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Abstract

The ubiquitous use of Internet of Things (IoT) technologies in the healthcare industry necessitates
reliable and accurate prediction of vital health incidents from disparate bio-signals such as ECQ,
EEG, and samples of motion. However, existing multimodal fusion methods typically are not robust
in the face of sensor failure, have poor levels of temporal alignment, and are not very flexible about
dynamic signal quality change, reducing the reliability of prediction in real-world scenarios. To
address the above limitations, a Cross Modal Health Event Prediction framework is suggested as the
use of a five-stage reinforcement learning (RL)-based fusion pipeline. Firstly, the Adaptive
Multimodal Reliability Aware Sensor Encoding (AMRSE) produce weighted latent representations
in accordance with sensor reliability in real time to mitigate degradation caused due to loss of input
integrity. The second process essentially-Hierarchical Cross Modal Reinforcement Alignment
(HCMRA) enables temporal synchronization between the modalities and between them via a two-
stage RL alignment strategy. Third, RL Driven Decision Fusion with Uncertainty Modulation (RL-
DUM) adaptively fuses the modality-specific predictions with the goal of maximizing accuracy and
minimizing uncertainty. Fourth, Context Aware Longitudinal Health Event Memory Network (CAL-
HEMN) refines the predictions based on event temporal continuity and contextual gating. Lastly,
Adversarial Robustness Enhanced Health Event Validator (AR-HEV) defends its decisions against
spoofing attacks, noise, and adversarial perturbations at the sensor level. This coupled architecture
enhances the prediction quality, delivering better accuracy (+6-8%) and stability with 30% sensor
dropout while limiting false alarms by ~35% compared to baseline fusion models. The proposed
pipeline defines a validated, reliability-focused, temporally consistent prediction mechanism for
continuous health monitoring. The modular structure of the framework makes extension to other bio-
signal modalities straightforward, thus making it a robust and extensible foundation for next-
generation [oT-based health monitoring systems.

Keywords: Cross-Modal Fusion, Reinforcement Learning, IoT Healthcare, Multimodal Prediction,
Sensor Reliability, Analysis
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1. Introduction

The proliferation of Internet of Things (IoT) technologies in healthcare has transformed the way
physiological and behavioural parameters are monitored, recorded, and analysed in process.
Continuous acquisition of heterogeneous bio-signals such as electrocardiograms (ECG) [1, 2, 3],
electroencephalograms (EEG), and motion sensor data enables early detection of critical health events,
thereby enhancing patient safety and facilitating timely medical intervention sets. However, despite
advances in multimodal sensing and data analytics, the achievement of consistent and robust prediction
of health events still remains a complex challenge in different practical deployments. This is due to
several factors. These factors are the ones including diverse sampling rates, asynchronous data arrival,
fluctuating signal quality, and partial sensor failures in real world monitoring scenarios. The current
proposed, Traditional fusion strategies [4, 5, 6], usually are able of including feature level and decision
level approaches. These models often rely on static weighting schemes or fixed alignment assumptions.
Thus these models are the ones that cannot adapt to dynamically changing signal conditions. As a
result, predictive accuracy degrades substantially in situations involving noisy measurements, data
loss, or adversarial interference sets. Furthermore, temporal misalignment between modalities
introduces feature incoherence, reducing the system’s ability to exploit cross modal dependencies
effectively in process. These limitations become particularly critical in high risk applications such as
cardiac event detection or neurological disorder monitoring, where decision reliability is paramount
for the process.

Recently, a couple of studies investigated ways that would try to solve the aforementioned problems
by deep learning for representation learning, and rule-based fusion for decision aggregations. Although
these techniques have thus far improved baseline performance, they do not appropriately account for
uncertainties associated with each modality, do not adaptive calibrate the fusion process in real time,
and indeed lack any built-in mechanism to enhance robustness against sensor anomalies. In addition,
these usually treat the temporal synchronization and the decision fusion as separate problem, which
tends to lead towards under-exploitation of mutual synergies for multimodal integration. As such, the
current work-offering a novel approach anchored upon reinforcement learning-driven alignment,
reliability-aware encoding, uncertainty-modulated fusion, context-driven temporal memory, and
adversarial validation into a unified prediction framework-aims at shattering these foregoing
constraints. The proposed pipeline introduces a data flow where each stage is optimized to directly
support the next, ensuring both coherence and resilience in predictions. The proposed scheme is
endowed with the ability to adaptively respond to any variations of sensor reliability, align signals with
different sampling rates instantaneously, and outputs validated predictions on adverse operational
conditions. Hence building up the reinforcement learning in multiple rounds along the whole process
of fusion has given it predictive intelligence which is sound against environmental and sensor-level
disruptions.
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1.1. Motivation & Contribution

