Journal of Engineering and Technology Management 78 (2025)

National Conference on Advances in Science Engineering and Technology organized
by ECE on 7" November 2025.

REDUCING COMPLEXITY IN LARGE
LANGUAGE MODELS

Yashwantha N
Assistant Professor, Dept. of CSE
(Data Science), SJBIT

Channabasava
Student, Dept. of CSE
(Data Science), SJBIT

Abstract - Large Language Models (LLMs) have
transformed natural language processing by exhibiting
advanced capabilities in comprehension, reasoning, and
context-aware text generation. However, the rapid
escalation in their size and computational requirements
presents major obstacles in training, deployment, and
energy sustainability. The substantial hardware, memory,
and power demands of these models restrict their
accessibility and limit real-time or edge-based
implementation. To address these concerns, current
research emphasizes model-compression and
optimization techniques that maintain accuracy while
improving efficiency. Methods such as quantization,
pruning, knowledge distillation, parameter sharing, and
low-rank adaptation have demonstrated promising
results in reducing redundancy and accelerating
inference. Additionally, hybrid precision and adaptive
computation frameworks seek to balance performance
with computational cost. This survey consolidates recent
progress in efficiency-oriented LLM research, examining
their comparative advantages, limitations, and practical
trade-offs.

Index Terms - Large Language Models (LLMs),
Quantization, Low-Rank Adaptation (LoRA), Post-
Training Quantization (PTQ), Quantization-Aware
Training (QAT).

Prajwal B S
Student, Dept. of CSE
(Data Science), SJBIT

Sammed Dundappa Saraswatigol
Student, Dept. of CSE
(Data Science), SIJBIT

Sangamesh
Student, Dept. of CSE
(Data Science), SJBIT

I. INTRODUCTION

A Large Language Models (LLMs) have emerged as a
cornerstone of modern natural language processing (NLP)
technologies, revolutionizing tasks such as translation, text
summarization, sentiment analysis, question answering,
conversational Al, and code generation. These models,
exemplified by architectures like GPT-3, GPT-4, and
BERT, have demonstrated exceptional performance across
a broad range of applications [2],[3], making them integral
to advancements in artificial intelligence (Al).

Despite their transformative potential, the deployment
of these models in resource-constrained environments
faces significant challenges due to their computational
intensity, extensive memory requirements, and energy
consumption [1],[4].

models capable of delivering high performance without
excessive infrastructure demands. Recent advancements in
quantization techniques, such as low-bit precision models,
offer promising solutions by reducing the resource burden
while preserving model performance [5]. These methods
aim to compress models without compromising their
ability to process language tasks effectively.

Approaches like Low-Rank Adaptation (LoRA) and
Flash Attention enhance memory and computational
efficiency [10], making it feasible to deploy high-
performing models in constrained environments. This
study explores the design and development of a 1.58-bit
precision LLM to address these challenges, providing
scalability for edge computing and other resource-sensitive
domains. By pushing the boundaries of low-bit

PAGE NO: 389

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

Journal of Engineering and Technology Management 78 (2025)

quantization, this work seeks to make Al more accessible,
affordable, and sustainable while maintaining competitive
accuracy levels. These models have demonstrated
remarkable performance in a broad range of nature.

II. LITERATURE RIVIEW

Quantization has become a key method to reduce
computational and memory limitations of transformer
based models, particularly large language models (LLMs)
[1],[5]. Lowering the numerical precision of parameters
and activations from floating-point (FP32) to lower-bit
representations enables faster inference and significant
memory savings. Recent research from 2021 to 2024 has
shown that 8-bit and 4-bit quantization can effectively
decrease computational costs while causing minimal loss
in model performance [5]. These methods mainly include
post-training quantization or quantization-aware training
(QAT). QAT involves considering quantization effects
during training to reduce accuracy loss. However,
decreasing precision to 2-bit or 1-bit makes it more
difficult to maintain performance because of limited
representational capacity [1].

Consistent performance at 1-bit precision remains an
unresolved issue. We need solutions that include error
mitigation techniques. These techniques use additional
strategies, such as maintaining floating-point scaling
factors alongside binary representations to recover lost
precision.

These improvements have expanded the use of
transformer models in devices with limited resources, like
mobile phones and IoT gadgets. Fine-tuning is crucial for
maintaining model performance after quantization.

Methods like Low-Rank Adaptation (LoRA) and post-
training quantization have proven effective for fine-tuning
quantized models. LoRA introduces trainable low-rank
matrices to pre-trained models, allowing for task-specific
fine-tuning while being resource-efficient [5].

