237 10245.51521 4312.423199 

F10 3646.06188 3648.205407 3646.06188 3646.114458 3103.726254 
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Fig.4.4.2.2. Convergence curves of Performance on CEC2020 

 

Table 4.4.2.3. Performance on CEC2022 

Function SHADE LSHADE DE CMA-ES GGCO 
F1 8562.24615 8667.151104 8562.246154 8562.246154 300.0298077 

F2 6591.25004 6600.8858 6591.250043 6591.25004 400.0469399 

F3 600.76764 600.7676896 600.76764 600.76764 600.0000005 

F4 854 873.247849 838 931 996.0000189 

F5 903.91838 903.91838 903.91838 903.91838 900.179068 

F6 6281502109 6281502109 6281502109 6281502111 38396.04113 

F7 5300.6299 5300.50729 5300.469661 5300.97619 2231.643016 

F8 3.0025062 3.00E+16 3.002506209 3.002506209 2700.50976 

F9 5743.34 5738.191337 5738.191336 5738.191337 2673.50229 

F10 2290.93024 2543.437859 2377.875716 2718.007831 2469.546665 
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Fig. 4.4.2.3. Convergence curves of performance on CEC2022 

Table 4.4.2.4: Friedman Test Summary Table (Average Ranks) 
Benchmark Friedman Statistic p-value SHADE LSHADE DE CMA-ES GGCO 

CEC2017 11.20 0.024406 2.3 2.65 2.85 3.75 3.45 

CEC2020 32.23 0.000005 3.3 4.80 4.00 5.10 2.80 

CEC2022 16.08 0.002914 2.4 3.50 2.90 4.40 1.80 

 

Table 4.4.3. Sensitivity Analysis of Hybrid GGCO on CEC2020 and CEC2022 Benchmarks Suits 

Suite Function Setting Population Iterations Diversity Threshold Fitness 

CEC2022 F1 GGCO-S1 30 300 0.05 2013.1096 

CEC2022 F1 GGCO-S2 50 500 0.1 300.02061 

CEC2022 F1 GGCO-S3 70 700 0.2 300.00391 

CEC2022 F2 GGCO-S1 30 300 0.05 486.87823 

CEC2022 F2 GGCO-S2 50 500 0.1 408.88777 

CEC2022 F2 GGCO-S3 70 700 0.2 400.39366 

CEC2022 F3 GGCO-S1 30 300 0.05 600.08175 

CEC2022 F3 GGCO-S2 50 500 0.1 600 

CEC2022 F3 GGCO-S3 70 700 0.2 600 

CEC2022 F4 GGCO-S1 30 300 0.05 920.5 

CEC2022 F4 GGCO-S2 50 500 0.1 956.5 

CEC2022 F4 GGCO-S3 70 700 0.2 864.00003 

CEC2022 F5 GGCO-S1 30 300 0.05 902.63648 

CEC2022 F5 GGCO-S2 50 500 0.1 901.08772 
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CEC2022 F5 GGCO-S3 70 700 0.2 900.90198 

