

National Conference on Advances in Science Engineering and Technology organized

by ECE on 7th November 2025.

REDUCING COMPLEXITY IN LARGE

LANGUAGE MODELS

Yashwantha N

Assistant Professor, Dept. of CSE

(Data Science), SJBIT

yashwantha.nagaraj@gmail.com

 Prajwal B S

Student, Dept. of CSE

(Data Science), SJBIT

bsprajwal01@gmail.com

Sammed Dundappa Saraswatigol

 Student, Dept. of CSE

(Data Science), SJBIT

sammes204@gmail.com

Channabasava

Student, Dept. of CSE

 (Data Science), SJBIT

ragachannu18@gmail.com

 Sangamesh

Student, Dept. of CSE

(Data Science), SJBIT

sanguneela63@gmail.com

Abstract - Large Language Models (LLMs) have

transformed natural language processing by exhibiting

advanced capabilities in comprehension, reasoning, and

context-aware text generation. However, the rapid

escalation in their size and computational requirements

presents major obstacles in training, deployment, and

energy sustainability. The substantial hardware, memory,

and power demands of these models restrict their

accessibility and limit real-time or edge-based

implementation. To address these concerns, current

research emphasizes model-compression and

optimization techniques that maintain accuracy while

improving efficiency. Methods such as quantization,

pruning, knowledge distillation, parameter sharing, and

low-rank adaptation have demonstrated promising

results in reducing redundancy and accelerating

inference. Additionally, hybrid precision and adaptive

computation frameworks seek to balance performance

with computational cost. This survey consolidates recent

progress in efficiency-oriented LLM research, examining

their comparative advantages, limitations, and practical

trade-offs.

Index Terms - Large Language Models (LLMs),

Quantization, Low-Rank Adaptation (LoRA), Post-

Training Quantization (PTQ), Quantization-Aware

Training (QAT).

I. INTRODUCTION

A Large Language Models (LLMs) have emerged as a
cornerstone of modern natural language processing (NLP)

technologies, revolutionizing tasks such as translation, text

summarization, sentiment analysis, question answering,

conversational AI, and code generation. These models,

exemplified by architectures like GPT-3, GPT-4, and

BERT, have demonstrated exceptional performance across

a broad range of applications [2],[3], making them integral

to advancements in artificial intelligence (AI).

Despite their transformative potential, the deployment

of these models in resource-constrained environments

faces significant challenges due to their computational

intensity, extensive memory requirements, and energy

consumption [1],[4].

models capable of delivering high performance without

excessive infrastructure demands. Recent advancements in

quantization techniques, such as low-bit precision models,

offer promising solutions by reducing the resource burden

while preserving model performance [5]. These methods

aim to compress models without compromising their

ability to process language tasks effectively.

Approaches like Low-Rank Adaptation (LoRA) and

Flash Attention enhance memory and computational

efficiency [10], making it feasible to deploy high-

performing models in constrained environments. This

study explores the design and development of a 1.58-bit

precision LLM to address these challenges, providing

scalability for edge computing and other resource-sensitive

domains. By pushing the boundaries of low-bit

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 389

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

quantization, this work seeks to make AI more accessible,

affordable, and sustainable while maintaining competitive

accuracy levels. These models have demonstrated

remarkable performance in a broad range of nature.

II. LITERATURE RIVIEW

Quantization has become a key method to reduce

computational and memory limitations of transformer

based models, particularly large language models (LLMs)

[1],[5]. Lowering the numerical precision of parameters

and activations from floating-point (FP32) to lower-bit

representations enables faster inference and significant

memory savings. Recent research from 2021 to 2024 has

shown that 8-bit and 4-bit quantization can effectively

decrease computational costs while causing minimal loss

in model performance [5]. These methods mainly include

post-training quantization or quantization-aware training

(QAT). QAT involves considering quantization effects

during training to reduce accuracy loss. However,

decreasing precision to 2-bit or 1-bit makes it more

difficult to maintain performance because of limited

representational capacity [1].

Consistent performance at 1-bit precision remains an

unresolved issue. We need solutions that include error

mitigation techniques. These techniques use additional

strategies, such as maintaining floating-point scaling

factors alongside binary representations to recover lost

precision.

These improvements have expanded the use of

transformer models in devices with limited resources, like

mobile phones and IoT gadgets. Fine-tuning is crucial for

maintaining model performance after quantization.

