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ABSTRACT--The IEEE 754 floating-point standard is 

fundamental in digital computing, enabling efficient numerical 

operations across various applications. This study presents a 

novel VLSI-based hardware architecture for the Softmax 

activation function, an essential component in deep neural 

networks (DNNs). The Softmax function converts raw neural 

network outputs into probability distributions for classification 

tasks. However, traditional hardware implementations suffer 

from high power consumption, latency, and area inefficiency 

due to the complexity of floating-point division and exponential 

computations. To address these challenges, we propose a high- 

performance VLSI design incorporating a pipelined clock- 

based division technique and an optimized exponential 

computation unit. The architecture consists of three key 

modules: (i) an Exponent Module that efficiently computes 

exponentials using IEEE 754 floating-point representation, (ii) 

an Adder Tree that rapidly sums exponentials with minimized 

delay and area, and (iii) a Pipelined Divider that performs 

normalization efficiently. The pipelined division approach 

significantly reduces execution time while maintaining high 

precision. Additionally, we explore an approximate Softmax 

implementation to achieve further improvements in speed and 

resource utilization. Comparative analysis with traditional 

Softmax implementations highlights improvements in power 

efficiency, accuracy, and latency. Experimental results 

demonstrate that our proposed design effectively balances 

computational complexity with hardware efficiency, making it 

suitable for real-time deep learning applications. This work 

contributes to enhancing neural network hardware accelerators 

by reducing energy consumption and improving execution 

speed, ensuring optimal performance in edge and embedded AI 

systems. 

Keywords: IEEE 754, Softmax function, Floating-point 

arithmetic, VLSI architecture, Pipelined divider, Deep neural 

networks, Energy efficiency, Low-latency computation, Hardware 

acceleration, Digital computing. 

 

 
I. INTRODUCTION 

The IEEE 754 floating-point standard is a widely used numerical 

representation in digital computing, enabling efficient arithmetic 

operations for a variety of applications, including artificial 

intelligence (AI), scientific computing, and embedded systems. One 

of the key computational challenges in deep neural networks 

(DNNs) is implementing the Softmax activation function, which 

plays a critical role in classification tasks by converting raw neural 

network outputs into probability distributions. However, the 

Softmax function involves exponential computations and floating- 

point division, both of which are computationally expensive in 

hardware implementations. These operations can lead to increased 

latency, higher power consumption, and excessive resource 

utilization, limiting the efficiency of hardware accelerators in real- 

time AI applications. To address these challenges, this study focuses 

on designing a high-performance VLSI architecture for the Softmax 

function, utilizing pipelined floating-point arithmetic techniques. 

The proposed architecture consists of three key modules: an 

Exponent Module, an Adder Tree, and a Pipelined Divider. The 

Exponent Module efficiently computes the exponentials of input 

scores using IEEE 754 floating-point representation, ensuring rapid 

calculations. The Adder Tree aggregates the computed exponentials 
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with minimized delay and area, while the Pipelined Divider 

normalizes these values by computing their ratios against the total 

sum, converting them into probability values. The incorporation of 

pipelining significantly enhances computation speed and reduces 

latency, making the design well-suited for real-time deep learning 

applications. Furthermore, this research explores an approximate 

Softmax function, which reduces computational complexity while 

maintaining accuracy. Traditional implementations suffer from high 

power consumption due to the resource-intensive nature of floating- 

point operations. Our proposed method aims to optimize power 

efficiency while preserving classification accuracy, making it more 

practical for edge devices and embedded AI systems. A detailed 

comparison between traditional Softmax implementations and the 

proposed architecture highlights the advantages in terms of speed, 

accuracy, and area efficiency. By optimizing floating-point division 

and exponential calculations, our design achieves a balance between 

computational efficiency and hardware resource utilization. The 

proposed approach ensures reduced energy consumption and 

improved performance, making it ideal for low-power AI 

accelerators, autonomous systems, and deep learning inference 

applications. This study contributes to the ongoing development of 

efficient hardware architectures for deep learning, providing a 

scalable and optimized solution for real-time Softmax computation. 

The findings demonstrate that integrating pipelined floating-point 

arithmetic into the Softmax function enhances speed, accuracy, and 

power efficiency, paving the way for improved AI hardware 

implementations. 