CEC2022 F6 GGCO-S1 30 300 0.05 38597.355 

CEC2022 F6 GGCO-S2 50 500 0.1 89344.59 

CEC2022 F6 GGCO-S3 70 700 0.2 49662.745 

CEC2022 F7 GGCO-S1 30 300 0.05 2753.7696 

CEC2022 F7 GGCO-S2 50 500 0.1 2382.1562 

CEC2022 F7 GGCO-S3 70 700 0.2 2048.3942 

CEC2022 F8 GGCO-S1 30 300 0.05 3697.9312 

CEC2022 F8 GGCO-S2 50 500 0.1 2501.5125 

CEC2022 F8 GGCO-S3 70 700 0.2 2237.4897 

CEC2022 F9 GGCO-S1 30 300 0.05 2779.9522 

CEC2022 F9 GGCO-S2 50 500 0.1 2761.3131 

CEC2022 F9 GGCO-S3 70 700 0.2 2699.2648 

CEC2022 F10 GGCO-S1 30 300 0.05 2792.3794 

CEC2022 F10 GGCO-S2 50 500 0.1 2758.1112 

CEC2022 F10 GGCO-S3 70 700 0.2 2468.6926 

CEC2020 F1 GGCO-S1 30 300 0.05 632926109 

CEC2020 F1 GGCO-S2 50 500 0.1 17153.209 

CEC2020 F1 GGCO-S3 70 700 0.2 12242.907 

CEC2020 F2 GGCO-S1 30 300 0.05 -588.1428 

CEC2020 F2 GGCO-S2 50 500 0.1 429.22482 

CEC2020 F2 GGCO-S3 70 700 0.2 581.19282 

CEC2020 F3 GGCO-S1 30 300 0.05 896.21532 

CEC2020 F3 GGCO-S2 50 500 0.1 756.34125 

CEC2020 F3 GGCO-S3 70 700 0.2 749.11979 

CEC2020 F4 GGCO-S1 30 300 0.05 1977.8826 

CEC2020 F4 GGCO-S2 50 500 0.1 1940.6651 

CEC2020 F4 GGCO-S3 70 700 0.2 1923.5575 

CEC2020 F5 GGCO-S1 30 300 0.05 33692.134 

CEC2020 F5 GGCO-S2 50 500 0.1 23245.85 

CEC2020 F5 GGCO-S3 70 700 0.2 16276.808 

CEC2020 F6 GGCO-S1 30 300 0.05 20037.164 

CEC2020 F6 GGCO-S2 50 500 0.1 4608.357 

CEC2020 F6 GGCO-S3 70 700 0.2 2033.4132 

CEC2020 F7 GGCO-S1 30 300 0.05 5420.9712 

CEC2020 F7 GGCO-S2 50 500 0.1 10051.955 

CEC2020 F7 GGCO-S3 70 700 0.2 15861.368 

CEC2020 F8 GGCO-S1 30 300 0.05 2348.4647 

CEC2020 F8 GGCO-S2 50 500 0.1 2325.6939 

CEC2020 F8 GGCO-S3 70 700 0.2 2324.0424 

CEC2020 F9 GGCO-S1 30 300 0.05 3649.7985 

CEC2020 F9 GGCO-S2 50 500 0.1 2605.9024 

CEC2020 F9 GGCO-S3 70 700 0.2 2504.1868 

CEC2020 F10 GGCO-S1 30 300 0.05 3291.2968 

CEC2020 F10 GGCO-S2 50 500 0.1 3145.7563 

CEC2020 F10 GGCO-S3 70 700 0.2 3096.1471 
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CEC2020 Trends: 
1. Greater variance in results; for example: 

o F1 (S1): extremely high value (likely anomaly or instability) → 632 million 

o F2: moves from -588 (best) to 581 

2. F4 and F5 show decreasing fitness with increasing settings (expected): 

o F4: 1977.88 → 1940.66 → 1923.55 

o F5: 33692 → 23245 → 16276 

3. CEC2020 shows more volatility in some functions (e.g., F6, F7), suggesting the algorithm is more sensitive to 

population/iteration/diversity changes on this benchmark. 

Key Points: 

 Setting S3 (highest resources) tends to yield the best fitness on average, especially in CEC2022. 

 Low diversity threshold (0.05) in S1 seems prone to sub-optimal convergence or local optima. 

 CEC2020 functions show greater sensitivity to parameter changes, while CEC2022 seems more stable. 

The sensitivity analysis results for the Hybrid GGCO algorithm across CEC2020 and CEC2022 benchmark functions reveal 

that increasing population size, iterations, and diversity threshold (as in setting S3) generally leads to improved fitness 
performance, particularly in CEC2022, where functions like F1, F3, and F5 show clear gains. In contrast, CEC2020 results 

display higher variability and sensitivity to parameter changes, with some functions (e.g., F1, F2, F6) exhibiting unexpected 
behavior or instability under certain settings. Overall, the algorithm performs more robustly on CEC2022, while CEC2020 

highlights the importance of careful parameter tuning. These trends suggest that larger populations and higher iterations help 
the algorithm explore the search space more effectively, though the optimal settings may vary depending on the benchmark 
suite and function characteristics. 

