
Implementation Of Approximate SOFTMAX
Function For Neural Network

1 Yuvarani S

Department of Electronics and
Communication Engineering
V.S.B. Engineering College

Karur, India.

4 Vikram S

Department of Electronics and
Communication Engineering
V.S.B. Engineering College

Karur, India.

2 Yuvaraj V
Department of Electronics and
Communication Engineering

V.S.B. Engineering College
Karur, India.

5 Saran M

Department of Electronics and
Communication Engineering
V.S.B. Engineering College

Karur, India.

3 Sakthi Siddharth S
Department of Electronics and
Communication Engineering

V.S.B. Engineering College
Karur, India.

ABSTRACT--The IEEE 754 floating-point standard is

fundamental in digital computing, enabling efficient numerical

operations across various applications. This study presents a

novel VLSI-based hardware architecture for the Softmax

activation function, an essential component in deep neural

networks (DNNs). The Softmax function converts raw neural

network outputs into probability distributions for classification

tasks. However, traditional hardware implementations suffer

from high power consumption, latency, and area inefficiency

due to the complexity of floating-point division and exponential

computations. To address these challenges, we propose a high-

performance VLSI design incorporating a pipelined clock-

based division technique and an optimized exponential

computation unit. The architecture consists of three key

modules: (i) an Exponent Module that efficiently computes

exponentials using IEEE 754 floating-point representation, (ii)

an Adder Tree that rapidly sums exponentials with minimized

delay and area, and (iii) a Pipelined Divider that performs

normalization efficiently. The pipelined division approach

significantly reduces execution time while maintaining high

precision. Additionally, we explore an approximate Softmax

implementation to achieve further improvements in speed and

resource utilization. Comparative analysis with traditional

Softmax implementations highlights improvements in power

efficiency, accuracy, and latency. Experimental results

demonstrate that our proposed design effectively balances

computational complexity with hardware efficiency, making it

suitable for real-time deep learning applications. This work

contributes to enhancing neural network hardware accelerators

by reducing energy consumption and improving execution

speed, ensuring optimal performance in edge and embedded AI

systems.

Keywords: IEEE 754, Softmax function, Floating-point

arithmetic, VLSI architecture, Pipelined divider, Deep neural

networks, Energy efficiency, Low-latency computation, Hardware

acceleration, Digital computing.

I. INTRODUCTION

The IEEE 754 floating-point standard is a widely used numerical

representation in digital computing, enabling efficient arithmetic

operations for a variety of applications, including artificial

intelligence (AI), scientific computing, and embedded systems. One

of the key computational challenges in deep neural networks

(DNNs) is implementing the Softmax activation function, which

plays a critical role in classification tasks by converting raw neural

network outputs into probability distributions. However, the

Softmax function involves exponential computations and floating-

point division, both of which are computationally expensive in

hardware implementations. These operations can lead to increased

latency, higher power consumption, and excessive resource

utilization, limiting the efficiency of hardware accelerators in real-

time AI applications. To address these challenges, this study focuses

on designing a high-performance VLSI architecture for the Softmax

function, utilizing pipelined floating-point arithmetic techniques.

The proposed architecture consists of three key modules: an

Exponent Module, an Adder Tree, and a Pipelined Divider. The

Exponent Module efficiently computes the exponentials of input

scores using IEEE 754 floating-point representation, ensuring rapid

calculations. The Adder Tree aggregates the computed exponentials

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 394

with minimized delay and area, while the Pipelined Divider

normalizes these values by computing their ratios against the total

sum, converting them into probability values. The incorporation of

pipelining significantly enhances computation speed and reduces

latency, making the design well-suited for real-time deep learning

applications. Furthermore, this research explores an approximate

Softmax function, which reduces computational complexity while

maintaining accuracy. Traditional implementations suffer from high

power consumption due to the resource-intensive nature of floating-

point operations. Our proposed method aims to optimize power

efficiency while preserving classification accuracy, making it more

practical for edge devices and embedded AI systems. A detailed

comparison between traditional Softmax implementations and the

proposed architecture highlights the advantages in terms of speed,

accuracy, and area efficiency. By optimizing floating-point division

and exponential calculations, our design achieves a balance between

computational efficiency and hardware resource utilization. The

proposed approach ensures reduced energy consumption and

improved performance, making it ideal for low-power AI

accelerators, autonomous systems, and deep learning inference

applications. This study contributes to the ongoing development of

efficient hardware architectures for deep learning, providing a

scalable and optimized solution for real-time Softmax computation.