II. RELATED WORK 

Chen, K., Gao, Y., Waris, H., Liu, W., & Lombardi, F. This study 

explores approximate Softmax functions to improve energy 

efficiency in deep neural networks. The authors present novel 

approximation techniques that reduce computational complexity 

while maintaining acceptable accuracy levels. By optimizing 

Softmax calculations, the proposed methods enable efficient 

hardware implementation, making them suitable for resource- 

constrained environments. The research highlights trade-offs 

between power consumption and precision, providing insights into 

designing energy-efficient neural network models. The findings 

contribute to the development of power-efficient deep learning 

hardware, improving performance in embedded and edge computing 

applications. [1] 

Galal, S., & Horowitz, M. This research investigates the design of 

energy-efficient floating-point units (FPUs) to optimize power 

consumption in high-performance computing. The study proposes 

innovative architectural modifications that reduce energy usage 

while maintaining computational accuracy. By exploring novel 

circuit-level optimizations, the authors present floating-point 

designs that achieve improved efficiency without compromising 

processing speed. The research findings are applicable to low-power 

computing systems, including embedded processors and data 

centers. The study offers valuable contributions to the field of 

energy-efficient arithmetic computing, aiding in the development of 

power-conscious processing units for modern applications. [2] 

Yang, Y., Yuan, Q., & Liu, J. The study introduces an area-effective, 

high-radix floating-point divider designed for reduced power 

consumption. The authors propose a novel architecture that 

minimizes the area and energy requirements of floating-point 

division operations while maintaining high computational accuracy. 

The design utilizes efficient hardware structures to optimize 

throughput and reduce delay. This research benefits hardware 

implementations in power-constrained environments, such as 

embedded systems and mobile devices. The proposed architecture 

improves the efficiency of arithmetic units, offering a balanced 

trade-off between power consumption, area utilization, and 

performance for energy-efficient computing applications. [3] 

Surapong, P., & Samman, F. A. This research presents a floating- 

point division operator based on the CORDIC (Coordinate Rotation 

Digital Computer) algorithm. The study highlights how CORDIC- 

based division techniques reduce hardware complexity while 

maintaining precision. The proposed method enables efficient 

division calculations using iterative shift-add operations instead of 

traditional multiplication-based approaches. This leads to lower 

power consumption and improved computational efficiency. The 

study is particularly relevant for FPGA and ASIC implementations 

where optimizing area and energy consumption is critical. The 

findings contribute to developing power-efficient arithmetic units 

for scientific computing and signal processing applications. [4] 

Han, K.-N., Tenca, A. F., & Tran, D. The research introduces a high- 

speed floating-point divider with reduced area, designed to enhance 

computational efficiency. The authors propose architectural 

optimizations that minimize circuit complexity while ensuring high- 

speed division operations. The study focuses on improving latency 

and power efficiency, making it suitable for embedded processors 

and FPGA-based computing systems. The proposed design balances 

accuracy and hardware efficiency, providing an effective solution 

for applications requiring frequent division operations. The findings 

are particularly relevant to performance-driven computing tasks, 

including real-time signal processing and advanced mathematical 

computations in low-power environments. [5] 

Malik, P. This study examines the implementation of high- 

throughput floating-point dividers in FPGA-based systems, 

focusing on improving computational speed and hardware 

efficiency. The proposed design employs parallel processing 

techniques and pipeline structures to enhance performance while 

maintaining precision. The research highlights FPGA optimizations 

that maximize resource utilization, reducing energy consumption in 

floating-point operations. The findings are beneficial for FPGA 

applications requiring efficient arithmetic computation, such as 

machine learning accelerators, real-time image processing, and 

scientific simulations. The study contributes to the ongoing 

advancements in reconfigurable computing, enabling high-speed 
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and energy-efficient floating-point operations in FPGA-based 

platforms. [6] 

 

 
Spagnolo, F., Perri, S., & Corsonello, P. The research investigates 

aggressive approximation techniques for the Softmax function to 

achieve power-efficient hardware implementations. The study 

proposes novel methods that significantly reduce power 

consumption by simplifying exponential computations while 

maintaining functional accuracy. The authors explore hardware- 

friendly approximations that enhance efficiency in neural network 

accelerators. The findings contribute to energy-efficient deep 

learning model deployment in embedded AI applications. The 

proposed methods offer significant benefits for edge computing and 

real-time AI inference tasks, balancing computational efficiency and 

accuracy while reducing the energy footprint of Softmax operations. 