Nevertheless, consistent performance at 1-bit precision
remains a challenge that needs solutions involving
effective error mitigation techniques. These techniques
include strategies like preserving floating-point scaling
factors along with binary representations to recover lost
precision. These improvements have expanded the use of
transformer models in resource-limited devices such as
mobile phones and IoT devices. Fine-tuning is crucial for
maintaining model performance after quantization.
Methods such as Low-Rank Adaptation (LoRA) and post-
training quantization have proven to be efficient for fine-
tuning quantized models. LoRA integrates trainable low-
rank matrices into pre-trained models, allowing for task-
specific fine-tuning while remaining efficient. This method
has been very useful for edge Al situations, where
computational and energy resources are limited.
Additionally, post-training quantization, which occurs
after model training, reduces the need for costly retraining.

Recent research has emphasized gradient clipping and
adaptive optimizers such as AdamW in stabilizing training
dynamics in quantized platforms [1].

II1. DATASET

The 1.58-bit Quantized Large Language Model (LLM)
was tested with generally accepted NLP benchmark data
sets to assess accuracy, resilience, and deployablity after
compression [7]. The chosen data sets offered a wide
variety of language comprehension tasks to thoroughly
check the performance of the model.

Data Sets Used
1.GLUE (General Language Understanding Evaluation)

A set of tasks including sentiment analysis, natural
language inference, and sentence similarity utilized to test
general language understanding.

2.SQuAD (Stanford Question Answering Dataset)
Directed towards extractive question answering,
measuring the model's capability to understand and retrieve
information from context passages.

3.CoLA (Corpus of Linguistic Acceptability) Measures the
model's knowledge of grammar and syntactic correctness
in English sentences.

Purpose of Dataset Usage

Model Accuracy Evaluation To compare the quantized
model's performance with the original full-precision
model.

Benchmarking Post-Quantization To measure accuracy
retention after performing 1.58-bit quantization and LoRA
fine-tuning.

Deployment Validation To test real-world NLP tasks on
low-resource platforms such as Raspberry Pi and Jetson
Nano.

IV. CHARACTERISTICS AND CHALLENGES

1. Precision and Memory Efficiency

Reduced Precision A 1.5-bit representation is far less
accurate than the conventional 32-bit or 16-bit floating-
point representations employed in the majority of deep
learning models. This reduction assists in reducing
memory consumption and accelerating computation,
which makes it simpler to deploy the model in
environments with limited resources.

Compression The model will probably implement some
sort of data compression, where activations and weights are
represented using fewer bits, and perhaps enabling smaller
storage of the model and quicker inference.

2. Performance Optimization

Fast Inference With fewer bits to compute, hardware

accelerators (e.g., GPUs and TPUs) [4],[10]. can execute

PAGE NO: 390

Journal of Engineering and Technology Management 78 (2025)

the model faster, resulting in quicker response times and
reduced power usage during inference.

Memory Bandwidth Reduction Lower precision
translates to lower memory bandwidth consumption, which
is beneficial for executing models in devices with
constrained memory or bandwidth.

3. Smaller Model Size

The decreased precision lowers the model size,
facilitating easier deployment in edge devices or situations
where there is constrained storage capacity [5].

4. Loss of Precision

Degraded Accuracy Decreasing the precision of model
weights and activations to 1.5 bits can result in loss of
accuracy in model predictions [5]. The reduced bit size
indicates that the model might not be able to catch fine-
grained details in data and can consequently diminish the
quality of its outputs, particularly in intricate tasks that
demand nuanced comprehension.

Training Instability Under training, employing such
low-bit precision may result in convergence problems,
instability, or in ability to fine-tune the model, as gradient
computation and weight updates may not be as accurate.

5.Transfer Learning Difficulty

Transfer learning, prevalent in big models such as GPT,
can be more difficult with such a low-precision model
since the pre-trained knowledge would be less transferable
owing to lower fidelity [2].in the model representations.

6.Quantization Errors

Accumulation of Errors As there is lesser bit precision,
the model could suffer from major quantization errors,
especially while dealing with intricate data distributions.
Such errors may get accumulated over time, which could
impact model generalization [1],[5]. and cause
unpredictable behavior on new tasks.

7.Hardware Requirements

Even if lower precision will typically use less
computational resources, specific hardware could be
needed [4].in order to be able to effectively train and
execute a 1.5-bit model. It may complicate deployment to
every environment.

V. METHODOLOGY

1. Input Layer

The Input Layer is accountable for managing data
ingestion, preprocessing, and transformation into formats
acceptable for model consumption.