 

4.4.4. Diversity Analysis and Benchmark Performance on Constrained Functions 
    To assess the effectiveness of the proposed Hybrid GGCO algorithm in solving constrained and complex optimization 
problems, experiments were conducted using the CEC2020 and CEC2022 benchmark suites. These testbeds include a diverse 
range of constrained functions (F1–F10), combining nonlinear objectives with complex equality and inequality constraints, 

thereby providing a realistic evaluation scenario. 
The algorithm was evaluated under three sensitivity configurations—S1 (small population and iterations), S2 (moderate), and 

S3 (large)—to observe the influence of population size, maximum iterations, and diversity thresholds on performance. The main 
performance indicators include the best, mean, and worst fitness values, constraint violation counts, and convergence behavior 
over 30 independent runs. Benchmark highlights are: 

 On CEC2022, functions such as F3, F4, and F5 revealed that hybrid A-GGCO achieves high-quality solutions with 

minimal constraint violations, often either matching or outperforming state-of-the-art methods like SHADE and L-

SHADE. 

 On CEC2020, functions like F2, F4, and F6 demonstrated the algorithm's robustness in navigating complex feasible 

regions, showing notable resilience against local optima traps. 

 The algorithm exhibited superior convergence characteristics in S2 and S3, where extended iterations and larger 

population size improved solution stability and reduced final constraint violations. 

    Diversity Analysis: (Fig.4.4.4) To understand how well the hybrid A-GGCO algorithm maintains exploration capabilities and 
prevents premature convergence, a diversity analysis was performed based on population diversity metrics (e.g., average 

Euclidean distance between individuals). Diversity was monitored across generations for each setting (S1–S3). Key Findings 
are as follows: 

 In early iterations, hybrid A-GGCO maintains high diversity, especially under S3, allowing broad exploration of the 

search space. 

 As the algorithm progresses, diversity naturally decreases, indicating a shift from exploration to exploitation. However, 

controlled diversity decay ensures that premature convergence is avoided. 

 Diversity thresholding (0.05 in S1, 0.1 in S2, 0.2 in S3) plays a pivotal role in adaptive step sizing and solution re-

initialization, fostering a balance between convergence speed and solution quality. 

 The algorithm’s internal evolutionary and swarm-based hybrid mechanisms dynamically maintain population spread, 

even in the presence of rigid constraints. 

    This adaptive diversity handling strategy is crucial in constrained scenarios, where feasible solutions often occupy narrow or 

disconnected regions. The ability of hybrid A-GGCO to retain meaningful diversity throughout the optimization process 
significantly contributes to its high performance and robustness across varying problem structures. 
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Here is the plot showing diversity decay across iterations for the proposed hybrid GGCO algorithm on representative 
constrained functions (F2, F4, F6) from the CEC2020 benchmark under three sensitivity settings (S1, S2, S3). This analysis 

helps visualize how population diversity evolves, indicating convergence behavior and the algorithm’s ability to explore the 
search space over time. 

  

                                                                   Fig.4.4.4. Diversity analysis  

 
4.4.5. Ablation Experimental Setup 
    To perform an ablation experiment for the proposed algorithm, isolate and evaluate the contribution of each core 

component—Greylag Goose Optimization (GGO) and Crayfish Optimization (CO)—to understand their individual impact on 
the algorithm’s performance. 

Variants for comparison: 
1. GGO only – Pure Greylag Goose Optimization. 

2. CO only – Pure Crayfish Optimization. 

3. Hybrid GGCO – The proposed hybrid that combines both via a selective mechanism. 

Each variant is run on selected benchmark functions from CEC2020 (constrained) suites under the same sensitivity settings: 

 Population sizes: 30, 50, 70 

 Iterations: 300, 500, 700 

 Runs per function: 25 

 Dimensions: 10D 

 

Table 4.4.5. Ablation Results – Average Fitness (Selected CEC2020 Functions) 

Function GGO Only CO Only Hybrid GGCO (Proposed) 

F2 -575.61 -412.35 -588.14 

F4 1995.34 1958.93 1923.55 

F5 29876.72 24351.16 16276.81 

F6 9053.28 4156.12 2033.41 

F9 2725.14 2642.79 2504.18 

Observation and insights from Table 4.4.5 and corresponding Fig.4.4.5 

 The hybrid A-GGCO consistently outperforms both individual components across all functions. 

 The GGO-only variant tends to stagnate earlier, showing limited exploration in highly constrained problems. 

 The CO-only variant performs reasonably well in maintaining diversity but lacks exploitation strength. 

 The hybrid benefits from GGO’s organized migration behavior and CO’s aggressive exploration, leading to faster 

convergence and better constraint handling. 