[8] 

Mei, Z., Dong, H., Wang, Y., & Pan, H. This study presents TEA-S, 

a tiny and efficient architecture for PLAC-based Softmax 

computations in transformers. The authors propose a lightweight 

and optimized Softmax implementation that enhances processing 

speed while minimizing power consumption. The study highlights 

the benefits of TEA-S in reducing hardware complexity for 

transformer models, making them more efficient for real-time 

applications. The proposed approach contributes to the development 

of compact and high-performance AI accelerators. The findings are 

particularly useful for applications such as natural language 

processing (NLP) and real-time AI inference in edge devices. [9] 

Horiguchi, S., Ikami, D., & Aizawa, K. This research compares 

Softmax-based feature representations with distance metric 

learning-based features in various machine learning tasks. The study 

examines the effectiveness of Softmax representations in 

classification, clustering, and deep learning applications. The 

authors highlight the advantages of Softmax in capturing complex 

data distributions while maintaining interpretability. The research 

provides insights into designing robust machine learning models by 

analyzing feature extraction techniques. The findings contribute to 

the optimization of feature learning methods, improving the 

accuracy and efficiency of classification algorithms in computer 

vision and pattern recognition applications. [10] 

III. PROPOSED SYSTEM 

The proposed system focuses on optimizing the hardware 

implementation of the Softmax activation function using IEEE 754 

floating-point arithmetic and a pipelined divider to enhance speed, 

accuracy, and power efficiency. The traditional Softmax function is 

computationally intensive due to its reliance on exponential 

calculations and floating-point division, leading to increased latency 

and resource usage in hardware implementations. To overcome 

these challenges, this study presents a VLSI-based Softmax 

architecture designed to improve computational efficiency while 

minimizing power consumption and area overhead. The architecture 

consists of three primary modules: an Exponent Module, an Adder 

Tree Module, and a Pipelined Divider Module. The Exponent 

Module converts input values into exponentials using IEEE 754 

floating-point representation and employs hardware-optimized 

approximation techniques to accelerate computation and reduce 

complexity. The Adder Tree Module computes the sum of these 

exponentials, which is essential for normalization, using a 

hierarchical structure that minimizes delay and improves processing 

speed. The Pipelined Divider Module performs the final step by 

normalizing each exponential value through a clock-based pipelined 

division technique, which enhances throughput and reduces latency 

compared to traditional iterative division methods. 
 

Figure 1. System Architecture 

To further optimize performance, the system integrates a Pipelined 

technique that breaks down complex operations into smaller stages, 

allowing simultaneous execution of multiple computations and 

significantly reducing execution time. Additionally, an approximate 

Softmax implementation is explored to reduce hardware complexity 

while maintaining high classification accuracy. Unlike full- 

precision floating-point computations, the proposed method 

employs approximations that balance speed and precision 

effectively. The system is designed to minimize hardware area 

usage, making it suitable for FPGA and ASIC implementations in 

real-time deep learning applications. The proposed system offers 

several advantages over conventional designs. First, latency is 

significantly reduced due to the pipelined architecture, making it 

suitable for real-time AI applications. Second, power consumption 

is minimized by optimizing floating-point operations, making it 

ideal for low-power edge computing and embedded AI systems. 

Third, accuracy is preserved, even with hardware-friendly 

approximations, ensuring reliable classification performance. 

Lastly, the modular and scalable design allows seamless integration 

into various neural network accelerators and AI hardware platforms. 

By refining the Softmax function’s hardware implementation, this 

system effectively enhances the efficiency of deep learning 

accelerators. The combination of pipelining, approximation, and 

optimized floating-point division ensures a balance between speed, 

accuracy, and resource utilization, making it a high-performance 

solution for real-time deep learning applications. 

IV. METHODOLOGY AND TECHNOLOGIES USED 

IEEE 754 Floating-Point Arithmetic for Softmax Computation 

The Softmax function involves complex mathematical operations, 

including exponentiation and division, requiring high precision. The 
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system employs IEEE 754 floating-point representation to handle 

these operations efficiently. Instead of traditional computationally 

expensive methods, piecewise linear approximation and lookup 

tables (LUTs) are used for faster exponentiation. The floating-point 

representation ensures accuracy while optimizing hardware usage. 