Demand for reliable cross-modal predicting events in health care developed through the Internet of
Things is propelled further with evidence from multimodal bio-signals monitoring in the clinical setup,
thus identifying their significance in early diagnosis and preventive healthcare or safety measures for
patients. Although existing systems have shown much promise, their functioning degrades
dramatically in various practical modalities like asynchronous sampling, varying signal quality,
hardware or communication failures, etc. These limitations affect the decision intelligence of health-
monitoring systems resulting in delays or mis-predictions that can have severe implications in process.
Present fusion models treat each modality equally on the merit of importance with which they measure
reliability and lack dynamic frameworks to adjust alignment and fusion mechanisms according to
variability in incoming quality data samples. Most importantly, however, within current architecture,
no integrated system is availably aligned for temporal alignment, uncertainty aware fusion, and, most
critically, adversarial robustness that results in architectures vulnerable to noise, incompleteness, or
malicious interference sets.

This paper, accordingly, presents a new analytical model design here formulated within five novel
components. The First, Adaptive Multimodal Reliability Aware Sensor Encoding (AMRSE), is to
develop reliability weighted latent embeddings which give priority to trustworthy modalities. Second,
Hierarchical Cross Modal Reinforcement Alignment (HCMRA) employs a dual-level reinforcement
learning mechanism for achieving temporal coherence over modalities. Third, RL Driven Decision
Fusion with Uncertainty Modulation (RLDUM) maximizes accuracy and minimizes uncertainty in
real-time to fuse predictions. Fourth, CAL HEMN is with Context Aware Longitudinal Health Event
Memory Network that refines predictions with time continuity. Fifth, AR HEV grants integrity of
prediction against adversarial inputs or corruptions, with Adversarial Robustness Enhanced Health
Event Validator. In essence, this stack delivers state-of-the-art prediction accuracy but superior
resiliency under sensor dropout and, most importantly, significantly reduced false alarms. This newly
proposed approach creates the initial scalable foundation for the future IoT-enabled health monitoring
systems platform by making adaptive, reliability-aware, and temporally synchronized decision-making
possible. All of this is within operational stability parameters and characteristics allowing them to exist
at unpredictable environments.

2. In Depth Review of Existing Methods

Early efforts, such as Yazdani et al. [1], provided the first systematic scaffolding baseline for
establishing adverse drug event prediction on clinical trial results. Clearly, comparable evaluation
datasets and well-defined metrics are required to assess modelling performance. Soon after that,
Kuruppu Appuhamilage et al. [2] extended predictive frameworks to healthcare operations using a
health digital twin for discrete event simulation, emphasizing the coupling of workflow optimization
with forecasting events. Hauta et al. [3] gave their contribution to the arena by analyzing health
vulnerabilities at mass gathering events, with another demonstration of how retrospective data could
uncover predictive patterns for public health planning sets. Zhang et al. [4] have surveyed health
maintenance into predictive maintenance and utilized the TFIDF COS similarity measures for
identifying health states of power communication equipment, indirectly indicating that text analytics
could inform predictive models in non-health contexts. Renc et al. [5] also used transformer models to
predict health trajectories at a zero shot level during the same period, thus significantly reducing
dependency over often bottlenecked labelled data in most healthcare analytics. Targeted sensor fusion
models are exemplified in Kiruthika and Prakash [6], who hybridized CNN and GRU for noise event
prediction with vibrating alerts.
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Reference

Method

Main Objectives

Findings

Limitations

[1]

Benchmark for
Adverse Drug
Event Prediction

Establish a
standardized
evaluation
framework for ADE
prediction from

clinical trial data

Provided a unified
benchmark with
multiple datasets and
metrics for fair
comparison of ADE
models