The findings demonstrate that integrating pipelined floating-point

arithmetic into the Softmax function enhances speed, accuracy, and

power efficiency, paving the way for improved AI hardware

implementations.

II. RELATED WORK

Chen, K., Gao, Y., Waris, H., Liu, W., & Lombardi, F. This study

explores approximate Softmax functions to improve energy

efficiency in deep neural networks. The authors present novel

approximation techniques that reduce computational complexity

while maintaining acceptable accuracy levels. By optimizing

Softmax calculations, the proposed methods enable efficient

hardware implementation, making them suitable for resource-

constrained environments. The research highlights trade-offs

between power consumption and precision, providing insights into

designing energy-efficient neural network models. The findings

contribute to the development of power-efficient deep learning

hardware, improving performance in embedded and edge computing

applications. [1]

Galal, S., & Horowitz, M. This research investigates the design of

energy-efficient floating-point units (FPUs) to optimize power

consumption in high-performance computing. The study proposes

innovative architectural modifications that reduce energy usage

while maintaining computational accuracy. By exploring novel

circuit-level optimizations, the authors present floating-point

designs that achieve improved efficiency without compromising

processing speed. The research findings are applicable to low-power

computing systems, including embedded processors and data

centers. The study offers valuable contributions to the field of

energy-efficient arithmetic computing, aiding in the development of

power-conscious processing units for modern applications. [2]

Yang, Y., Yuan, Q., & Liu, J. The study introduces an area-effective,

high-radix floating-point divider designed for reduced power

consumption. The authors propose a novel architecture that

minimizes the area and energy requirements of floating-point

division operations while maintaining high computational accuracy.

The design utilizes efficient hardware structures to optimize

throughput and reduce delay. This research benefits hardware

implementations in power-constrained environments, such as

embedded systems and mobile devices. The proposed architecture

improves the efficiency of arithmetic units, offering a balanced

trade-off between power consumption, area utilization, and

performance for energy-efficient computing applications. [3]

Surapong, P., & Samman, F. A. This research presents a floating-

point division operator based on the CORDIC (Coordinate Rotation

Digital Computer) algorithm. The study highlights how CORDIC-

based division techniques reduce hardware complexity while

maintaining precision. The proposed method enables efficient

division calculations using iterative shift-add operations instead of

traditional multiplication-based approaches. This leads to lower

power consumption and improved computational efficiency. The

study is particularly relevant for FPGA and ASIC implementations

where optimizing area and energy consumption is critical. The

findings contribute to developing power-efficient arithmetic units

for scientific computing and signal processing applications. [4]

Han, K.-N., Tenca, A. F., & Tran, D. The research introduces a high-

speed floating-point divider with reduced area, designed to enhance

computational efficiency. The authors propose architectural

optimizations that minimize circuit complexity while ensuring high-

speed division operations. The study focuses on improving latency

and power efficiency, making it suitable for embedded processors

and FPGA-based computing systems. The proposed design balances

accuracy and hardware efficiency, providing an effective solution

for applications requiring frequent division operations. The findings

are particularly relevant to performance-driven computing tasks,

including real-time signal processing and advanced mathematical

computations in low-power environments. [5]