The exponentiation step transforms neural network outputs into 

probability values with reduced latency and high precision. This 

method allows efficient execution in deep learning applications, 

ensuring that Softmax computation remains energy-efficient, high- 

speed, and hardware-friendly for real-time AI accelerators. 

Hierarchical Adder Tree for Efficient Summation 

Summing the exponentials is crucial for Softmax normalization. 

Instead of sequential addition, which introduces high latency, a 

hierarchical adder tree is implemented to improve speed. The adder 

tree performs summation in a parallelized and pipelined manner, 

significantly reducing delay. By breaking down the summation 

process into smaller stages, each pipeline stage can process a portion 

of the sum simultaneously, enhancing throughput. This approach 

ensures minimal power consumption and efficient resource 

utilization. The adder tree architecture allows for scalability in 

FPGA and ASIC designs, making it suitable for AI hardware 

accelerators that require low latency and high-speed computations. 

 

 
Pipelined Floating-Point Division for Normalization 

Floating-point division is typically slow and computationally 

expensive, making Softmax normalization a challenge in hardware 

implementations. To improve efficiency, the system employs a 

pipelined floating-point division technique, breaking down division 

into multiple clock-based stages. Each pipeline stage processes part 

of the computation, allowing simultaneous execution of multiple 

division operations. This reduces latency and increases throughput, 

making the system suitable for real-time deep learning applications. 

The division module also minimizes power consumption and area 

utilization by using hardware-efficient division algorithms. The 

result is a fast, accurate, and resource-efficient Softmax function for 

AI and embedded systems. 

Optimization for Power, Speed, and Area Efficiency 

To ensure high-performance computing with minimal hardware 

overhead, the Softmax function is designed with low-power, high- 

speed, and area-efficient techniques. Approximate computing 

methods, such as piecewise linear approximation for exponentiation 

and a pipelined divider for normalization, significantly reduce 

energy consumption and execution time. The design is modular and 

scalable, allowing for parallel processing and efficient integration 

into FPGA and ASIC platforms. By optimizing hardware resources, 

the system ensures a balanced trade-off between accuracy, power 

efficiency, and computational speed, making it a suitable choice for 

deep learning inference, AI accelerators, and edge computing. 

Technologies Used 

Verilog HDL for Hardware Description and Implementation 

The system is implemented using Verilog HDL (Hardware 

Description Language), which allows precise control over hardware 

resources and parallel processing. Verilog enables the design of 

optimized digital circuits, including floating-point arithmetic units, 

adder trees, and pipelined dividers. It is suitable for both FPGA and 

ASIC implementations, ensuring scalability for different AI 

hardware accelerators. Using Verilog, the Softmax function is 

efficiently structured with minimal logic gates and optimized 

computation stages. This approach allows for a high-performance, 

low-latency, and power-efficient implementation of the Softmax 

function in deep learning applications. 

FPGA and ASIC for Hardware Synthesis and Deployment 

The Softmax function is designed for FPGA (Field-Programmable 

Gate Array) and ASIC (Application-Specific Integrated Circuit) 

implementations. FPGAs provide flexibility for real-time testing, 

allowing developers to evaluate performance before ASIC 

fabrication. The design is optimized for resource efficiency, power 

reduction, and high-speed operation, making it suitable for deep 

learning inference accelerators. ASIC implementations further 

refine the design by minimizing energy consumption and silicon 

area, ensuring a cost-effective solution for AI processors. By 

targeting FPGA and ASIC platforms, the proposed Softmax 

hardware can be integrated into real-time AI applications with 

superior efficiency. 

Model Sim and Xilinx Vivado for Simulation and Verification 

The system is verified and simulated using industry-standard tools 

such as Model Sim and Xilinx Vivado. These tools allow functional 

verification, timing analysis, and power estimation, ensuring that the 

design meets performance expectations. Model Sim is used for gate- 

level and RTL (Register Transfer Level) simulations, identifying any 

potential logic errors. Xilinx Vivado is used for FPGA synthesis, 

resource utilization analysis, and real-time debugging. These 

verification tools ensure that the hardware implementation is 

optimized for speed, accuracy, and low power consumption, making 

it ready for deployment in deep learning and AI hardware 

accelerators. 

