Journal of Engineering and Technology Management 78 (2025)

Workflow Scheduling in Cloud Computing using Mimetic

Algorithm
Dr B.V. RamaKrishna V. Chandana Sri
Associate professor, AlI&DS Department UG student, Al&DS Department
Vignan Institute of Technology and Science Vignan Institute of Technology and Science
Yadadri, Bhuvangiri (Dist), Hyderabad. Yadadri, Bhuvangiri (Dist), Hyderabad.
P. Nithin Reddy R. Durga Mallikarjun
UG student, AI&DS Department UG student, Al&DS Department
Vignan Institute of Technology and Science Vignan Institute of Technology and Science
Yadadri, Bhuvangiri (Dist), Hyderabad. Yadadri, Bhuvangiri (Dist), Hyderabad.
ABSTRACT

Cloud computing has provided a new prospect for modern data processing because it enables
scaling, elasticity, and economical management of computing resources for different services.
One of the major problems in this area is efficient workflow scheduling, which comprises of
allocating several interacting subtasks to virtual resources in a manner that gains
optimization. This work proposes an advanced schedule based on a Mimetic Algorithm
which is an hybrid algorithm including Genetic Algorithm, robust global explorations and
more effective solutions through precise optimization with local Hill Climbing. This hybrid
strategy enhances efficiency in both the pace and quality of results obtained. Such
improvements resolve the cloud workflow scheduling problems intrinsic to its NP hard
properties. It also utilizes dynamic resource allocation systems which aim for reduced
execution costs and make span by dynamically aligning tasks to the distributed resources
offered in the cloud. Simulations using Cloud-Sim showed that response time, cost, and
resource utilization were significantly improved when compared to Genetic Algorithm.
Despite of having challenges such as computational demands and scalability in large scale
environments this approach marks a significant advancement in cloud workflow scheduling,
showcasing great potential for future improvements.

Key Words: - Cloud Computing, Metaheuristic, Hill Climbing, Resource utilization, Genetic
algorithm, Optimization, Scheduling.

INTRODUCTION

Cloud Computing domain becoming the solution for modern era digital communication
offering on-demand virtualization benefits to clients with inexpensive infrastructures [2]. The
work scheduling of cloud servers is placing great challenge which involves task mappings,
interdependencies management and resource planning activities [5]. The goal of workflow
scheduling is to optimize the performance of cloud systems through minimal cost and
maximal resource utilization in energy efficient environments [3]. Workflow scheduling falls
under NP-hard problem. Various heuristic and metaheuristic algorithms identified for optimal
solution efficiency [7]. However these algorithms face premature convergence and poor local
search capability problem [4]. Investigations maximized techniques efficiency to meet
constrained cloud workflow deadlines. SLA based resource allocation for SaaS environments
maximizing the resource utilization ability [10]. Dual criteria scheduling algorithms in grid
workflows improving efficiency and optimization degree in work flow processes [8].

PAGE NO: 317

Journal of Engineering and Technology Management 78 (2025)

METHODOLOGY

The Mimetic Algorithm (MA) is integrated with the global search techniques like Genetic
Algorithms (GA) and Hill Climbing which finely tune local optimization rate. This
integration allows algorithms to look into wide search spaces and provide optimal solutions
in variable scaling. MA improves the workflow scheduling problem in cloud computing,
which is NP-hard because it requires a large meticulous assignment of tasks and resources in
order to minimize cost, spawn and resource utilization. It also honors strict deadlines and
SLAs in a significant way. The functioning of the MA is a process of a series of specified
steps, each of them contributing to improve the ultimate scheduling outcome.

Initialization

The algorithm initiates with a random initial population of potential solutions, each being a
specific type of the workflow tasks onto available cloud resources. The solutions are depicted
such that each workflow task is connected to a VM, and consequently, the entire execution
plan is constructed. Diversity of the population is very important because it enables to cover a
large region of possible solutions by the algorithm. By covering extra regions of the solution
space early, the algorithm minimizes the chances of premature convergence and maximizes
the chances of finding a globally optimal solution.

Fitness Evaluation

Each population solution is evaluated by a fitness function that tries to capture the quality of
scheduling. Many significant metrics are taken into account by the fitness function. They are
Execution Cost-Total cost incurred while executing the tasks on cloud resources, Execution
time: Cumulative time required to finish the entire workflow and Resource Utilization: The
extent to which available resources are being utilized effectively. The fitness function also
encompasses real- world constraints, i.e., task dependencies, deadlines, and SLLAs. The
constraints ensure that only realistically feasible and implementable schedules are being
taken into account, and hence the resultant solutions are made more realistic and applicable.

Selection

For constructing the next generation, a selection is performed. This one selects the parent
solutions on the basis of their fitness values. The roulette wheel method of selection is widely
employed wherein the chance for a solution n to be selected is based on its fitness score. It
fulfills the requirements such as use strong solutions by providing them with a greater
opportunity for reproduction and also maintains the population diverse to prevent stagnation
as well as the local optima traps.