Malik, P. This study examines the implementation of high-

throughput floating-point dividers in FPGA-based systems,

focusing on improving computational speed and hardware

efficiency. The proposed design employs parallel processing

techniques and pipeline structures to enhance performance while

maintaining precision. The research highlights FPGA optimizations

that maximize resource utilization, reducing energy consumption in

floating-point operations. The findings are beneficial for FPGA

applications requiring efficient arithmetic computation, such as

machine learning accelerators, real-time image processing, and

scientific simulations. The study contributes to the ongoing

advancements in reconfigurable computing, enabling high-speed

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 395

and energy-efficient floating-point operations in FPGA-based

platforms. [6]

Spagnolo, F., Perri, S., & Corsonello, P. The research investigates

aggressive approximation techniques for the Softmax function to

achieve power-efficient hardware implementations. The study

proposes novel methods that significantly reduce power

consumption by simplifying exponential computations while

maintaining functional accuracy. The authors explore hardware-

friendly approximations that enhance efficiency in neural network

accelerators. The findings contribute to energy-efficient deep

learning model deployment in embedded AI applications. The

proposed methods offer significant benefits for edge computing and

real-time AI inference tasks, balancing computational efficiency and

accuracy while reducing the energy footprint of Softmax operations.

[8]

Mei, Z., Dong, H., Wang, Y., & Pan, H. This study presents TEA-S,

a tiny and efficient architecture for PLAC-based Softmax

computations in transformers. The authors propose a lightweight

and optimized Softmax implementation that enhances processing

speed while minimizing power consumption. The study highlights

the benefits of TEA-S in reducing hardware complexity for

transformer models, making them more efficient for real-time

applications. The proposed approach contributes to the development

of compact and high-performance AI accelerators. The findings are

particularly useful for applications such as natural language

processing (NLP) and real-time AI inference in edge devices. [9]

Horiguchi, S., Ikami, D., & Aizawa, K. This research compares

Softmax-based feature representations with distance metric

learning-based features in various machine learning tasks. The study

examines the effectiveness of Softmax representations in

classification, clustering, and deep learning applications. The

authors highlight the advantages of Softmax in capturing complex

data distributions while maintaining interpretability. The research

provides insights into designing robust machine learning models by

analyzing feature extraction techniques. The findings contribute to

the optimization of feature learning methods, improving the

accuracy and efficiency of classification algorithms in computer

vision and pattern recognition applications. [10]

III. PROPOSED SYSTEM

The proposed system focuses on optimizing the hardware

implementation of the Softmax activation function using IEEE 754

floating-point arithmetic and a pipelined divider to enhance speed,

accuracy, and power efficiency. The traditional Softmax function is

computationally intensive due to its reliance on exponential

calculations and floating-point division, leading to increased latency

and resource usage in hardware implementations. To overcome

these challenges, this study presents a VLSI-based Softmax

architecture designed to improve computational efficiency while

minimizing power consumption and area overhead. The architecture

consists of three primary modules: an Exponent Module, an Adder

Tree Module, and a Pipelined Divider Module. The Exponent

Module converts input values into exponentials using IEEE 754

floating-point representation and employs hardware-optimized

approximation techniques to accelerate computation and reduce

complexity. The Adder Tree Module computes the sum of these

exponentials, which is essential for normalization, using a

hierarchical structure that minimizes delay and improves processing

speed. The Pipelined Divider Module performs the final step by

normalizing each exponential value through a clock-based pipelined

division technique, which enhances throughput and reduces latency

compared to traditional iterative division methods.

Figure 1. System Architecture

To further optimize performance, the system integrates a Pipelined

technique that breaks down complex operations into smaller stages,

allowing simultaneous execution of multiple computations and

significantly reducing execution time. Additionally, an approximate

Softmax implementation is explored to reduce hardware complexity

while maintaining high classification accuracy. Unlike full-

precision floating-point computations, the proposed method

employs approximations that balance speed and precision

effectively. The system is designed to minimize hardware area

usage, making it suitable for FPGA and ASIC implementations in

real-time deep learning applications. The proposed system offers

several advantages over conventional designs. First, latency is

significantly reduced due to the pipelined architecture, making it

suitable for real-time AI applications. Second, power consumption

is minimized by optimizing floating-point operations, making it

ideal for low-power edge computing and embedded AI systems.