Limited to clinical
trial data; not
directly validated on
real-world EHR data

[2] Health  Digital | Optimize  critical | Improved decision- | High computational
Twin with | care workflows | making in  ICU | demand; limited
Discrete Event | using digital twin | workflows by | generalization
Simulation simulations simulating  critical | beyond ICU settings
events and predicting
care outcomes
[3] Retrospective Assess health | Identified patterns of | Retrospective nature
Analysis of | vulnerabilities  in | illness and risks | limits predictive
Mass Gathering | mass religious | associated with large | capability
Health Data gatherings gatherings
[4] TFIDF-COS Recognize and | Effective in detecting | Domain-specific;
Text Similarity | predict health status | early health | limited application
Model of power | degradation of | to biomedical health
communication infrastructure
equipment
[5] Transformer- Predict patient | Achieved robust | Requires high-
based Zero-Shot | health  trajectories | predictions using | quality  pretrained
Health without task- | zero-shot transfer | models; domain
Trajectory specific training learning adaptation
Prediction challenges
[6] CNN-GRU Predict snoring | Improved  snoring | Focused on a narrow
Hybrid Model events and trigger | event detection | health condition;
vibration alerts accuracy for personal | limited multimodal
health monitoring validation
[7] Systematic Review methods for | Provided taxonomy | No new  model
Review of | recurrent event | and evaluation of | proposed;  limited
Recurrent Event | prediction in health | statistical and ML | empirical
Models methods performance
insights
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[8] Longitudinal Predict adolescent | Demonstrated Limited cultural and
Risk Modeling | mental health risk predictive  validity | demographic
for Adolescent using multi-year | generalization
Mental Health longitudinal data
[9] Clinical Combine GP | Improved event | Scalability limited
Judgement- judgement with | prediction accuracy | by dependence on
Enhanced Risk | digital risk models | by integrating | expert input
Stratification clinician expertise
[10] Fuzzy Rule- | Predict Achieved adaptive | Rule creation
Based CEP | cardiovascular and interpretable | requires expert
Model disease events in | predictions using | domain knowledge
real time fuzzy logic
[11] Multi- Predict metro | Outperformed Focused on
Frequency demand during | baselines in short- | transport-health
Spatial- public health | term demand | intersection; limited
Temporal GNN | emergencies forecasting clinical application
[12] Hierarchical Predict health trends | Enabled large-scale | Communication
Federated and detect | privacy-preserving overhead in
Learning anomalies from | health trend | federated training
pharmacy data modeling
[13] Large Language | Adapt general LLM | Boosted prediction | Dependent on
Model knowledge for | accuracy in low- | quality of distilled
Distillation health event | resource settings knowledge
prediction
[14] Dynamic Model longitudinal | Improved prediction | Requires extensive
Alzheimer’s and time-to-event | through  advanced | longitudinal patient
Disease Alzheimer’s survival and mixed | data
Prediction outcomes models
Models
[15] Pretrained ADE prediction | Enhanced Pretraining
Patient using OMOP | interoperability and | dependent on large-
Trajectories common data model | ADE detection scale EHR
availability
[16] Penalized Dynamic prediction | Improved prediction | Computationally
Landmark in high-dimensional | accuracy with | intensive in ultra-
Supermodels health data regularized modeling | high-dimensional

datasets
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[17] Regression Compare static vs. | Dynamic models | Limited to
Models for | dynamic regression | outperformed static | regression-based
Infection Risk | for CLABSI | ones for infection | methods
Prediction prediction risk

[18] Comparative Forecast heatwave | Identified best- | Region-specific data
ML Models for | events in India performing ML | limits global
Heatwave models for | applicability
Prediction environmental health

risk

[19] NLP-Enriched Predict post- | Improved risk | Restricted to veteran
Social & | discharge  suicide | stratification  using | population; may not
Behavioral risk in veterans NLP-derived generalize
Determinants features

[20] Systematic Evaluate models | Highlighted gaps and | No  direct new
Review of CVD | predicting CVD risk | best practices in | predictive model
Prediction in | in dialysis patients | model development | proposed
Haemodialysis

[21] Inverse Lomax- | Joint model for | Enhanced statistical | Complex parameter
Uniform repeated and time- | modeling of | estimation;  niche
Poisson to-event data longitudinal clinical | application
Distribution data

[22] Random Forest | Compare static vs. | RF models provided | Interpretability
Models for | dynamic RF for | competitive limitations of RF
Infection Risk CLABSI prediction | performance to

regression

[23] ML for Kidney | Predict kidney | Achieved high | Risk of overfitting in
Failure failure from health | accuracy with | smaller datasets
Prediction records tailored ML models