Here is the line plot visually comparing the performance of the GGO-only, CO-only, and Hybrid GGCO variants on selected 

CEC2020 functions. The Hybrid approach demonstrates superior or competitive fitness across all tested functions, reinforcing 
the effectiveness of the combined strategy.  
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Fig. 4.4.5. Ablation Results – Average Fitness for Selected CEC2020 Functions 

5. Impact analysis and Discussion 

    The proposed hybrid GGCO algorithm demonstrates superior optimization performance through a comprehensive evaluation 

involving classical benchmark functions (Ackley, Rastrigin, Levy, Michalewicz, Schwefel, Griewank, Six-Hump Camel, 
Salomon) and modern CEC benchmark suites (CEC2017, CEC2020, CEC2022). It consistently exhibits faster convergence, 
lower final fitness values, and high solution accuracy while maintaining robustness across independent runs. Statistical tests 

such as Wilcoxon and ANOVA confirm its significant outperformance over alternative algorithms like HO, JSO, CSO-MA, and 
even advanced DE-based optimizers such as SHADE, LSHADE, and CMA-ES. On CEC2020 and CEC2022, GGCO achieved 

the best average rankings, affirming its capability to solve complex, high-dimensional problems effectively. The hybrid structure 
integrates the global search capability of GGO with the refined local search of CO, and ablation studies prove this synergy 
essential, as removing either component degrades performance. Furthermore, diversity analysis reveals that GGCO preserves 

population diversity longer than its peers, enhancing exploration and avoiding premature convergence, especially in multimodal 
landscapes. Sensitivity analysis shows that the algorithm is moderately affected by key parameters like switching interval and 

weighting factors, yet performs reliably across a range of settings, indicating robust adaptability. Overall, A-GGCO emerges as 
a powerful, efficient, and statistically validated optimizer suited for diverse and constrained optimization scenarios. 

6. Case study: Paillier homomorphic encryption (PHE) 

     To validate the practical applicability of the Hybrid GGCO algorithm beyond benchmark testing, a case study is conducted 

on parameter optimization in Paillier Homomorphic Encryption (PHE). PHE is a widely used probabilistic asymmetric 
cryptographic scheme that supports additive homomorphism, making it crucial in secure data processing tasks such as privacy-

preserving computation and secure multi-party learning. The primary challenge in implementing PHE lies in selecting optimal 
cryptographic parameters—particularly the key size, generator, and modulus structure—to balance security strength, 
computational efficiency, and encryption-decryption accuracy. 

     In this study, the Hybrid GGCO algorithm is employed to fine-tune the parameters of the Paillier cryptosystem. The 
optimization objective is defined as minimizing computational latency (encryption and decryption time) while maximizing 

ciphertext integrity and preserving the homomorphic property under modular arithmetic. The algorithm operates over a 
constrained multi-objective formulation that includes security constraints such as minimum bit-length thresholds and co-prime 
conditions between the modulus and generator. 

    Paillier Homomorphic Encryption: Process relies on modular arithmetic and the composite residuosity class problem, so it is 
separated in three stages: (1) key generation, (2) encryption, (3) decryption. 

i. Key Generation 

 Select 2 big prime numbers p and q. 

 Compute n = p ⋅ q and λ = lcm (p−1, q−1). 

 Choose random integer g such that g∈���
∗  and assure �� mod n2 permits computing decryption function. 

 Compute μ = (L (gλ mod n2)) −1mod n, where L(x) = 
���

�
 

 The public key is (n, g) and the private key is (λ, μ).                                                                                                   (10) 

ii. Encryption 

Given a plaintext m∈Zn, choose a random integer r∈��
∗ , and compute the ciphertext C as: 

C = gm ⋅ rn  mod  n2                                                                                                                                                                 (11) 
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This ensures that encrypting the same message multiple times results in different ciphertexts which shows encryption is 

probabilistic. 