Methods like Low-Rank Adaptation (LoRA) and post-

training quantization have proven effective for fine-tuning

quantized models. LoRA introduces trainable low-rank

matrices to pre-trained models, allowing for task-specific

fine-tuning while being resource-efficient [5].

Nevertheless, consistent performance at 1-bit precision

remains a challenge that needs solutions involving

effective error mitigation techniques. These techniques

include strategies like preserving floating-point scaling

factors along with binary representations to recover lost

precision. These improvements have expanded the use of

transformer models in resource-limited devices such as

mobile phones and IoT devices. Fine-tuning is crucial for

maintaining model performance after quantization.

Methods such as Low-Rank Adaptation (LoRA) and post-

training quantization have proven to be efficient for fine-

tuning quantized models. LoRA integrates trainable low-

rank matrices into pre-trained models, allowing for task-

specific fine-tuning while remaining efficient. This method

has been very useful for edge AI situations, where

computational and energy resources are limited.

Additionally, post-training quantization, which occurs

after model training, reduces the need for costly retraining.

Recent research has emphasized gradient clipping and

adaptive optimizers such as AdamW in stabilizing training

dynamics in quantized platforms [1].

III. DATASET

The 1.58-bit Quantized Large Language Model (LLM)

was tested with generally accepted NLP benchmark data

sets to assess accuracy, resilience, and deployablity after

compression [7]. The chosen data sets offered a wide

variety of language comprehension tasks to thoroughly

check the performance of the model.

Data Sets Used

1.GLUE (General Language Understanding Evaluation)

A set of tasks including sentiment analysis, natural

language inference, and sentence similarity utilized to test

general language understanding.

2.SQuAD (Stanford Question Answering Dataset)

Directed towards extractive question answering,

measuring the model's capability to understand and retrieve

information from context passages.

3.CoLA (Corpus of Linguistic Acceptability) Measures the

model's knowledge of grammar and syntactic correctness

in English sentences.

Purpose of Dataset Usage

Model Accuracy Evaluation To compare the quantized

model's performance with the original full-precision

model.

Benchmarking Post-Quantization To measure accuracy

retention after performing 1.58-bit quantization and LoRA

fine-tuning.

 Deployment Validation To test real-world NLP tasks on

low-resource platforms such as Raspberry Pi and Jetson

Nano.

IV. CHARACTERISTICS AND CHALLENGES

1. Precision and Memory Efficiency

Reduced Precision A 1.5-bit representation is far less

accurate than the conventional 32-bit or 16-bit floating-

point representations employed in the majority of deep

learning models. This reduction assists in reducing

memory consumption and accelerating computation,

which makes it simpler to deploy the model in

environments with limited resources.

Compression The model will probably implement some

sort of data compression, where activations and weights are

represented using fewer bits, and perhaps enabling smaller

storage of the model and quicker inference.

2. Performance Optimization

Fast Inference With fewer bits to compute, hardware

accelerators (e.g., GPUs and TPUs) [4],[10]. can execute

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 390

the model faster, resulting in quicker response times and

reduced power usage during inference.

Memory Bandwidth Reduction Lower precision

translates to lower memory bandwidth consumption, which

is beneficial for executing models in devices with

constrained memory or bandwidth.

3. Smaller Model Size

The decreased precision lowers the model size,

facilitating easier deployment in edge devices or situations

where there is constrained storage capacity [5].

4. Loss of Precision

Degraded Accuracy Decreasing the precision of model

weights and activations to 1.5 bits can result in loss of

accuracy in model predictions [5]. The reduced bit size

indicates that the model might not be able to catch fine-

grained details in data and can consequently diminish the

quality of its outputs, particularly in intricate tasks that

demand nuanced comprehension.

Training Instability Under training, employing such

low-bit precision may result in convergence problems,

instability, or in ability to fine-tune the model, as gradient

computation and weight updates may not be as accurate.

5.Transfer Learning Difficulty

Transfer learning, prevalent in big models such as GPT,

can be more difficult with such a low-precision model

since the pre-trained knowledge would be less transferable

owing to lower fidelity [2].in the model representations.

6.Quantization Errors

Accumulation of Errors As there is lesser bit precision,

the model could suffer from major quantization errors,

especially while dealing with intricate data distributions.

Such errors may get accumulated over time, which could

impact model generalization [1],[5]. and cause

unpredictable behavior on new tasks.

7.Hardware Requirements

Even if lower precision will typically use less

computational resources, specific hardware could be

needed [4].in order to be able to effectively train and

execute a 1.5-bit model. It may complicate deployment to

every environment.