* Text Preprocessing Eliminates noise, special symbols,
and redundant info to sanitize the input data.

* Tokenization Splits the text into sub-units, i.e., words
or sub words, to enable numerical representation and
processing by models. Utilizing tools such as Byte Pair
Encoding (BPE) helps in efficient management of out-of-
vocabulary words.

* Normalization Promotes text data uniformity through
lowercasing and the normalization of formatting (e.g., date
and currency formats).

* Embedding Layer Tokenizes words and maps to
vector embeddings employing pre-trained representations
such as Word2Vec, GloVe, or transformer-type
embeddings [3].

2. Quantized Transformer Core

Quantized Transformer Core is the system's core,
responsible for doing the computational work involved in
understanding and generating text.

+ 1.58-bit Quantization Leverages state-of-the-art
quantization methods to cut precision while preserving
performance. This keeps memory consumption and
computational costs low.

» Low-Rank Adaptation (LoRA) Effectively fine-tunes
pre-trained [10] transformers with minimal parameter
updates, facilitating transfer learning between tasks
without retraining.

* Multi-Head Attention Handles input sequences in
parallel across multiple heads, extracting rich contextual
information.

* Dropout Layers Adds regularization to avoid
overfitting.

» Parallel Processing Optimizes the core's capability to
process distributed and parallel computation for scalability.

3. Memory-Efficient Attention

The Memory-Efficient Attention module is aimed at
optimizing the memory and computational requirements of
transformer-based architectures.

 \flash Attention Employs cutting-edge methods to
minimize memory overhead while accelerating attention
[11,[3]. computations, making it possible to scale to long
sequences.

* \sparse Attention Mechanisms Sparsely attends to
relevant tokens, decreasing computational costs further.

* \sliding Window Attention Processes input in smaller
blocks for sequential tasks, ideal for streaming scenarios.

* Dynamic Memory Allocation Dynamically allocates
memory according to input size, preventing wastage of
computational resources.

4. Output Layer

The Output Layer is responsible for producing
significant and structured outputs from input processing.

* Decoder Mechanism Outputs sequences through
autoregressive generation to predict tokens sequentially

[8].

PAGE NO: 391

Journal of Engineering and Technology Management 78 (2025)

* SoftMax Layer Adds probability distribution to
outputs to support classification, summarization, or
translation.

» Logit Scaling Scales output logits to manage
prediction confidence and prevent low-probability outputs.

* \tMulti-Task Support Enables concurrent execution of
multiple NLP tasks, e.g., question answering, sentiment
analysis, and named entity recognition.

5. Deployment

The Deployment module facilitates smooth integration
into production environments while ensuring flexibility for
edge devices and cloud platforms.

* Containerization Uses Docker and Kubernetes to
support containerized deployment for guaranteed
consistency in performance [10]. across environments.

* Model Compression Techniques Includes techniques
such as knowledge distillation and pruning to further
compress the model and perform better on resource-
constrained devices.

s data Memary-Efficient
-

edge
compasibility
]

Deployment: Utlize
= containerization lor scalable -
and ponable models

Deploy system
yos_for use in edge
environments

Is the system optimized
for edge emvironments?

i

Eng

Source: ResearchGate
FIGURE 5.1 ARCHITECTURE DIAGRAM

VI. PROPOSED FRAMEWROK

The Sequence Diagram illustrates the flow of
interaction between elements in the Quantized Large
Language Model (LLM) System [9]. visually. It depicts the
sequential communication process with emphasis on how
user input is handled, predictions are made, and feedback
is integrated for cycle-by-cycle improvement.

1. User Interaction - The User provides queries, datasets,
or tasks through an application interface or APIL. Inputs
may vary from free-form text queries to structured datasets
for testing. The system accepts and passes the input to the
Preprocessing System for processing.

2. Preprocessing System - Ensures input data are in
required formats (e.g., tokenized text, JSON). Checks for
dataset integrity, missing values, and pads if needed.
Breaks input text into tokens to be compatible with the
transformer model. Translates tokens into quantized
transformer-compatible numerical embeddings. Transmits
the pre-processed data to the Quantized Transformer Core
for computation.

3. Quantized Transformer Core - Computes inputs through
1.58-bit quantized operations to save memory and enhance
computational efficiency. Applies Low-Rank Adaptation
(LoRA) to adapt pre-trained weights to specific tasks.
Utilizes Flash Attention to handle memory effectively in
the self-attention phase. Improves processing speed with
no loss of prediction accuracy.