Crossover and Mutation

After parent selection, the genetic operations involve both crossover and mutation

Crossover: This operation consists of sampling pieces of two or more parent solutions and
mixing them to generate new individuals. Through the mixing of the attributes of good
performing solutions, crossover encourages the creation of new and potentially improved
scheduling setups. Various crossover strategies, including single-point or multi-point
crossover, may be employed based on the encoding scheme. Mutation: Mutation adds
random, small-scale alterations to a solution, i.e., assigning an activity to a different available
VM. This operation is very important in avoiding the algorithm getting stuck in an area of the
space that has a lot of suboptimal solutions. It helps in boosting the diversity of the
population and enables the algorithm to search new areas of the search space, hence
improving the speed and the scope of the search process.

PAGE NO: 318

Journal of Engineering and Technology Management 78 (2025)

Local Search with Hill Climbing

The basic difference between Mimetic Algorithm and Genetic Algorithm is the addition of a
local search technique. A Hill Climbing, in our case as a secondary level of post-processing
procedure for each child generated in each iteration. Once the genetic iterations have
generated the child solution, it is optimized by local search. The Hill Climbing technique
searches for nearby solutions step by step by making small, incremental changes. If there are
any changes in an improvement according to the fitness function, it is accepted and executed;

otherwise, it is rejected.

Algorithm: Hill Climbing

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:
Step 9:

Step 10:
Step 11:
Step 12:
Step 13:

function HILLCLIMB(individual)

current «— individual

bestFit < EVALUATEFITNESS(current)

for i =1 to maxlters do

neighbor «— GENERATENEIGHBOR(current)
neighborFit < EVALUATEFIT- NESS(neighbor)
if neighborFit > bestFit then

current «— neighbor

bestFit «— neighborFit

end if

end for

return current

end function

Algorithm: Genetic Algorithm

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:
Step 9:

Step 10:
Step 11:
Step 12:
Step 13:
Step 14:
Step 15:
Step 16:
Step 17:
Step 18:
Step 19:
Step 20:
Step 21:
Step 22:

function GENETICALGORITHM(regionalList)
population—GENERATEPOPULATION
(regionalList)

fori=1to 100 do
population—EVOLVEPOPULATION(population)
end for

return best DC from sorted population

end function

function EVOLVEPOPULATION(population)
newPop < empty list

for all pairs in population do

parentl, parent2 < random selection

child «— CROSSOVER(parentl, parent2) 13: MUTATE(child)
Add child to newPop

end for

return newPop

end function

function MUTATE(individual)

if random < 0.1 then

Modity fitness by small random value

end if

end function

PAGE NO: 319

Journal of Engineering and Technology Management 78 (2025)

Algorithm: Mimetic Algorithm

Step 1: function MEMETICSCHEDULER(regionalList)

Step 2: population «— ConfigureSimulation- Panel.population
Step 3: solution «— empty list

Step4: for all dc in regionalList do

Step 5: fitness «— CALCULATEFITNESS(dc, popula- tion)
Step 6: Add (dc, fitness) to solution

Step 7: end for

Step 8: Sort solution by fitness

Step9: return DC with max fitness

Step 10: end function

Step 11: function CALCULATEFITNESS(dcName, mem pop)
Step 12: vmFit « 0

Step 13: for all bean in mem pop do

Step 14: if bean.DC == dcName then

Step 15: vmFit += bean.fitness

Step 16: bean.fitness -= 100 > Local search tweak

Step 17: return vimFit

Step 18: end if

Step 19: end for

Step 20: end function

The simulation experiment conducted to show the performance metrics of the proposed
Mimetic Algorithm using the tool kit know as Cloud-Sim Java tool. The tests incorporate
different type of workflows of cloud infrastructure to simulate realistic environment. For
bench marking purposes Mimetic Algorithm was test against the conventional algorithms like
the Genetic Algorithm & Particle Swarm Optimization across different workload levels.

RESULT ANALYSIS

Observations
Execution Time Improvement:

Simulation conducted with Mimetic Algorithm reveal a decrease of fifteen to thirty percent in
workflow execution time compare to basic algorithms. This rise was due to the Mimetic
algorithm local search capability and efficient solution run time optimization searching
enhances convergence and task scheduling efficiency. Moreover workflow partitioning is a
result of local search method improves parallel execution in distributed processing
environment.

Cost Optimization:

Mimetic Algorithm given a outstanding performance in controlling costs in the financial
aspects. The algorithm relatively optimized VM selection and cloud data center allocation as
the workload, resource requirements, and pricing structures changed, which met performance
requirements while controlling costs. This change improvised the resource allocations and
expenditure frameworks resulting in lower operational expenditure in every term in the
Genetic Algorithm.

