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Abstract - Large Language Models (LLMs) have 

transformed natural language processing by exhibiting 

advanced capabilities in comprehension, reasoning, and 

context-aware text generation. However, the rapid 

escalation in their size and computational requirements 

presents major obstacles in training, deployment, and 

energy sustainability. The substantial hardware, memory, 

and power demands of these models restrict their 

accessibility and limit real-time or edge-based 

implementation. To address these concerns, current 

research emphasizes model-compression and 

optimization techniques that maintain accuracy while 

improving efficiency. Methods such as quantization, 

pruning, knowledge distillation, parameter sharing, and 

low-rank adaptation have demonstrated promising 

results in reducing redundancy and accelerating 

inference. Additionally, hybrid precision and adaptive 

computation frameworks seek to balance performance 

with computational cost. This survey consolidates recent 

progress in efficiency-oriented LLM research, examining 

their comparative advantages, limitations, and practical 

trade-offs.  

 

Index Terms - Large Language Models (LLMs), 

Quantization, Low-Rank Adaptation (LoRA), Post-

Training Quantization (PTQ), Quantization-Aware 

Training (QAT). 

 

I. INTRODUCTION 

A Large Language Models (LLMs) have emerged as a 
cornerstone of modern natural language processing (NLP) 

technologies, revolutionizing tasks such as translation, text 

summarization, sentiment analysis, question answering, 

conversational AI, and code generation. These models, 

exemplified by architectures like GPT-3, GPT-4, and 

BERT, have demonstrated exceptional performance across 

a broad range of applications [2],[3], making them integral 

to advancements in artificial intelligence (AI). 

Despite their transformative potential, the deployment 

of these models in resource-constrained environments 

faces significant challenges due to their computational 

intensity, extensive memory requirements, and energy 

consumption [1],[4].  

models capable of delivering high performance without 

excessive infrastructure demands. Recent advancements in 

quantization techniques, such as low-bit precision models, 

offer promising solutions by reducing the resource burden 

while preserving model performance [5]. These methods 

aim to compress models without compromising their 

ability to process language tasks effectively. 

Approaches like Low-Rank Adaptation (LoRA) and 

Flash Attention enhance memory and computational 

efficiency [10], making it feasible to deploy high-

performing models in constrained environments. This 

study explores the design and development of a 1.58-bit 

precision LLM to address these challenges, providing 

scalability for edge computing and other resource-sensitive 

domains. By pushing the boundaries of low-bit 

Journal of Engineering and Technology Management 78 (2025)

PAGE NO: 389

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox



quantization, this work seeks to make AI more accessible, 

affordable, and sustainable while maintaining competitive 

accuracy levels. These models have demonstrated 

remarkable performance in a broad range of nature. 

II. LITERATURE RIVIEW 

Quantization has become a key method to reduce 

computational and memory limitations of transformer 

based models, particularly large language models (LLMs) 

[1],[5]. Lowering the numerical precision of parameters 

and activations from floating-point (FP32) to lower-bit 

representations enables faster inference and significant 

memory savings. Recent research from 2021 to 2024 has 

shown that 8-bit and 4-bit quantization can effectively 

decrease computational costs while causing minimal loss 

in model performance [5]. These methods mainly include 

post-training quantization or quantization-aware training 

(QAT). QAT involves considering quantization effects 

during training to reduce accuracy loss. However, 

decreasing precision to 2-bit or 1-bit makes it more 

difficult to maintain performance because of limited 

representational capacity [1]. 

Consistent performance at 1-bit precision remains an 

unresolved issue. We need solutions that include error 

mitigation techniques. These techniques use additional 

strategies, such as maintaining floating-point scaling 

factors alongside binary representations to recover lost 

precision.  

These improvements have expanded the use of 

transformer models in devices with limited resources, like 

mobile phones and IoT gadgets. Fine-tuning is crucial for 

maintaining model performance after quantization.  

Methods like Low-Rank Adaptation (LoRA) and post-

training quantization have proven effective for fine-tuning 

quantized models. LoRA introduces trainable low-rank 

matrices to pre-trained models, allowing for task-specific 

fine-tuning while being resource-efficient [5].  