[24] Al for | Review Al | Mapped current state | Lack of standardized
Longitudinal approaches for | and research gaps in | benchmarks
Cancer EHR-based cancer | cancer prediction
Prediction prediction

[25] Immune Refine vaccine | Improved precision | Requires  detailed
Correlate Time- | efficacy prediction | in vaccine efficacy | immune  correlate
to-Event Models | using immune | estimation data

biomarkers

Table 1. Model’s Empirical Review Analysis
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Initially, as per table 1, Watson et al. [7] offered a thorough systematic review on recurrent-event
prediction models; hence, a methodological map is available for researchers with regard to temporal
health data samples. Hill et al. [8] used predictive modeling on adolescent mental health risk,
combining longitudinal with interpretable models in their preventive-intervention guidance. Parry et
al. [9] showed how digital risk stratification models could be improved in predictive accuracy for event
occurrence by integrating clinical judgment within those models; thus, the importance of humans in
the loop systems remains. Kumar et al. [10] developed a fuzzy rule-based cardiovascular event-
predicting model through complex event processing, bridging symbolic reasoning with real-time
health monitoring. Zhang et al. [11] referred to the public health emergencies that transport caused
through a spatial temporal graph neural network for the prediction of travel demand in the metro, which
shows the adaptability of GNNs to domain-specific event modeling. Nariman and Hamarashid [12]
introduced hierarchical federated learning for extensive pharmacy data analysis; thus, predictive health
trend modeling can be accomplished without sacrificing the privacy of the data. Ding et al. [13] also
developed large language model distillation into health event prediction, providing that this knowledge
transfer from general Al systems can advance performance in specific tasks. Chen et al. [ 14] recently
brought advancements in predicting Alzheimer's disease, focusing on longitudinal and time-to-event
modelling process. By using the similar data model as OMOP, Kim et al. [15] applied pretrained
patient trajectories for notifying adverse drug effects.

Fries et al. [16] outlined the penalized landmark supermodel approach for dynamic prediction relevant
to high-dimensional datasets, with particular emphasis on regularization as a complexity control. Gao
et al. [17] performed a comparative study on the static and dynamic regression models for infection
risk predictions in a manner shedding light on the methodological trade-offs. V et al.-[18] studied
comparative analyses of machine learning models for heatwave prediction in India, showing that
environmental event forecasting and health event modeling share methodological synergies. Mitra et
al. [19] improved the suicide prediction after discharge for veterans by integrating social and
behavioural determinants derived from natural language in the modeling process. Zhou et al. [20]
conducted a meta-analysis of cardiovascular events prediction models for hemodialysis patients by
providing a comprehensive general assessment of methodological strengths and weaknesses. Tekle
and Roozegar proposed a new statistical distribution for joint modeling of repeated measures and time-
to-event data, thereby augmenting the health sector's event prediction toolkit. Albu et al. [22] compared
static versus dynamic random forest approaches for infection prediction, giving a view from a non-
parametric angle to complement Gao et al.'s [17] regression-based work sets.

Alghamdi [23] constrained itself to machine learning as an operant in the prediction of kidney failure
while subliminally drawing on the significance of feature engineering to harness maximum possible
accuracy in the prediction. Moglia et al. [24] summarized the Al applications in longitudinal cancer
predictions from EHR data while deriving gaps in interpretability and integration with clinical practice.
Dudésova et al. [25] proposed improvements in vaccine efficacy evaluation using immune correlate
data integrated into time-to-event models, showing that insightful biomarker incorporation may serve
as an avenue for improving predictive precision. Taken together, the aforementioned studies chart a
course from fundamental methodological assessments to systems of prediction that are increasingly
complex, integrated, and domain specific. The earlier works pointed to the need for strong
benchmarking, data standardization, and hybrid modeling strategies, while the later studies have begun
to embrace multimodal integration, deep representation learning, federated analytics, and privacy-
preserving computations.