PAGE NO: 320

Execution Cost

Journal of Engineering and Technology Management 78 (2025)

TABLE 1. Genetic Vs Mimetic in VM Environment

Metric(s) Genetic Mimetic
Algorithm (GA) | Algorithm (MA)
Average
Execution Time (ms) 7131 69.74
Average Cost ($) 3.51 3.12
Resource Utilization 91% 96.7%
VM optimization 93% 97.8%

Execution Cost Comparison

3.60

3.55 4

3.50 1

3.45

3.40 4

3.35 1

3.30

3.25 1

3.20

—8— Execution Time
® Genetic
® Memetic

71.600

71.575 A

71.550 A

Execution Time

71.450

71.425 1

71.400

71.525 A

71.500

71.475 A

Genetic Algorithm

Algorithm

Memetic :&Igonthm

Figurel. Process Cost Optimization comparison

Execution Time Comparison

\

—e— Execution Time
® Genetic
® Memetic

T
Genetic Algorithm

Algorithm

T
Memetic Algorithm

Figure2. Process Time Comparison

PAGE NO: 321

Journal of Engineering and Technology Management 78 (2025)

100
90 -1
80 -
70
60 -

50 A

Process Cost

40 -

Process Time

30

20

1 2 3 4 5 [
Process CostVs Time

Figure3. Process Time Vs Process Cost

CONCLUSION

The Mimetic Algorithm (MA), a hybrid Metaheuristic approach that combines the global
optimization power of Genetic Algorithms (GA) with precision and delicacy of local search
methods like Hill Climbing, presents a robust solution to the remove the issue of workflow
scheduling in cloud computing environments. Based on the natural selection process and
evolution concepts, MA brings both intelligence and adaptability to the scheduling process.
Whereas Genetic Algorithms enable searching of the solution space in an extensive way,
whereas Hill Climbing will search by refining single solutions in a strengthening way. This
supporting enables the Mimetic Algorithm to overcome some of the usual weaknesses
associated with conventional methods, including low convergence and being trapped within
local optima. . In actual commercial cloud environments, workloads sometimes change in
scope, and access to resources could dynamically change as well. By virtue of being adaptive,
MA's scheduling property enables it to react well against such changes while making real-
time adjustments to secure ongoing optimization. This adaptive attribute not only enables
sustained performance but also helps support service-level agreement (SLA) compliance
critical in commercial use of clouds.

REFERENCES

[1] Prashant Shukla and Sudhakar Pandey, Energy Efficient Workflow Scheduling Algorithm for
Latency-Sensitive Applications using Cloud-Fog Collaboration, VOL. 12, NO. 3, 2024.

[2] Amer Saeed; Gang Chen; Hui Ma; Qiang Fu, Genetic Algorithm with Repair Method for
Deadline-Constrained IoT Workflow Scheduling in Cloud Computing, 2024.

[3] Parameshachari B.D, Usha M, Shwetha N, Mohan B R,Scheduling the Task of User in Cloud
computing using Hybrid Procedure of PSO and Lion Algorithm, VOL. 10, NO. 4, 2022.

[4] Ismail M. Ali, Karam M. Sallam, Nour Moustafa, An Automated Task Scheduling Model
Using Non-Dominated Sorting Genetic Algorithm II for Fog-Cloud Systems,2019.

[5] Ahmad Taghinezhad-Niar and Javid Taheri, "Security, Reliability, Cost, and Energy-Aware
Scheduling of Real-Time Workflows in Compute-Continuum Environments”, 7th
International Conference on Future Internet of Things and Cloud (Fi-Cloud), 2019.

[6] W. Chen, J. Wu, and Z. Zheng, A Throughput Maximization Strategy for Deadline
Constrained Cloud Workflow Systems, in Proceedings of the 2013 IEEE 6th International
Conference on Cloud Computing, pp. 911-918, 2013.

[7] Abdulsalam Alsmady, Tareq Al-Khraishi, Wail Mardini, Hadeel Alazzam, Yaser Khamayseh,
Workflow Scheduling in Cloud Computing Using Memetic Algorithm in 6th Annual China
Grid Conference, pp. 3-9, 2011.

PAGE NO: 322

Journal of Engineering and Technology Management 78 (2025)

[8] Georgios L. Stavrinides, Helen D. Karatza, Cost-Effective Utilization of Complementary
Cloud Resources for the Scheduling of Real-Time Workflow Applications in a Fog
Environment, IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 8, pp.
1374-1381, 2011.

[9] L. Wu, S. K. Garg, and R. Buyya, SLA-Based Resource Allocation for Software as a Service
Provider (SaaS) in Cloud Computing Environments, in 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 195-204, 2011.

[10] R. Prodan and M. Wieczorek, Bi-Criteria Scheduling of Scientific Grid Workflows,
IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 3, pp. 417-431, 2009.

PAGE NO: 323