V. METHODOLOGY

1. Input Layer

The Input Layer is accountable for managing data

ingestion, preprocessing, and transformation into formats

acceptable for model consumption.

• Text Preprocessing Eliminates noise, special symbols,

and redundant info to sanitize the input data.

• Tokenization Splits the text into sub-units, i.e., words

or sub words, to enable numerical representation and

processing by models. Utilizing tools such as Byte Pair

Encoding (BPE) helps in efficient management of out-of-

vocabulary words.

• Normalization Promotes text data uniformity through

lowercasing and the normalization of formatting (e.g., date

and currency formats).

• Embedding Layer Tokenizes words and maps to

vector embeddings employing pre-trained representations

such as Word2Vec, GloVe, or transformer-type

embeddings [3].

2. Quantized Transformer Core

Quantized Transformer Core is the system's core,

responsible for doing the computational work involved in

understanding and generating text.

• 1.58-bit Quantization Leverages state-of-the-art

quantization methods to cut precision while preserving

performance. This keeps memory consumption and

computational costs low.

• Low-Rank Adaptation (LoRA) Effectively fine-tunes

pre-trained [10] transformers with minimal parameter

updates, facilitating transfer learning between tasks

without retraining.

• Multi-Head Attention Handles input sequences in

parallel across multiple heads, extracting rich contextual

information.

• Dropout Layers Adds regularization to avoid

overfitting.

• Parallel Processing Optimizes the core's capability to

process distributed and parallel computation for scalability.

3. Memory-Efficient Attention

The Memory-Efficient Attention module is aimed at

optimizing the memory and computational requirements of

transformer-based architectures.

• \flash Attention Employs cutting-edge methods to

minimize memory overhead while accelerating attention

[1],[3]. computations, making it possible to scale to long

sequences.

• \sparse Attention Mechanisms Sparsely attends to

relevant tokens, decreasing computational costs further.

• \sliding Window Attention Processes input in smaller

blocks for sequential tasks, ideal for streaming scenarios.

• Dynamic Memory Allocation Dynamically allocates

memory according to input size, preventing wastage of

computational resources.

4. Output Layer

The Output Layer is responsible for producing

significant and structured outputs from input processing.

• Decoder Mechanism Outputs sequences through

autoregressive generation to predict tokens sequentially

[8].

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 391

• SoftMax Layer Adds probability distribution to

outputs to support classification, summarization, or

translation.

• Logit Scaling Scales output logits to manage

prediction confidence and prevent low-probability outputs.

• \tMulti-Task Support Enables concurrent execution of

multiple NLP tasks, e.g., question answering, sentiment

analysis, and named entity recognition.

5. Deployment

The Deployment module facilitates smooth integration

into production environments while ensuring flexibility for

edge devices and cloud platforms.

• Containerization Uses Docker and Kubernetes to

support containerized deployment for guaranteed

consistency in performance [10]. across environments.

• Model Compression Techniques Includes techniques

such as knowledge distillation and pruning to further

compress the model and perform better on resource-

constrained devices.

.
Source: ResearchGate

FIGURE 5.1 ARCHITECTURE DIAGRAM

VI. PROPOSED FRAMEWROK

The Sequence Diagram illustrates the flow of

interaction between elements in the Quantized Large

Language Model (LLM) System [9]. visually. It depicts the

sequential communication process with emphasis on how

user input is handled, predictions are made, and feedback

is integrated for cycle-by-cycle improvement.

1. User Interaction - The User provides queries, datasets,

or tasks through an application interface or API. Inputs

may vary from free-form text queries to structured datasets

for testing. The system accepts and passes the input to the

Preprocessing System for processing.

2. Preprocessing System - Ensures input data are in

required formats (e.g., tokenized text, JSON). Checks for

dataset integrity, missing values, and pads if needed.

Breaks input text into tokens to be compatible with the

transformer model. Translates tokens into quantized

transformer-compatible numerical embeddings. Transmits

the pre-processed data to the Quantized Transformer Core

for computation.

3. Quantized Transformer Core - Computes inputs through

1.58-bit quantized operations to save memory and enhance

computational efficiency. Applies Low-Rank Adaptation

(LoRA) to adapt pre-trained weights to specific tasks.

Utilizes Flash Attention to handle memory effectively in

the self-attention phase. Improves processing speed with

no loss of prediction accuracy.