Third, accuracy is preserved, even with hardware-friendly

approximations, ensuring reliable classification performance.

Lastly, the modular and scalable design allows seamless integration

into various neural network accelerators and AI hardware platforms.

By refining the Softmax function’s hardware implementation, this

system effectively enhances the efficiency of deep learning

accelerators. The combination of pipelining, approximation, and

optimized floating-point division ensures a balance between speed,

accuracy, and resource utilization, making it a high-performance

solution for real-time deep learning applications.

IV. METHODOLOGY AND TECHNOLOGIES USED

IEEE 754 Floating-Point Arithmetic for Softmax Computation

The Softmax function involves complex mathematical operations,

including exponentiation and division, requiring high precision. The

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 396

system employs IEEE 754 floating-point representation to handle

these operations efficiently. Instead of traditional computationally

expensive methods, piecewise linear approximation and lookup

tables (LUTs) are used for faster exponentiation. The floating-point

representation ensures accuracy while optimizing hardware usage.

The exponentiation step transforms neural network outputs into

probability values with reduced latency and high precision. This

method allows efficient execution in deep learning applications,

ensuring that Softmax computation remains energy-efficient, high-

speed, and hardware-friendly for real-time AI accelerators.

Hierarchical Adder Tree for Efficient Summation

Summing the exponentials is crucial for Softmax normalization.

Instead of sequential addition, which introduces high latency, a

hierarchical adder tree is implemented to improve speed. The adder

tree performs summation in a parallelized and pipelined manner,

significantly reducing delay. By breaking down the summation

process into smaller stages, each pipeline stage can process a portion

of the sum simultaneously, enhancing throughput. This approach

ensures minimal power consumption and efficient resource

utilization. The adder tree architecture allows for scalability in

FPGA and ASIC designs, making it suitable for AI hardware

accelerators that require low latency and high-speed computations.

Pipelined Floating-Point Division for Normalization

Floating-point division is typically slow and computationally

expensive, making Softmax normalization a challenge in hardware

implementations. To improve efficiency, the system employs a

pipelined floating-point division technique, breaking down division

into multiple clock-based stages. Each pipeline stage processes part

of the computation, allowing simultaneous execution of multiple

division operations. This reduces latency and increases throughput,

making the system suitable for real-time deep learning applications.

The division module also minimizes power consumption and area

utilization by using hardware-efficient division algorithms. The

result is a fast, accurate, and resource-efficient Softmax function for

AI and embedded systems.

Optimization for Power, Speed, and Area Efficiency

To ensure high-performance computing with minimal hardware

overhead, the Softmax function is designed with low-power, high-

speed, and area-efficient techniques. Approximate computing

methods, such as piecewise linear approximation for exponentiation

and a pipelined divider for normalization, significantly reduce

energy consumption and execution time. The design is modular and

scalable, allowing for parallel processing and efficient integration

into FPGA and ASIC platforms. By optimizing hardware resources,

the system ensures a balanced trade-off between accuracy, power

efficiency, and computational speed, making it a suitable choice for

deep learning inference, AI accelerators, and edge computing.

Technologies Used

Verilog HDL for Hardware Description and Implementation

The system is implemented using Verilog HDL (Hardware

Description Language), which allows precise control over hardware

resources and parallel processing. Verilog enables the design of

optimized digital circuits, including floating-point arithmetic units,

adder trees, and pipelined dividers. It is suitable for both FPGA and

ASIC implementations, ensuring scalability for different AI

hardware accelerators. Using Verilog, the Softmax function is

efficiently structured with minimal logic gates and optimized

computation stages. This approach allows for a high-performance,

low-latency, and power-efficient implementation of the Softmax

function in deep learning applications.