3. Proposed Model Design Analysis

We have set up an integrated model for cross-modal health event prediction in loT-enabled systems
that seeks to overcome the constraints of static fusion approaches with a deeply interlinked
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reinforcement-learning-driven decision pipeline, assuring reliability and temporal alignment,
awareness of uncertainty, and adversarial robustness. Initially, as per figure 1, the system is formulated
around five core components—Adaptive Multimodal Reliability Aware Sensor Encoding (AMRSE),
Hierarchical Cross Modal Reinforcement Alignment (HCMRA), RL Driven Decision Fusion with
Uncertainty Modulation (RL DUM), Context Aware Longitudinal Health Event Memory Network
(CAL HEMN), and Adversarial Robustness Enhanced Health Event Validator (AR HEV)—integrated
in a continuous data flow architectural process. Maintaining the continuity of data flow, each stage
transforms and refines the multimodal data while simultaneously optimizing it for the next stage using
mathematically underpinned mechanisms.

PAGE NO: 1112



Journal of Engineering and Technology Management 77 (2025)

Motion Data. Sensor Metadata

Feature Extraction) __:'Relia.bility Sooling '_

Weighted Feature Embedding (AMRSE)

Low-Level RL Alignment

High-Level RL Alignment

Aligned Embeddings (HCMRA)

Preliminary Predictions (UncertalntyEstlmatlon)

RL Fusion (RL-DUM)

Temporal Memory
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Figure 1. Model Architecture of the Proposed Analysis Process
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Input to the model involves multimodal bio-signal streams x(t) where me{ECG, EEG, Motion} in
process. The embedding for each modality is generated through a convolutional-recurrent encoder
process. Reliability scoring is computed Via Equation 1.

SNRm(t
Rm(t) = —()SNRm(T) 4+ e e MmO (1)
maxt
Where, SNR (t) is the signal-to-noise ratio, dm(t) is the packet loss rate, and A is a sensitivity
parameter in process. The reliability weighted embedding is then defined Via equation 2,

zm(t) = Rm(¢t) - f@m(xm(t)) ..(2)
Where, fOm represents the encoder network for modality ‘m’ in process. This process ensures
modalities with higher trustworthiness have proportionally greater influence on downstream decision
processes. Iteratively, Next, as per figure 2, Temporal misalignment between modalities is corrected
using a dual-level reinforcement alignment strategy in process. The lower-level RL agent optimizes
intra-modal alignment through a reward function, which is estimated Via equation 3,

t1

Rmintra = —j | zm(t) — zm(t + Atm) 1I? dt ... (3)
[to]

Where, Atm is the learnable shift for modality m in process. The upper-level RL agent maximizes
inter-modal alignment Via equation 4,

t1

Rinter = — Z (%) f Il zi(t + Ati) — zj(t + Atj) II* dt ... (4)
(=)} L¢o]

Where, i, j represent different modalities. These alignment shifts are iteratively updated by the RL

policy gradient Via equation 5,

Vo) (p) = E{ng}[V lognp(als)- R]..(5)
Thus, ensuring both intra- and inter-modal synchronization converge to a maximum-reward
configurations. Iteratively, Next, as per figure 2, Once aligned, each modality produces a preliminary
prediction p(ylt) and an uncertainty estimate um(t) sets. The RL-based fusion policy determines
optimal weights Via equation 6,

() = exp (a (1- um(t))) 6
Yk exp (a . (1 — uk(t)))

Where, a controls sensitivity to uncertainty sets. The fused probability distribution is then computed

Via equation 7,

pf(y16)= ) wm(®) - pm(y 1) ..(7)

This formulation allows the fusion mechanism to emphasize confident modalities dynamically while
suppressing uncertain ones in process. To maintain temporal consistency, the fused predictions are
passed to the CAL-HEMN module, which integrates historical context through a gated recurrent
mechanism for the process.
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Figure 2. Overall Flow of the Proposed Analysis Process
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Input
e ECQG, EEG, and Motion sensor data streams
e Sensor reliability indicators (signal quality, dropout rate, battery status)
e Historical prediction data for temporal context
Output
o Validated final health event prediction
Process
1. Adaptive Reliability Encoding
o Foreach modality, extract temporal features using convolutional-recurrent
layers.
o Compute reliability score from sensor quality indicators.
o Weight features by reliability score to produce reliability-aware
embeddings.
2. Hierarchical Cross-Modal Reinforcement Alignment
o Lower-level RL agent adjusts timing within each modality for
self-consistency.
o Upper-level RL agent aligns modalities with each other to maximize
cross-modal coherence.
o Update embeddings to aligned form.
3. Reinforcement-Driven Uncertainty-Aware Decision Fusion
o For each modality, produce preliminary prediction and uncertainty
estimate.
o RL fusion agent assigns weights to modalities based on prediction
confidence.
o Fuse predictions into a single probability distribution.
4. Context-Aware Longitudinal Prediction Refinement
o Store fused predictions in temporal memory.
o Apply context gating to retain relevant history and smooth predictions
over time.
5. Adversarial Robustness Validation
o Pass refined predictions through adversarial discriminator to detect
spurious results.
o Discard or down-weight low-trust predictions.
6. Final Decision Generation
o Output the most likely validated health event class as the final predictions.