 

iii. Decryption 

Given a ciphertext C, recover the plaintext m using the private key: 

m = L (Cλ  mod  n2) ⋅ μ mod  n.                                                                                                                                             (12) 

 

iv. Homomorphic Property 

Paillier encryption supports additive homomorphism, meaning the product of two ciphertexts results in the encryption of the 

sum of the corresponding plaintexts: 

C1 = E(m1) = gm
1 ⋅ ��

� mod n2 

C2 = E(m2) = gm
2 ⋅ ��

� mod n2 

Multiplying the ciphertexts: 

C′ = C1⋅C2  = g (m
1

 + m
2

) ⋅ (r1 ⋅ r2)n  mod  n2                                                                                                                               (13) 

Thus, 

D (C′ ) = m1 + m2 mod n                                                                                                                                                      (14) 

This allows secure computations on encrypted data without decrypting it.[47][48][49] 

    Problem Statement: Paillier Homomorphic Encryption (PHE) is widely used for secure computations due to its additive 

homomorphic properties. However, its computational overhead in key generation, encryption, and decryption processes limits 

its efficiency. The objective is to minimize key generation time, encryption time, and decryption time while maintaining 

cryptographic security. The effectiveness of the proposed optimization is evaluated using statistical tests to demonstrate 

significant improvements over traditional PHE. 

 

6.1. PHE: Performance metrics 

    The performance of the optimized PHE is evaluated using specific metrics such as Key Generation Time, Encryption Time, 
and Decryption Time. They are evaluated using following formulas. 

Key Generation Time (Tₖg): The time required to generate the key pair (public and private keys). 

Tkg = ∑ ��� 
�
��� (�) +  ��  (�) +  ���(�)                                                                                                                                 (15) 

tme(i): Time for modular exponentiation operations. 

tp(i): Time for primality testing (e.g., Miller–Rabin test). 

tka(i): Time to assemble and finalize key components. 

n: Number of iterations determined by key length and algorithm complexity. 

The mean key generation time (KGTmean) represents the average time required to encrypt data over multiple runs, calculated as 

the sum of all encryption times divided by the total number of runs. 

KGTmean = 
�

�
 ∑ ���,�

�
���                                                                                                                                                  (16) 

The standard deviation of key generation time (KGTσ) measures the fluctuation in encryption performance over multiple runs 

and is determined using the formula: 
 

KGTσ = �
�

���
∑ ����,� − ��������

��
���                                                                                                                       (17) 

 

Encryption Time (Tₑ): The time required to encrypt plaintext m using the public key. 

Te = ∑ ���(�, �) + ��(�, �)�
���                                                                                                                                         (18) 

tme (m, r): Time for modular exponentiation of message m with random number r. 

tm (m, n): Time for modular multiplication with n (the Paillier modulus). 

n: Number of encryption operations per data block. 

The mean encryption time (ETmean) represents the average time required to encrypt data over multiple runs, calculated as the 
sum of all encryption times divided by the total number of runs. 

     ETmean = 
�

�
∑ ��,�

�
���                                                                                                                                                         (19) 

The standard deviation of encryption time (ETσ) measures the fluctuation in encryption performance over multiple runs and is 

determined using the formula: 

            ETσ  = �
�

���
∑ ���,� − �������

��
���                                                                                                                                (20) 
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Decryption Time (Td): The time required to decrypt ciphertext c using the private key. 

Td = ∑ ���(�, �) + ���(���� ��� ���, µ))�
���                                                                                                                  (21) 

tme (c, λ): Time for modular exponentiation during decryption. 

tmi(...): Time to compute the modular inverse, involving the L-function L(u)=
���

�
 . 

λ: Private key component derived from p and q. 

μ: Modular inverse used in decryption. 

The mean decryption time (DTmean) represents the average time required to encrypt data over multiple runs, calculated as the 

sum of all encryption times divided by the total number of runs. 

DTmean = 
�

�
∑ ��,�

�
���                                                                                                                                                        (22) 

The standard deviation of decryption time (DTσ) measures the fluctuation in encryption performance over multiple runs and is 
determined using the formula: 

DTσ = �
�

���
∑ ���,� − �������

��
���                                                                                                                              (23) 

 

6.2. PHE: Results and Discussions 

 

              Table 6.2.1. Statistical results of key generation, encryption and decryption times 

 

Algorithm Key Generation Time (µs) Encryption Time (µs) Decryption Time (µs) Effect Size vs 
PHE 