Pipelined and Approximate Computing Techniques for 

Optimization 

To achieve high-speed computation while reducing power 

consumption, the design incorporates pipelining and approximate 

computing techniques. Pipelining allows different stages of Softmax 

computation—exponentiation, summation, and division—to be 

processed simultaneously, improving throughput. Approximate 

computing techniques, such as piecewise linear approximation and 

LUT-based exponential calculations, reduce hardware complexity 

and execution time while maintaining high accuracy. These 

techniques ensure that the system optimally balances precision, 

efficiency, and resource utilization, making it suitable for AI-driven 
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applications, real-time neural network processing, and edge 

computing devices. 

 
 
 

 
V. RESULT AND DESCUSSION 

The proposed hardware implementation of the Softmax function 

demonstrates significant improvements in speed, power efficiency, 

and resource utilization compared to traditional designs. 

 
 

 
The integration of a pipelined floating-point division and 

hierarchical adder tree enables faster computation, reducing the 

latency associated with traditional methods. 

FPGA-based synthesis and testing confirm that the pipelined 

architecture ensures continuous data processing, making it well- 

suited for real-time deep learning applications. The optimized 

approach effectively eliminates computational bottlenecks, allowing 

for high-throughput execution without excessive hardware 

overhead. Power consumption analysis reveals that the design is 

energy-efficient, leveraging approximate computing techniques to 

minimize power usage without sacrificing performance. 

The implementation of piecewise linear approximation and lookup 

tables (LUTs) for exponential computation reduces the 

computational complexity, contributing to a lower power footprint. 

The efficiency of the proposed system makes it an ideal candidate 

for low-power AI accelerators and embedded deep learning 

applications where energy constraints are critical. 

A comparative study with traditional Softmax implementations 

highlights the superiority of the proposed method in terms of both 

execution time and resource utilization. The IEEE 754 floating- 

point arithmetic ensures precise calculations while maintaining 

numerical stability. 
 

 
Figure 5. Delay graph 

The pipelined division module, in particular, enhances computation 

speed, preventing processing delays commonly observed in iterative 

division techniques. 

These enhancements contribute to an overall improvement in 

performance, making the system scalable and adaptable for various 

AI-driven applications. 
 

Figure 8. Area Graph 

Accuracy evaluation shows that the system maintains high precision 

in probability computations, which is essential for classification 

tasks in deep neural networks. The hardware-optimized approach 

successfully mitigates issues such as floating-point rounding errors 

and numerical instability, ensuring reliable output for neural 

network inference. 

 

 
With its efficient use of resources, reduced power consumption, and 

high-speed execution, the proposed Softmax function 

implementation proves to be a practical and scalable solution for AI 

accelerators, deep learning processors, and edge computing 

applications. 

VI. CONCLUSION AND FUTURE ENHANCEMENT 

The proposed hardware-accelerated Softmax function successfully 

improves the efficiency, speed, and power consumption of deep 

learning inference systems. By integrating IEEE 754 floating-point 

arithmetic, pipelined floating-point division, and a hierarchical 

adder tree, the design achieves low latency, high throughput, and 

optimized resource utilization. The implementation effectively 

balances accuracy and computational complexity, ensuring reliable 

probability computations for classification tasks. FPGA-based 

synthesis results confirm that the proposed architecture outperforms 

traditional Softmax implementations in terms of execution time, 

energy efficiency, and scalability. These improvements make it a 

suitable solution for real-time AI accelerators, deep learning 

processors, and edge computing applications. 

Future enhancements could focus on further reducing power 

consumption by integrating low-power design techniques such as 

dynamic voltage scaling (DVS) and clock gating. Additionally, 

hardware-friendly approximate Softmax algorithms can be explored 

to minimize computation time while maintaining accuracy. 

Expanding support for custom precision floating-point formats 

could improve efficiency in applications with lower accuracy 

requirements. The design could also be optimized for ASIC 
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implementation, reducing area and fabrication costs for large-scale 

AI hardware. Finally, integrating the Softmax accelerator with other 

deep learning modules, such as convolutional and recurrent layers, 

could lead to a fully optimized AI inference engine for embedded 

and high-performance computing systems. 
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