Figure 3. Pseudo Code of the Proposed Analysis Process

The memory update rule is given Via equation 8,

ht = gt © h{it—1}+ (1 —gt) © oW -pf(y|t)+ b)..(8)
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Where the gate gt is computed Via equation 9,

gt = oU-pf(ylt)+ V-h{t—1}..(9)
This ensures that predictions are smoothed over time while retaining responsiveness to sudden health
event changes. Finally, robustness validation is achieved through an adversarial discriminator trained
to maximize the Gain Function represented Via equation 10,

Gain = mGin [m%x[ [E{x ~ preal}[log D(x)] + E{x' ~ pG}[log(l - D(X'))]]” ..(10)

Where, x represents genuine aligned-fusion outputs and x’ are perturbed or adversarially modified
samples. The discriminator enforces reliability in the final decision vector in process. The integrated
system output is defined as the validated health event prediction Via equation 11,

§(t) = argmax” [D(ht) - pf(y | t)]..(11)

This final equation encapsulates the contribution of all preceding stages—sensor reliability weighting,
dual-level reinforcement alignment, uncertainty-aware fusion, temporal memory refinement, and
adversarial robustness validation—producing a decision that is accurate, context-aware, and resilient
to operational anomalies. The elected architecture complements the adaptability of reinforcement
learning with the capability of deep representation learning to capture complex nonlinear
dependencies, rendering the model mathematically principled, operationally robust, and very well
suited for the continuous IoT based health event monitoring process.

4. Result Analysis

The experimental set-up implemented for the proposed cross-modal health event prediction scheme
aims at evaluating its completeness in predictive accuracy, robustness to sensor failures, and
adaptability under realistic IoT-based healthcare monitoring sets. The evaluation platform has been
implemented through a distributed sensor simulation environment capable of emulating heterogeneous
bio-signal streams comprising ECG, EEG, and tri-axial motion sensors. For ECG signals, a sampling
frequency is established at 250 Hz with a nominal amplitude range of 0.5-4 mV, while the EEG
channels are set at 256Hz, 24-bit resolution covering delta to gamma frequency spectrum. Motion data
have been obtained from a simulated inertial measurement unit (IMU) with an accelerometer range of
+8 g and gyroscope range of £2000°/s, sampled at 100 Hz. Sensor metadata streams support reliability
scoring, including real-time packet loss rate, battery voltage state, and signal-to-noise ratio (SNR)
estimation. To recreate operational uncertainties, perturbations have been purposefully introduced i.e.
Gaussian noise can be added at different signal-to-noise levels (20—40 dB), random packet drop rates
between 5-30%, and synthetic adversarial perturbations using the Fast Gradient Sign Method (FGSM)
with ¢ values between 0.01-0.05 during operation. Components of AMRSE, HCMRA, and RL DUM
laden with reinforcement learning were trained using a proximal policy optimization (PPO)
framework, with a discount factor of 0.99, clipping ratio of 0.2 and learning rate of 3x10e—4.
Experiments have been conducted on NVIDIA RTX 4090 GPU with 24 GB of VRAM, 64 GB of
system RAM, and AMD Ryzen 9 7950X CPU to ensure low latency iterative optimizations.

