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ABSTRACT 

Cloud computing has provided a new prospect for modern data processing because it enables 
scaling, elasticity, and economical management of computing resources for different services. 
One of the major problems in this area is efficient workflow scheduling, which comprises of 
allocating several interacting subtasks to virtual resources in a manner that gains 
optimization. This work proposes an advanced schedule based on a Mimetic Algorithm 
which is an hybrid algorithm including Genetic Algorithm, robust global explorations and 
more effective solutions through precise optimization with local Hill Climbing. This hybrid 
strategy enhances efficiency in both the pace and quality of results obtained. Such 
improvements resolve the cloud workflow scheduling problems intrinsic to its NP hard 
properties. It also utilizes dynamic resource allocation systems which aim for reduced 
execution costs and make span by dynamically aligning tasks to the distributed resources 
offered in the cloud. Simulations using Cloud-Sim showed that response time, cost, and 
resource utilization were significantly improved when compared to Genetic Algorithm. 
Despite of having challenges such as computational demands and scalability in large scale 
environments this approach marks a significant advancement in cloud workflow scheduling, 
showcasing great potential for future improvements. 

Key Words: - Cloud Computing, Metaheuristic, Hill Climbing, Resource utilization, Genetic 
algorithm, Optimization, Scheduling. 

INTRODUCTION 

Cloud Computing domain becoming the solution for modern era digital communication 
offering on-demand virtualization benefits to clients with inexpensive infrastructures [2]. The 
work scheduling of cloud servers is placing great challenge which involves task mappings, 
interdependencies management and resource planning activities [5]. The goal of workflow 
scheduling is to optimize the performance of cloud systems through minimal cost and 
maximal resource utilization in energy efficient environments [3]. Workflow scheduling falls 
under NP-hard problem. Various heuristic and metaheuristic algorithms identified for optimal 
solution efficiency [7]. However these algorithms face premature convergence and poor local 
search capability problem [4]. Investigations maximized techniques efficiency to meet 
constrained cloud workflow deadlines. SLA based resource allocation for SaaS environments 
maximizing the resource utilization ability [10]. Dual criteria scheduling algorithms in grid 
workflows improving efficiency and optimization degree in work flow processes [8]. 
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METHODOLOGY 

The Mimetic Algorithm (MA) is integrated with the global search techniques like Genetic 
Algorithms (GA) and Hill Climbing which finely tune local optimization rate. This 
integration allows algorithms to look into wide search spaces and provide optimal solutions 
in variable scaling. MA improves the workflow scheduling problem in cloud computing, 
which is NP-hard because it requires a large meticulous assignment of tasks and resources in 
order to minimize cost, spawn and resource utilization. It also honors strict deadlines and 
SLAs in a significant way. The functioning of the MA is a process of a series of specified 
steps, each of them contributing to improve the ultimate scheduling outcome. 

Initialization 

The algorithm initiates with a random initial population of potential solutions, each being a 
specific type of the workflow tasks onto available cloud resources. The solutions are depicted 
such that each workflow task is connected to a VM, and consequently, the entire execution 
plan is constructed. Diversity of the population is very important because it enables to cover a 
large region of possible solutions by the algorithm. By covering extra regions of the solution 
space early, the algorithm minimizes the chances of premature convergence and maximizes 
the chances of finding a globally optimal solution. 

Fitness Evaluation 

Each population solution is evaluated by a fitness function that tries to capture the quality of 
scheduling. Many significant metrics are taken into account by the fitness function. They are 
Execution Cost-Total cost incurred while executing the tasks on cloud resources, Execution 
time: Cumulative time required to finish the entire workflow and Resource Utilization: The 
extent to which available resources are being utilized effectively. The fitness function also 
encompasses real- world constraints, i.e., task dependencies, deadlines, and SLAs. The 
constraints ensure that only realistically feasible and implementable schedules are being 
taken into account, and hence the resultant solutions are made more realistic and applicable.  

Selection 

For constructing the next generation, a selection is performed. This one selects the parent 
solutions on the basis of their fitness values. The roulette wheel method of selection is widely 
employed wherein the chance for a solution n to be selected is based on its fitness score. It 
fulfills the requirements such as use strong solutions by providing them with a greater 
opportunity for reproduction and also maintains the population diverse to prevent stagnation 
as well as the local optima traps. 

Crossover and Mutation 

After parent selection, the genetic operations involve both crossover and mutation 

Crossover: This operation consists of sampling pieces of two or more parent solutions and 
mixing them to generate new individuals. Through the mixing of the attributes of good 
performing solutions, crossover encourages the creation of new and potentially improved 
scheduling setups. Various crossover strategies, including single-point or multi-point 
crossover, may be employed based on the encoding scheme. Mutation: Mutation adds 
random, small-scale alterations to a solution, i.e., assigning an activity to a different available 
VM. This operation is very important in avoiding the algorithm getting stuck in an area of the 
space that has a lot of suboptimal solutions. It helps in boosting the diversity of the 
population and enables the algorithm to search new areas of the search space, hence 
improving the speed and the scope of the search process. 
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Local Search with Hill Climbing 

The basic difference between Mimetic Algorithm and Genetic Algorithm is the addition of a 
local search technique. A Hill Climbing, in our case as a secondary level of post-processing 
procedure for each child generated in each iteration. Once the genetic iterations have 
generated the child solution, it is optimized by local search. The Hill Climbing technique 
searches for nearby solutions step by step by making small, incremental changes. If there are 
any changes in an improvement according to the fitness function, it is accepted and executed; 
otherwise, it is rejected. 