Nevertheless, consistent performance at 1-bit precision 

remains a challenge that needs solutions involving 

effective error mitigation techniques. These techniques 

include strategies like preserving floating-point scaling 

factors along with binary representations to recover lost 

precision. These improvements have expanded the use of 

transformer models in resource-limited devices such as 

mobile phones and IoT devices. Fine-tuning is crucial for 

maintaining model performance after quantization. 

Methods such as Low-Rank Adaptation (LoRA) and post-

training quantization have proven to be efficient for fine-

tuning quantized models. LoRA integrates trainable low-

rank matrices into pre-trained models, allowing for task-

specific fine-tuning while remaining efficient. This method 

has been very useful for edge AI situations, where 

computational and energy resources are limited. 

Additionally, post-training quantization, which occurs 

after model training, reduces the need for costly retraining. 

Recent research has emphasized gradient clipping and 

adaptive optimizers such as AdamW in stabilizing training 

dynamics in quantized platforms [1].  

 

III. DATASET 

The 1.58-bit Quantized Large Language Model (LLM) 

was tested with generally accepted NLP benchmark data 

sets to assess accuracy, resilience, and deployablity after 

compression [7]. The chosen data sets offered a wide 

variety of language comprehension tasks to thoroughly 

check the performance of the model.  

Data Sets Used 

1.GLUE (General Language Understanding Evaluation)  

A set of tasks including sentiment analysis, natural 

language inference, and sentence similarity utilized to test 

general language understanding.  

 

2.SQuAD (Stanford Question Answering Dataset) 

Directed towards extractive question answering, 

measuring the model's capability to understand and retrieve 

information from context passages.  

 

3.CoLA (Corpus of Linguistic Acceptability) Measures the 

model's knowledge of grammar and syntactic correctness 

in English sentences.  

 

Purpose of Dataset Usage 

Model Accuracy Evaluation To compare the quantized 

model's performance with the original full-precision 

model.  

Benchmarking Post-Quantization To measure accuracy 

retention after performing 1.58-bit quantization and LoRA 

fine-tuning.  

     Deployment Validation To test real-world NLP tasks on 

low-resource platforms such as Raspberry Pi and Jetson 

Nano.  

 

IV. CHARACTERISTICS AND CHALLENGES 

1. Precision and Memory Efficiency 

Reduced Precision A 1.5-bit representation is far less 

accurate than the conventional 32-bit or 16-bit floating-

point representations employed in the majority of deep 

learning models. This reduction assists in reducing 

memory consumption and accelerating computation, 

which makes it simpler to deploy the model in 

environments with limited resources.  

Compression The model will probably implement some 

sort of data compression, where activations and weights are 

represented using fewer bits, and perhaps enabling smaller 

storage of the model and quicker inference. 

2. Performance Optimization 

Fast Inference With fewer bits to compute, hardware 

accelerators (e.g., GPUs and TPUs) [4],[10]. can execute 
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the model faster, resulting in quicker response times and 

reduced power usage during inference.  

Memory Bandwidth Reduction Lower precision 

translates to lower memory bandwidth consumption, which 

is beneficial for executing models in devices with 

constrained memory or bandwidth.  

 

3. Smaller Model Size 

The decreased precision lowers the model size, 

facilitating easier deployment in edge devices or situations 

where there is constrained storage capacity [5]. 

 

4. Loss of Precision 

Degraded Accuracy Decreasing the precision of model 

weights and activations to 1.5 bits can result in loss of 

accuracy in model predictions [5]. The reduced bit size 

indicates that the model might not be able to catch fine-

grained details in data and can consequently diminish the 

quality of its outputs, particularly in intricate tasks that 

demand nuanced comprehension.  

Training Instability Under training, employing such 

low-bit precision may result in convergence problems, 

instability, or in ability to fine-tune the model, as gradient 

computation and weight updates may not be as accurate.  

 

5.Transfer Learning Difficulty 

Transfer learning, prevalent in big models such as GPT, 

can be more difficult with such a low-precision model 

since the pre-trained knowledge would be less transferable 

owing to lower fidelity [2].in the model representations.  