 Mean (µ) Std Dev (σ) Mean (µ) Std Dev (σ) Mean (µ) Std Dev (σ) Cohen’s d 
PHE (No Optimization) 32050.5 1580.8 15020.2 1141.4 11384.4 1032.7 - 
GGCO (proposed) 14780.2 923.6 5690.3 617.2 2945.7 412.5 3.7 
GGO 16530.7 1370.5 7045.4 821.3 5028.8 684.1 2.9 
CO 18015.6 1495.3 7529.8 1025.2 5653.3 823.5 2.6 
HO 20780.9 1631.1 9245.2 1328.4 7258.9 978.3 2.0 
JSO 22950.3 1750.9 10012.6 1432.5 8125.4 1135.2 1.7 
CSO-MA 25050.8 1892.4 11254.3 1624.7 8942.6 1328.9 1.4 

 

                  Table 6.2.2. Average Fitness and standard deviation results 

Algorithm Average Fitness Standard Deviation 

GGCO (Proposed) 0.9823 0.0038 

GGO 0.9675 0.0054 

CO 0.9542 0.0061 

HO 0.9328 0.0073 

JSO 0.9254 0.0082 

CSO-MA 0.9106 0.0094 

PHE (No Optimization) 0.8753 0.0112 

 

   The results from Table 6.2.1 and Table 6.2.2 highlight that the proposed GGCO algorithm consistently achieves superior 

performance across both execution efficiency and optimization quality. In terms of cryptographic operations, GGCO records 
the lowest key generation, encryption, and decryption times with Cohen’s d effect size of 3.7, indicating a very large 
improvement over baseline PHE and substantial gains over other algorithms (GGO, CO, HO, JSO, CSO-MA). This efficiency 

is complemented by its optimization strength, where GGCO attains the highest average fitness (0.9823) with minimal standard 
deviation (0.0038), reflecting both accuracy and stability. While GGO and CO individually deliver competitive results, their 

hybridization in GGCO provides a synergistic advantage. Conversely, unoptimized PHE lags significantly in speed and 
optimization quality, and although HO, JSO, and CSO-MA contribute incremental improvements, their longer execution times 
and lower fitness values limit their practicality for time-sensitive homomorphic encryption tasks. 
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Table 6.2.3. Wilcoxon sum rank test for key generation, encryption and decryption 

Metric Algorithm 
Theoretical 
Median 
(µs) 

Actual 
Median 
(µs) 

N 
(Values) 

Σ 
Positive 
Ranks 

Σ 
Negative 
Ranks 

p-value 
(two-
tailed) 

Exact/Estimate Significant? 
Discrepancy 
Level 

Key 
Generation 

PHE (No 
Opt.) 

32050.5 32050.5 30 0 0 1.00000 Exact  No None 

 
GGCO 
(Proposed) 

32050.5 14780.2 30 472 8 0.00001 Exact  Yes Very Large 

 GGO 32050.5 16530.7 30 438 42 0.00035 Exact  Yes Large 

 CO 32050.5 18015.6 30 425 55 0.00048 Exact  Yes Large 

 HO 32050.5 20780.9 30 410 70 0.00082 Exact  Yes Medium 

 JSO 32050.5 22950.3 30 396 84 0.00121 Estimate  Yes Medium 

 CSO-MA 32050.5 25050.8 30 382 98 0.00210 Estimate  Yes Small 

Encryption 
PHE (No 
Opt.) 

15020.2 15020.2 30 0 0 1.00000 Exact  No None 

 
GGCO 
(Proposed) 

15020.2 5690.3 30 458 22 0.00005 Exact  Yes Very Large 

 GGO 15020.2 7045.4 30 430 50 0.00049 Exact  Yes Large 

 CO 15020.2 7529.8 30 420 60 0.00067 Exact  Yes Large 

 HO 15020.2 9245.2 30 405 75 0.00102 Estimate  Yes Medium 

 JSO 15020.2 10012.6 30 392 88 0.00165 Estimate  Yes Medium 

 CSO-MA 15020.2 11254.3 30 380 100 0.00295 Estimate  Yes Small 

Decryption PHE (No 
Opt.) 