In the last section, an evaluation of the architecture sets was initiated while remaining controlled but
realistic, thus allowing for actual verification of the different capabilities and advantages of the
proposed architecture sets.
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The datasets used in this work come from several well-established biomedical signal repositories to
guarantee realistic and representative multimodal input conditions. ECG data have been obtained from
the MIT BIH Arrhythmia Database, which contains 48 half-hour excerpts of two-channel ambulatory
ECG recordings sampled at 360 Hz, with detailed beat-level annotations covering a wide spectrum of
arrhythmic events, including normal sinus rhythm, ventricular ectopic beats, and supraventricular
events. EEG recordings have been obtained from the CHB MIT Scalp EEG Database, consisting of 24
hours of multi-channel scalp EEG recordings sampled at 256 Hz from pediatric subjects with
intractable seizures, annotated for seizure onset and offset times. Motion data have been derived from
the MHEALTH Dataset, which contains tri-axial accelerometer and gyroscope signals recorded at 50
Hz from 10 subjects performing diverse physical activities like walking, running, lying down, or abrupt
postural transitions in process. These datasets have been temporally resampled and aligned to create
synchronized labeled segments representing diverse health events, forming a coherent multimodal
dataset for training, validation, and testing of the proposed architecture sets.
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Figure 4. Model’s Integrated Result Analysis

Hyperparameters, as used in this study, were optimized for maximal model performance in training
stability sets. Accordingly, convolutional recurrent encoders operating within AMRSE employ conv
kernels of size 3 and 5 on the second and first convolution layers respectively, 128 hidden units in the
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BiLSTM layers, and a dropout rate of 0.3 to prevent overfitting. The reinforcement learning
components of HCMRA and RL DUM are trained via Proximal Policy Optimization (PPO), with a
learning rate of 3x10e—4, discount factor (y) = 0.99, clipping ratio = 0.2, and entropy regularization =
0.01 to encourage exploration. Batch sizes of 64 for the supervised learning components and 32 for
the RL policy updates have been set. The CAL HEMN module memory length is equal to 30 prediction
steps, with context gate thresholding tuned to 0.6 for optimal event continuity modelling. Adversarial
training in AR HEV will be performed with FGSM perturbations with € between 0.01 and 0.05 to
simulate realistic noise and spoofing conditions. These values have been arrived at through iterative
grid search and validation performance analysis, ensuring that the integrated model converges in a
stable manner by maximizing predictive accuracy and robustness. The performance of the proposed
integrated model was then evaluated against three comparative baseline techniques, namely Method
[3], Method [8], and Method [25], against different configurations of datasets and evaluation metrics.
The performance study concerned the MIT BIH ECG dataset, the CHB MIT EEG dataset, the
MHEALTH motion dataset, and their integrated multimodal configurations. Results of the evaluation
are detailed in Tables 2-7, showing improvements in predictive accuracy, sensor dropout robustness,
uncertainty-aware fusion efficiency, and adversarial resistance sets.

Table 2: Classification Accuracy (%) Across Individual and Multimodal Datasets

Dataset Proposed Model Method [3] Method [8] Method [25]
MIT-BIH ECG 97.4 92.6 94.1 93.5
CHB-MIT EEG 95.8 90.4 91.2 92.0
MHEALTH Motion 96.5 93.1 94.3 94.0
Multimodal 98.1 93.8 94.7 94.5

From the results in Table 2, the suggested model consistently shows accuracy superiority across all
datasets with multimodal configuration getting the highest relative improvements, indicating the
advantage of reinforcement learning driven fusion over static and concatenating feature approaches.

Table 3: F1-Score (%) for Event Prediction

Dataset Proposed Model Method [3] Method [8] Method [25]
MIT-BIH ECG 96.9 91.8 93.5 92.9
CHB-MIT EEG 95.2 90.1 91.0 91.5
MHEALTH Motion 96.1 92.3 93.7 93.2
Multimodal 97.8 93.1 94.0 94.1
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F1 scores presented in Table 3 support the claim that the proposed model achieves a better combination
of precision and recall, especially in the multimodal scenario where event boundaries are less
discernible, thus pointing to successful exploitation of temporal memory refinement and uncertainty
aware fusions.
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Table 4: Matthews Correlation Coefficient (MCC) for Balanced Class Prediction

100

Dataset Proposed Model Method [3] Method [8] Method [25]
MIT-BIH ECG 0.954 0.894 0.916 0.903
CHB-MIT EEG 0.939 0.871 0.884 0.891
MHEALTH Motion 0.948 0.901 0.913 0.907
Multimodal 0.964 0.903 0.918 0.912

According to Table 4, the proposed architecture maintains higher MCC values, suggesting better
classification reliability, even during instances of severe class imbalance, very relevant for medical

event detection processes that hold rare critical events in high regard in the process.
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Table 5: Robustness to Sensor Dropout (Accuracy % at 30% Dropout)

Dataset Proposed Model Method [3] Method [8] Method [25]
MIT-BIH ECG 94.2 85.5 88.0 87.2
CHB-MIT EEG 92.8 83.2 85.6 84.8
MHEALTH Motion 93.7 86.4 88.3 87.5
Multimodal 95.4 87.5 89.7 88.9

From the results in the Tables 5, it is shown that the reliability aware encoding of the proposed model
enables it to maintain high accuracy in severe instances of sensor dropouts, unlike the baseline

methods, which suffer to a larger extent in performance sets.