 

6.Quantization Errors 

Accumulation of Errors As there is lesser bit precision, 

the model could suffer from major quantization errors, 

especially while dealing with intricate data distributions. 

Such errors may get accumulated over time, which could 

impact model generalization [1],[5]. and cause 

unpredictable behavior on new tasks.  

 

7.Hardware Requirements 

Even if lower precision will typically use less 

computational resources, specific hardware could be 

needed [4].in order to be able to effectively train and 

execute a 1.5-bit model. It may complicate deployment to 

every environment. 

 

V. METHODOLOGY 

1. Input Layer  

The Input Layer is accountable for managing data 

ingestion, preprocessing, and transformation into formats 

acceptable for model consumption.  

• Text Preprocessing Eliminates noise, special symbols, 

and redundant info to sanitize the input data.  

• Tokenization Splits the text into sub-units, i.e., words 

or sub words, to enable numerical representation and 

processing by models. Utilizing tools such as Byte Pair 

Encoding (BPE) helps in efficient management of out-of-

vocabulary words.  

• Normalization Promotes text data uniformity through 

lowercasing and the normalization of formatting (e.g., date 

and currency formats).  

• Embedding Layer Tokenizes words and maps to 

vector embeddings employing pre-trained representations 

such as Word2Vec, GloVe, or transformer-type 

embeddings [3].   

 

2. Quantized Transformer Core  

Quantized Transformer Core is the system's core, 

responsible for doing the computational work involved in 

understanding and generating text.  

• 1.58-bit Quantization Leverages state-of-the-art 

quantization methods to cut precision while preserving 

performance. This keeps memory consumption and 

computational costs low.  

• Low-Rank Adaptation (LoRA) Effectively fine-tunes 

pre-trained [10] transformers with minimal parameter 

updates, facilitating transfer learning between tasks 

without retraining.  

• Multi-Head Attention Handles input sequences in 

parallel across multiple heads, extracting rich contextual 

information.  

• Dropout Layers Adds regularization to avoid 

overfitting.  

• Parallel Processing Optimizes the core's capability to 

process distributed and parallel computation for scalability.  

 

3. Memory-Efficient Attention  

The Memory-Efficient Attention module is aimed at 

optimizing the memory and computational requirements of 

transformer-based architectures.  

• \flash Attention Employs cutting-edge methods to 

minimize memory overhead while accelerating attention 

[1],[3]. computations, making it possible to scale to long 

sequences.  

• \sparse Attention Mechanisms Sparsely attends to 

relevant tokens, decreasing computational costs further.  

• \sliding Window Attention Processes input in smaller 

blocks for sequential tasks, ideal for streaming scenarios.  

• Dynamic Memory Allocation Dynamically allocates 

memory according to input size, preventing wastage of 

computational resources.  

 

4. Output Layer  

The Output Layer is responsible for producing 

significant and structured outputs from input processing.  

• Decoder Mechanism Outputs sequences through 

autoregressive generation to predict tokens sequentially 

[8].  
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• SoftMax Layer Adds probability distribution to 

outputs to support classification, summarization, or 

translation.  

• Logit Scaling Scales output logits to manage 

prediction confidence and prevent low-probability outputs.  

•  \tMulti-Task Support Enables concurrent execution of 

multiple NLP tasks, e.g., question answering, sentiment 

analysis, and named entity recognition.  

 

5. Deployment  

The Deployment module facilitates smooth integration 

into production environments while ensuring flexibility for 

edge devices and cloud platforms.  

• Containerization Uses Docker and Kubernetes to 

support containerized deployment for guaranteed 

consistency in performance [10]. across environments.  

• Model Compression Techniques Includes techniques 

such as knowledge distillation and pruning to further 

compress the model and perform better on resource-

constrained devices.  