FPGA and ASIC for Hardware Synthesis and Deployment

The Softmax function is designed for FPGA (Field-Programmable

Gate Array) and ASIC (Application-Specific Integrated Circuit)

implementations. FPGAs provide flexibility for real-time testing,

allowing developers to evaluate performance before ASIC

fabrication. The design is optimized for resource efficiency, power

reduction, and high-speed operation, making it suitable for deep

learning inference accelerators. ASIC implementations further

refine the design by minimizing energy consumption and silicon

area, ensuring a cost-effective solution for AI processors. By

targeting FPGA and ASIC platforms, the proposed Softmax

hardware can be integrated into real-time AI applications with

superior efficiency.

Model Sim and Xilinx Vivado for Simulation and Verification

The system is verified and simulated using industry-standard tools

such as Model Sim and Xilinx Vivado. These tools allow functional

verification, timing analysis, and power estimation, ensuring that the

design meets performance expectations. Model Sim is used for gate-

level and RTL (Register Transfer Level) simulations, identifying any

potential logic errors. Xilinx Vivado is used for FPGA synthesis,

resource utilization analysis, and real-time debugging. These

verification tools ensure that the hardware implementation is

optimized for speed, accuracy, and low power consumption, making

it ready for deployment in deep learning and AI hardware

accelerators.

Pipelined and Approximate Computing Techniques for

Optimization

To achieve high-speed computation while reducing power

consumption, the design incorporates pipelining and approximate

computing techniques. Pipelining allows different stages of Softmax

computation—exponentiation, summation, and division—to be

processed simultaneously, improving throughput. Approximate

computing techniques, such as piecewise linear approximation and

LUT-based exponential calculations, reduce hardware complexity

and execution time while maintaining high accuracy. These

techniques ensure that the system optimally balances precision,

efficiency, and resource utilization, making it suitable for AI-driven

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 397

500
400
300
200
100

0

Overall Delay

Gate Delay

Path Delay

Existing Sigmoid Proposed Sigmoid

Function Function with
Clock Gating

30000
25000
20000
15000
10000

5000
0

Existing Sigmoid
Function

Proposed
Sigmoid Function

with Clock
Gating

LUT

Slices

Gates

applications, real-time neural network processing, and edge

computing devices.

V. RESULT AND DESCUSSION

The proposed hardware implementation of the Softmax function

demonstrates significant improvements in speed, power efficiency,

and resource utilization compared to traditional designs.

The integration of a pipelined floating-point division and

hierarchical adder tree enables faster computation, reducing the

latency associated with traditional methods.

FPGA-based synthesis and testing confirm that the pipelined

architecture ensures continuous data processing, making it well-

suited for real-time deep learning applications. The optimized

approach effectively eliminates computational bottlenecks, allowing

for high-throughput execution without excessive hardware

overhead. Power consumption analysis reveals that the design is

energy-efficient, leveraging approximate computing techniques to

minimize power usage without sacrificing performance.

The implementation of piecewise linear approximation and lookup

tables (LUTs) for exponential computation reduces the

computational complexity, contributing to a lower power footprint.

The efficiency of the proposed system makes it an ideal candidate

for low-power AI accelerators and embedded deep learning

applications where energy constraints are critical.

A comparative study with traditional Softmax implementations

highlights the superiority of the proposed method in terms of both

execution time and resource utilization. The IEEE 754 floating-

point arithmetic ensures precise calculations while maintaining

numerical stability.

Figure 5. Delay graph

The pipelined division module, in particular, enhances computation

speed, preventing processing delays commonly observed in iterative

division techniques.

These enhancements contribute to an overall improvement in

performance, making the system scalable and adaptable for various

AI-driven applications.

Figure 8. Area Graph

Accuracy evaluation shows that the system maintains high precision

in probability computations, which is essential for classification

tasks in deep neural networks. The hardware-optimized approach

successfully mitigates issues such as floating-point rounding errors

and numerical instability, ensuring reliable output for neural

network inference.

With its efficient use of resources, reduced power consumption, and

high-speed execution, the proposed Softmax function

implementation proves to be a practical and scalable solution for AI

accelerators, deep learning processors, and edge computing

applications.