Algorithm: Hill Climbing 

Step 1: function HILLCLIMB(individual)  
Step 2: current ← individual 
Step 3: bestFit ← EVALUATEFITNESS(current)  
Step 4: for i = 1 to maxIters do 
Step 5: neighbor ← GENERATENEIGHBOR(current) 
Step 6: neighborFit ← EVALUATEFIT- NESS(neighbor) 
Step 7: if neighborFit > bestFit then 
Step 8: current ← neighbor 
Step 9: bestFit ← neighborFit 
Step 10: end if 
Step 11: end for 
Step 12: return current 
Step 13: end function 

 

Algorithm: Genetic Algorithm 

Step 1: function GENETICALGORITHM(regionalList) 
Step 2: population←GENERATEPOPULATION 
Step 3: (regionalList) 
Step 4: for i = 1 to 100 do 
Step 5: population←EVOLVEPOPULATION(population) 
Step 6: end for 
Step 7: return best DC from sorted population 
Step 8: end function 
Step 9: function EVOLVEPOPULATION(population)  
Step 10:  newPop ← empty list 
Step 11: for all pairs in population do 
Step 12: parent1, parent2 ← random selection  
Step 13: child ← CROSSOVER(parent1, parent2) 13: MUTATE(child) 
Step 14: Add child to newPop 
Step 15: end for 
Step 16: return newPop 
Step 17: end function 
Step 18: function MUTATE(individual) 
Step 19: if random < 0.1 then 
Step 20: Modify fitness by small random value 
Step 21: end if 
Step 22: end function 
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Algorithm: Mimetic Algorithm 

Step 1: function MEMETICSCHEDULER(regionalList) 
Step 2: population ← ConfigureSimulation- Panel.population 
Step 3: solution ← empty list 
Step 4: for all dc in regionalList do 
Step 5: fitness ← CALCULATEFITNESS(dc, popula- tion) 
Step 6: Add (dc, fitness) to solution 
Step 7: end for 
Step 8: Sort solution by fitness 
Step 9: return DC with max fitness 
Step 10: end function 
Step 11: function CALCULATEFITNESS(dcName, mem pop) 
Step 12: vmFit ← 0 
Step 13: for all bean in mem pop do 
Step 14: if bean.DC == dcName then 
Step 15: vmFit += bean.fitness 
Step 16: bean.fitness -= 100 ▷ Local search tweak 
Step 17: return vmFit 
Step 18: end if 
Step 19: end for 
Step 20: end function 

The simulation experiment conducted to show the performance metrics of the proposed 
Mimetic Algorithm using the tool kit know as Cloud-Sim Java tool. The tests incorporate 
different type of workflows of cloud infrastructure to simulate realistic environment. For 
bench marking purposes Mimetic Algorithm was test against the conventional algorithms like 
the Genetic Algorithm & Particle Swarm Optimization across different workload levels. 

RESULT ANALYSIS 

OObbsseerrvvaattiioonnss  

Execution Time Improvement: 

Simulation conducted with Mimetic Algorithm reveal a decrease of fifteen to thirty percent in 
workflow execution time compare to basic algorithms. This rise was due to the Mimetic 
algorithm local search capability and efficient solution run time optimization searching 
enhances convergence and task scheduling efficiency. Moreover workflow partitioning is a 
result of local search method improves parallel execution in distributed processing 
environment. 

Cost Optimization: 

Mimetic Algorithm given a outstanding performance in controlling costs in the financial 
aspects. The algorithm relatively optimized VM selection and cloud data center allocation as 
the workload, resource requirements, and pricing structures changed, which met performance 
requirements while controlling costs. This change improvised the resource allocations and 
expenditure frameworks resulting in lower operational expenditure in every term in the 
Genetic Algorithm. 
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TABLE 1. Genetic Vs Mimetic in VM Environment 

Metric(s) Genetic  
Algorithm (GA) 

Mimetic  
Algorithm (MA) 

Average  
Execution Time (ms) 

71.51 69.74 

Average Cost ($) 3.51 3.12 
Resource Utilization 91% 96.7% 

VM optimization 93% 97.8% 
 

 
Figure1. Process Cost Optimization comparison 

  
Figure2. Process Time Comparison  
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Figure3. Process Time Vs Process Cost  

CONCLUSION 

The Mimetic Algorithm (MA), a hybrid Metaheuristic approach that combines the global 
optimization power of Genetic Algorithms (GA) with precision and delicacy of local search 
methods like Hill Climbing, presents a robust solution to the remove the issue of workflow 
scheduling in cloud computing environments. Based on the natural selection process and 
evolution concepts, MA brings both intelligence and adaptability to the scheduling process. 
Whereas Genetic Algorithms enable searching of the solution space in an extensive way, 
whereas Hill Climbing will search by refining single solutions in a strengthening way. This 
supporting enables the Mimetic Algorithm to overcome some of the usual weaknesses 
associated with conventional methods, including low convergence and being trapped within 
local optima. . In actual commercial cloud environments, workloads sometimes change in 
scope, and access to resources could dynamically change as well. By virtue of being adaptive, 
MA's scheduling property enables it to react well against such changes while making real-
time adjustments to secure ongoing optimization. This adaptive attribute not only enables 
sustained performance but also helps support service-level agreement (SLA) compliance 
critical in commercial use of clouds. 
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