4. Feedback Mechanism (Optional) - Users evaluate

predictions and give feedback on result quality in the form

of ratings, comments, or error annotations. Feedback data

is logged and analysed to determine improvement

requirements. The system monitors feedback patterns and

initiates a Fine-Tuning Process when predictions do not

achieve thresholds.

Feedback data is incorporated into the training set, and

the model is incrementally retrained with LoRA methods.

Newly updated model weights are tested against test

datasets to confirm performance improvement.

5. Final Output Delivery- The Preprocessing System

converts model predictions into human-readable formats

(e.g., JSON, CSV, or text summaries). Ensures

compatibility with APIs, dashboards, or downstream

applications. Results are presented to the user via the

application interface or exported as downloadable reports.

Source: ResearchGate

FIGURE 6.1 PROPOSED FRAMEWORK

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 392

VII. FUTURE WORKS

1. Further Bit-Precision Reduction

The present work is cantered on 1.58-bit quantization,

but future updates might look into even lower precision

models, i.e., 1-bit quantization. Methods such as ternary or

binary neural networks might be investigated for additional

memory and computational efficiency [1],[5],[10].

improvements, particularly in ultra-low-resource

scenarios.

2. Optimized Deployment on Diverse Hardware Platforms

While the model has been tested and validated for

deployment on edge devices such as Raspberry Pi and

Jetson Nano, there are further opportunities to optimize

deployment on a wider variety of hardware platforms, such

as mobile GPUs, FPGAs, and dedicated AI accelerators.

Hardware acceleration schemes specific to custom

hardware may enhance the model's real-time performance.

VIII. CONCLUSION

Development of a 1.58-bit precision Large Language

Model (LLM) through the application of state-of-the-art

quantization methods has proven to be a promising solution

with regards to memory efficiency, inference speed, and

competitive accuracy preservation. This study tackles

some of the most critical challenges in LLM deployment

on resource-limited environments, specifically edge

devices [1],[10] such as mobile phones, IoT devices, and

embedded systems. Through the application of hybrid

quantization approaches, including mixed-precision

techniques and Flash Attention, the model's memory

footprint was significantly reduced, achieving a drastic cut

in model size without substantial loss in performance.

Furthermore, the use of Low-Rank Adaptation (LoRA)

post-quantization allowed the model to maintain high

accuracy, demonstrating the potential of fine-tuning

techniques in optimizing the performance of quantized

models. The success of deploying this quantized LLM

model, which has been tested using benchmark datasets

and in real-time use cases, brings out the potential of the

model for use in numerous applications. These include

natural language processing operations like text

generation, sentiment analysis, and language translation, in

addition to other AI-based applications that need low-

latency inference in resource-constrained environments.

REFERENCES

[1] Z. Yang, S. Choudhary, S. Kunzmann, and Z.

Zhang, “Quantization-aware and tensor-compressed

training of transformers for natural slanguage

understanding,” arXiv preprint, 2024.

[2] D. Banik, N. Pati, and A. Sharma, “Systematic

exploration and in-depth analysis of ChatGPT

architectures progression,” Journal Name, vol. XX, no.

XX, pp. 21–24, 2024,

[3] D. Zhang, Y. Yu, J. Dong, C. Li, and D. Su, “MM-

LLMs Recent advances in multimodal large language

models,” arXiv preprint, 2024.

[4] C. Kachris, “A survey on hardware accelerators

for large language models,” Conference Name, 2024,

[5] J. Lang, “A comprehensive study on quantization

techniques for large language models,” Journal Name,

2024.

[6] T. Zhao, “A large language model for determining

partial tripping of distributed energy resource,”

Conference Name, 2024.

[7] F. Valizadeh, “Comparative analysis of large

language models for OCR post-processing in Persian

From ParsBERT to GPT,” Journal Name, 2024,

[8] Y. Choi, “Improving the text convolution

mechanism with large language model for review-based

recommendation,” Conference Name, 2024

[9] Amity University Researchers, “Refining large

language model query optimization An adaptive

semantic approach,” Journal Name, 2024.

[10] L. Ye and H. Zhang, “LLMProto A hardware-

efficient finetuning model for few-shot relation

extraction with large language model,” Conference

Name, 2024.

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 393

	I. Introduction
	II. Literature Riview
	III. Dataset
	IV. Characteristics and Challenges
	V. Methodology
	VI. Proposed Framewrok
	VII. Future works
	References