4. Feedback Mechanism (Optional) - Users evaluate
predictions and give feedback on result quality in the form
of ratings, comments, or error annotations. Feedback data
is logged and analysed to determine improvement
requirements. The system monitors feedback patterns and
initiates a Fine-Tuning Process when predictions do not
achieve thresholds.

Feedback data is incorporated into the training set, and
the model is incrementally retrained with LoRA methods.
Newly updated model weights are tested against test
datasets to confirm performance improvement.

5. Final Output Delivery- The Preprocessing System
converts model predictions into human-readable formats
(e.g., JSON, CSV, or text summaries). Ensures
compatibility with APIs, dashboards, or downstream
applications. Results are presented to the user via the
application interface or exported as downloadable reports.

Usar Preprocessing System

Quantized Transformer Core Feedback Mechansm

=)

i thocnck s appicatie]

User Preprocessing System Quantized Transtormer Core Feedback Mechanism

Source: ResearchGate
FIGURE 6.1 PROPOSED FRAMEWORK

PAGE NO: 392

Journal of Engineering and Technology Management 78 (2025)

VII. FUTURE WORKS

1. Further Bit-Precision Reduction

The present work is cantered on 1.58-bit quantization,
but future updates might look into even lower precision
models, i.e., 1-bit quantization. Methods such as ternary or
binary neural networks might be investigated for additional
memory and computational efficiency [1],[5],[10].
improvements, particularly in ultra-low-resource
scenarios.

2. Optimized Deployment on Diverse Hardware Platforms

While the model has been tested and validated for
deployment on edge devices such as Raspberry Pi and
Jetson Nano, there are further opportunities to optimize
deployment on a wider variety of hardware platforms, such
as mobile GPUs, FPGAs, and dedicated Al accelerators.
Hardware acceleration schemes specific to custom
hardware may enhance the model's real-time performance.

VIIl. CONCLUSION

Development of a 1.58-bit precision Large Language
Model (LLM) through the application of state-of-the-art
quantization methods has proven to be a promising solution
with regards to memory efficiency, inference speed, and
competitive accuracy preservation. This study tackles
some of the most critical challenges in LLM deployment
on resource-limited environments, specifically edge
devices [1],[10] such as mobile phones, IoT devices, and
embedded systems. Through the application of hybrid
quantization approaches, including mixed-precision
techniques and Flash Attention, the model's memory
footprint was significantly reduced, achieving a drastic cut
in model size without substantial loss in performance.
Furthermore, the use of Low-Rank Adaptation (LoRA)
post-quantization allowed the model to maintain high
accuracy, demonstrating the potential of fine-tuning
techniques in optimizing the performance of quantized
models. The success of deploying this quantized LLM
model, which has been tested using benchmark datasets
and in real-time use cases, brings out the potential of the
model for use in numerous applications. These include
natural language processing operations like text
generation, sentiment analysis, and language translation, in
addition to other Al-based applications that need low-
latency inference in resource-constrained environments.

REFERENCES

[I] Z. Yang, S. Choudhary, S. Kunzmann, and Z.
Zhang, “Quantization-aware and tensor-compressed
training of transformers for natural slanguage
understanding,” arXiv preprint, 2024.

[2] D. Banik, N. Pati, and A. Sharma, “Systematic
exploration and in-depth analysis of ChatGPT
architectures progression,” Journal Name, vol. XX, no.
XX, pp. 21-24, 2024,

[3] D.Zhang,Y. Yu,J. Dong,C.Li, and D. Su, “MM-
LLMs Recent advances in multimodal large language
models,” arXiv preprint, 2024.

[4] C. Kachris, “A survey on hardware accelerators
for large language models,” Conference Name, 2024,

[51 J. Lang, “A comprehensive study on quantization
techniques for large language models,” Journal Name,
2024.

[6] T.Zhao, “A large language model for determining
partial tripping of distributed energy resource,”
Conference Name, 2024.

[71 F. Valizadeh, “Comparative analysis of large
language models for OCR post-processing in Persian
From ParsBERT to GPT,” Journal Name, 2024,

[8] Y. Choi, “Improving the text convolution
mechanism with large language model for review-based
recommendation,” Conference Name, 2024

[91 Amity University Researchers, ‘“Refining large
language model query optimization An adaptive
semantic approach,” Journal Name, 2024.

[10] L. Ye and H. Zhang, “LLMProto A hardware-
efficient finetuning model for few-shot relation
extraction with large language model,” Conference
Name, 2024.

PAGE NO: 393

	I. Introduction
	II. Literature Riview
	III. Dataset
	IV. Characteristics and Challenges
	V. Methodology
	VI. Proposed Framewrok
	VII. Future works
	References