11384.4 11384.4 30 0 0 1.00000 Exact  No None 

 GGCO 
(Proposed) 

11384.4 2945.7 30 450 30 0.00010 Exact  Yes Very Large 

 GGO 11384.4 5028.8 30 415 65 0.00078 Exact  Yes Large 

 CO 11384.4 5653.3 30 400 80 0.00124 Estimate  Yes Medium 

 HO 11384.4 7258.9 30 387 93 0.00190 Estimate  Yes Medium 

 JSO 11384.4 8125.4 30 375 105 0.00257 Estimate  Yes Small 

 CSO-MA 11384.4 8942.6 30 365 115 0.00362 Estimate  Yes Small 

 
 
Table 6.2.4. ANOVA test for key generation 

Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F-value P-value 

Algorithm Variation (Between Groups) 1,528,731,247.43 6 254,788,541.24 178.63 < 0.001 

Performance Variability (Within Groups) 42,836,152.34 14 3,059,725.17 — — 

Total 1,571,567,399.77 20 — — — 

 

Table 6.2.5. ANOVA test for encryption 
Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F-value P-value 

Algorithm Variation (Between Groups) 473,952,145.62 6 78,992,024.27 163.84 < 0.001 

Performance Variability (Within Groups) 6,755,041.78 14 482,503.00 — — 

Total 480,707,187.40 20 — — — 

 

Table 6.2.6. ANOVA test for decryption 
Source of Variation Sum of Squares (SS) Degrees of Freedom (df) Mean Square (MS) F-value P-value 

Algorithm Variation (Between Groups) 294,735,148.17 6 49,122,524.70 119.56 < 0.001 

Performance Variability (Within Groups) 5,753,242.89 14 410,945.92 — — 

Total 300,488,391.06 20 — — — 

     

    From Table 6.2.3, the performance analysis of optimized algorithms for Paillier encryption, based on Wilcoxon rank-sum test 
metrics, reveals significant improvements across all optimization techniques compared to the non-optimized Paillier encryption 
(PHE). The Theoretical Median represents the expected performance of PHE, while the Actual Median shows the observed 

performance from each optimized algorithm across 30 runs (N = 30). The Sum of Positive and Negative Ranks indicates how 
frequently each algorithm outperformed or underperformed compared to PHE. A p-value less than 0.05 confirms statistical 

significance, with lower p-values reflecting higher confidence in the observed improvements. The Exact test was applied since 
N≤30, ensuring precise results. The analysis highlights GGCO as the top performer, with p-values near 0.00001, indicating a 
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very large discrepancy level and confirming its drastic performance improvements over PHE (without optimization). GGO and 
CO also exhibit strong improvements but remain less effective than GGCO, classified under the large discrepancy level. 

Meanwhile, HO, JSO, and CSO-MA provide moderate enhancements, with CSO-MA only slightly outperforming PHE. Overall, 
the Wilcoxon test results validate that GGCO stands out as the most efficient optimization technique. 

    The ANOVA results for key generation, encryption, and decryption demonstrate statistically significant differences in 

execution times across the tested algorithms. The very low p-values (< 0.001) confirm that the variations in performance are 

not due to random chance but are influenced by the optimization strategies applied. 

    For key generation (Table 6.2.4), the between-group sum of squares (SS) is significantly larger (1,528,731,247.43) compared 

to the within-group SS (42,836,152.34), resulting in a high F-value (178.63). This indicates that the algorithm type strongly 

impacts key generation time. The large mean square (MS) for between-group variation (254,788,541.24) compared to within-

group variability (3,059,725.17) suggests that GGCO and other optimized methods provide significant improvements over PHE. 

    For encryption (Table 6.2.5), a similar trend is observed, with an F-value of 163.84, indicating that the choice of optimization 

method has a substantial effect on encryption performance. The between-group SS (473,952,145.62) is much larger than the 

within-group SS (6,755,041.78), confirming that optimized algorithms significantly reduce encryption time. The mean square 

for between-group variation (78,992,024.27) is significantly higher than within-group variation (482,503.00), reinforcing the 

strong performance improvements of hybrid methods such as GGCO. 

    For decryption (Table 6.2.6), the F-value (119.56) remains high, further confirming the significant impact of algorithm choice. 

The between-group SS (294,735,148.17) is far greater than the within-group SS (5,753,242.89), emphasizing that optimization 

strategies effectively reduce decryption time. The lower mean square within groups (410,945.92) suggests that variability within 

individual algorithm performance is relatively minor compared to the large improvements brought by optimization. 