VI. CONCLUSION AND FUTURE ENHANCEMENT

The proposed hardware-accelerated Softmax function successfully

improves the efficiency, speed, and power consumption of deep

learning inference systems. By integrating IEEE 754 floating-point

arithmetic, pipelined floating-point division, and a hierarchical

adder tree, the design achieves low latency, high throughput, and

optimized resource utilization. The implementation effectively

balances accuracy and computational complexity, ensuring reliable

probability computations for classification tasks. FPGA-based

synthesis results confirm that the proposed architecture outperforms

traditional Softmax implementations in terms of execution time,

energy efficiency, and scalability. These improvements make it a

suitable solution for real-time AI accelerators, deep learning

processors, and edge computing applications.

Future enhancements could focus on further reducing power

consumption by integrating low-power design techniques such as

dynamic voltage scaling (DVS) and clock gating. Additionally,

hardware-friendly approximate Softmax algorithms can be explored

to minimize computation time while maintaining accuracy.

Expanding support for custom precision floating-point formats

could improve efficiency in applications with lower accuracy

requirements. The design could also be optimized for ASIC

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 398

implementation, reducing area and fabrication costs for large-scale

AI hardware. Finally, integrating the Softmax accelerator with other

deep learning modules, such as convolutional and recurrent layers,

could lead to a fully optimized AI inference engine for embedded

and high-performance computing systems.

REFERENCE:

[1] K. Chen, Y. Gao, H. Waris, W. Liu and F. Lombardi,

"Approximate Softmax Functions for Energy-Efficient Deep Neural

Networks," in IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 31, no. 1, pp. 4-16, Jan. 2023, doi:

10.1109/TVLSI.2022.3224011.

[2] S. Galal and M. Horowitz, “Energy-efficient floating-point unit

design,” IEEE Trans. Comput., vol. 60, no. 7, pp. 913–922, Jul.

2011.

[3] Y. Yang, Q. Yuan, and J. Liu, “An architecture of area-effective

high radix floating-point divider with low-power consumption,”

IEEE Access, vol. 9, pp. 40039–40048, 2021.

[4] P. Surapong and F. A. Samman, “Floating-point division operator

based on cordic algorithm,” ECTI Trans. Comput. Inf. Technol.

(ECTI-CIT), vol. 7, no. 1, pp. 79–87, Jan. 1970.

[5] K.-N. Han, A. F. Tenca, and D. Tran, “High-speed floating-point

divider with reduced area,” Proc. SPIE Math. Signal Inf. Process.,

vol. 7444, Oct. 2009, Art. no. 74440O.

[6] P. Malik, “High throughput floating-point dividers implemented

in FPGA,” in Proc. IEEE 18th Int. Symp. Design Diag. Electron.

Circuits Syst., Apr. 2015, pp. 291–294.

[7] Ke Chen; Yue Gao; Haroon Waris; Weiqiang Liu; Fabrizio

Lombardi, " Approximate Softmax Functions for Energy-Efficient

Deep Neural Networks", IEEE Transactions on Very Large Scale

Integration (VLSI) Systems (Volume: 31, Issue: 1, January 2023).

[8] F. Spagnolo, S. Perri and P. Corsonello, "Aggressive

Approximation of the SoftMax Function for Power-Efficient

Hardware Implementations," in IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 69, no. 3, pp. 1652-1656, March

2022, doi: 10.1109/TCSII.2021.3120495.

[9] Z. Mei, H. Dong, Y. Wang and H. Pan, "TEA-S: A Tiny and

Efficient Architecture for PLAC-Based Softmax in Transformers,"

in IEEE Transactions on Circuits and Systems II: Express Briefs,

vol. 70, no. 9, pp. 3594-3598, Sept. 2023, doi:

10.1109/TCSII.2023.3265710.

[10] S. Horiguchi, D. Ikami and K. Aizawa, "Significance of

Softmax-Based Features in Comparison to Distance Metric

Learning-Based Features," in IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 42, no. 5, pp. 1279-1285, 1

May 2020, doi: 10.1109/TPAMI.2019.2911075.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 399