. 
Source: ResearchGate 

FIGURE 5.1 ARCHITECTURE DIAGRAM 

VI. PROPOSED FRAMEWROK 

The Sequence Diagram illustrates the flow of 

interaction between elements in the Quantized Large 

Language Model (LLM) System [9]. visually. It depicts the 

sequential communication process with emphasis on how 

user input is handled, predictions are made, and feedback 

is integrated for cycle-by-cycle improvement.  

 

1. User Interaction - The User provides queries, datasets, 

or tasks through an application interface or API. Inputs 

may vary from free-form text queries to structured datasets 

for testing. The system accepts and passes the input to the 

Preprocessing System for processing.  

 

2. Preprocessing System - Ensures input data are in 

required formats (e.g., tokenized text, JSON). Checks for 

dataset integrity, missing values, and pads if needed. 

Breaks input text into tokens to be compatible with the 

transformer model. Translates tokens into quantized 

transformer-compatible numerical embeddings. Transmits 

the pre-processed data to the Quantized Transformer Core 

for computation.  

 

3. Quantized Transformer Core - Computes inputs through 

1.58-bit quantized operations to save memory and enhance 

computational efficiency. Applies Low-Rank Adaptation 

(LoRA) to adapt pre-trained weights to specific tasks. 

Utilizes Flash Attention to handle memory effectively in 

the self-attention phase. Improves processing speed with 

no loss of prediction accuracy.  

 

4. Feedback Mechanism (Optional) - Users evaluate 

predictions and give feedback on result quality in the form 

of ratings, comments, or error annotations. Feedback data 

is logged and analysed to determine improvement 

requirements. The system monitors feedback patterns and 

initiates a Fine-Tuning Process when predictions do not 

achieve thresholds.  

Feedback data is incorporated into the training set, and 

the model is incrementally retrained with LoRA methods. 

Newly updated model weights are tested against test 

datasets to confirm performance improvement. 

   

5. Final Output Delivery- The Preprocessing System 

converts model predictions into human-readable formats 

(e.g., JSON, CSV, or text summaries). Ensures 

compatibility with APIs, dashboards, or downstream 

applications. Results are presented to the user via the 

application interface or exported as downloadable reports.  

 
 
Source: ResearchGate 

FIGURE 6.1 PROPOSED FRAMEWORK 
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VII. FUTURE WORKS 

1. Further Bit-Precision Reduction  

The present work is cantered on 1.58-bit quantization, 

but future updates might look into even lower precision 

models, i.e., 1-bit quantization. Methods such as ternary or 

binary neural networks might be investigated for additional 

memory and computational efficiency [1],[5],[10]. 

improvements, particularly in ultra-low-resource 

scenarios.  

 

2. Optimized Deployment on Diverse Hardware Platforms  

While the model has been tested and validated for 

deployment on edge devices such as Raspberry Pi and 

Jetson Nano, there are further opportunities to optimize 

deployment on a wider variety of hardware platforms, such 

as mobile GPUs, FPGAs, and dedicated AI accelerators. 

Hardware acceleration schemes specific to custom 

hardware may enhance the model's real-time performance.  

 

VIII. CONCLUSION 

Development of a 1.58-bit precision Large Language 

Model (LLM) through the application of state-of-the-art 

quantization methods has proven to be a promising solution 

with regards to memory efficiency, inference speed, and 

competitive accuracy preservation. This study tackles 

some of the most critical challenges in LLM deployment 

on resource-limited environments, specifically edge 

devices [1],[10] such as mobile phones, IoT devices, and 

embedded systems. Through the application of hybrid 

quantization approaches, including mixed-precision 

techniques and Flash Attention, the model's memory 

footprint was significantly reduced, achieving a drastic cut 

in model size without substantial loss in performance. 

Furthermore, the use of Low-Rank Adaptation (LoRA) 

post-quantization allowed the model to maintain high 

accuracy, demonstrating the potential of fine-tuning 

techniques in optimizing the performance of quantized 

models. The success of deploying this quantized LLM 

model, which has been tested using benchmark datasets 

and in real-time use cases, brings out the potential of the 

model for use in numerous applications. These include 

natural language processing operations like text 

generation, sentiment analysis, and language translation, in 

addition to other AI-based applications that need low-

latency inference in resource-constrained environments. 
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