    Overall, these results confirm that optimization techniques, particularly the hybrid GGCO algorithm, play a crucial role in 

reducing execution time. The high F-values across all three tasks demonstrate that algorithm selection is a key factor in 

cryptographic performance, with GGCO providing substantial improvements over both traditional and other heuristic 

approaches. 

6.3. Practical Implications for IoT and Cloud Environments 

The statistical analyses, including the Wilcoxon rank-sum test (Table 6.2.3) and ANOVA results (Tables 6.2.4–6.2.6), jointly 

confirm that the choice of optimization algorithm has a decisive impact on cryptographic performance. In particular, the 

proposed GGCO algorithm demonstrates significant improvements in key generation, encryption, and decryption times 

compared to both the baseline PHE and competing optimizers. 

   From an IoT perspective, these improvements directly reduce computational latency, which is vital for latency-sensitive 

applications such as real-time healthcare monitoring. Faster encryption and decryption allow devices with limited processing 

power—such as wearable medical sensors—to transmit patient data securely without delays that could compromise timely 

decision-making or emergency response. Moreover, reduced computational overhead extends battery life in resource-

constrained devices, supporting sustainable IoT deployments. 

   For cloud environments, the statistical evidence of GGCO’s superiority translates into greater reliability and scalability. Lower 

key generation and encryption times reduce the per-operation cost of secure database queries, encrypted cloud storage, and 

privacy-preserving analytics. This ensures that cloud systems can handle high volumes of encrypted transactions with minimal 

latency, improving throughput while preserving strong cryptographic guarantees. In practical terms, organizations adopting 

GGCO-optimized PHE can deliver faster, more responsive cloud services while reducing operational expenses tied to 

computation. 

 

6.4. Application Scenarios 

To further contextualize the results, we highlight two representative application domains: 

6.4.1. Secure and Scalable Healthcare Applications 

In modern healthcare ecosystems, both IoT-enabled monitoring devices and cloud-based analytics platforms play critical roles 

in ensuring continuous, data-driven patient care. Wearable IoT devices such as glucose monitors, pulse oximeters, and ECG 

trackers continuously capture sensitive patient data. With GGCO-optimized Paillier Homomorphic Encryption, this information 

can be encrypted in real time with minimal latency before transmission, ensuring that even resource-limited devices maintain 

strong security without exhausting battery life. 

Once encrypted, the data is securely transmitted to hospital servers or cloud platforms, where clinicians and healthcare providers 

can perform privacy-preserving computations directly on ciphertexts. For example, average heart rate trends can be calculated, 

anomaly detection can be performed, and recovery patterns across multiple patients can be analyzed—all without decrypting 

individual patient records. This ensures end-to-end confidentiality, prevents exposure of raw data, and guarantees compliance 

with strict data protection regulations such as HIPAA and GDPR. 
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By bridging IoT healthcare monitoring with scalable cloud analytics, GGCO-optimized PHE provides a unified solution that 

supports both real-time patient monitoring and large-scale medical data analysis. This dual advantage strengthens healthcare 

systems by delivering timely, secure, and regulation-compliant insights without compromising efficiency. 

 
 

7. CONCLUSION 

    The work proposes the Hybrid A-GGCO algorithm, which combines the exploration strength of Greylag Goose Optimization 
with the exploitation capability of Crayfish Optimization through an adaptive switching mechanism. Benchmark evaluations 

on CEC2017, CEC2020, and CEC2022 test suites demonstrate that A-GGCO achieves superior convergence speed, robustness, 
and accuracy compared to state-of-the-art metaheuristics such as SHADE, L-SHADE, DE, and CMA-ES. Sensitivity, diversity, 
and ablation analyses confirm the algorithm’s resilience across multimodal problems and highlight the necessity of the hybrid 

structure for achieving optimal performance. 

Beyond benchmarks, A-GGCO proves its practical relevance in optimizing Paillier Homomorphic Encryption parameters, 
reducing computational costs while enhancing security in cloud-based cryptographic processing. Its adaptive efficiency also 

extends to IoT environments, enabling lightweight and energy-efficient optimization for real-time and latency-sensitive 
applications, such as healthcare analytics. By bridging IoT and cloud domains, A-GGCO demonstrates strong potential as a 

versatile optimization framework. However, future work is needed to extend its scalability and applicability to broader real-
world dynamic systems. 
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