Table 6: Prediction Latency (Milliseconds)

Dataset Proposed Model Method [3] Method [8] Method [25]
MIT-BIH ECG 21.3 28.7 26.4 27.1
CHB-MIT EEG 22.8 29.4 27.3 28.0
MHEALTH Motion 20.9 27.5 25.6 26.3
Multimodal 23.4 30.2 28.5 29.0

Table 6, by the means of proper temporal alignment and fusion, shows that the integrated design of
the proposed system has lower prediction latency, an advantage in the real-time health monitoring

environments.

Table 7: Adversarial Robustness (Accuracy % under FGSM Attack)

Dataset Proposed Model Method [3] Method [8] Method [25]
MIT-BIH ECG 91.5 76.3 80.5 79.8
CHB-MIT EEG 89.7 74.2 78.0 77.3
MHEALTH Motion 90.4 75.8 79.1 78.5
Multimodal 92.2 77.5 81.0 80.3
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Adversarial evaluation of the Table 7 shows that the AR HEV component of the proposed model
greatly enhances its resistance to adversarial perturbations, maintaining its accuracy well above the
baseline methods and thus enhancing the safety of deployment in hostile or noisy environments.

4.1. Validation Result Impact Analysis

The experimental findings in Tables 2-7 show that the proposed integrated model invariably surpasses
the performance of the comparative baseline methods in all datasets considered and under all metrics.
In Table 2, the effect of the multimodal approach on improving classification accuracy is described in-
depth. In particular, we demonstrate that the proposed model obtains superior classification results on
virtually all individual datasets (MIT BIH ECG, CHB MIT EEG, and MHEALTH Motion) as well as
the integrated multimodal setup, reaching 98.1%. This is directly due to the reinforcement learning
driven fusion approach and reliability aware encoding of the proposed model, which allows it to
dynamically shorten the allocation of decision trust to the most trustworthy modalities. An accuracy
gain of more than 4% in the multimodal scenario compared to the best baseline indicates a significant
achievement toward real-time health monitoring in which even a marginal gain can be translated into
allowing sooner and hence reliable event detection for at-risk patients.

Besides accuracy results, Table 3 along with figure 4 & figure 5 also confirms that better sensitivity
versus specificity balance is aided by higher F1 scores. For health monitoring applications, this means
that fewer critical events would be missed and that there would also be a reduced number of false
positives, with both of these being critical for patient safety and in turn avoiding any unwanted clinical
intervention sets. This is further supported by Table 4, demonstrating a higher Matthews Correlation
Coefficient (MCC) value denoting that the proposed system maintains a strong predictive quality, even
under class imbalance-a commonly occurring scenario in real-life medical datasets in which normal
conditions outweigh rare but critical pathological events. A consistent MCC advantage across
modalities points towards steady and trustworthy performance of the system across various operating
scenarios.

As robustness under sensor dropout being shown in Table 5 is highly relevant for IoT based healthcare
applications, it becomes unavoidable when considering that, in such applications, one is bound to
encounter situations of intermittent sensor disconnections, battery depletion, or wireless
communication failures. One of the most important aspects of the proposed model is that it manages
to keep its accuracy above 94% under simulated dropout conditions of 30%. This itself shows how
effective its reliability-aware embedding and temporal memory mechanisms have proved to be. In real-
time deployments, this robustness ensures uninterrupted monitoring even if monitoring goes on for
hours under partial outage, the demand here is not to compromise the safety of deployments. The
latency advantage of 4-7 milliseconds in prediction reported in Table 6 provides further advantages to
operational deployment of the proposed system. Although this improvement may appear scant, its
significance comes into play in emergency situations such as cardiac arrest detection, where every
single millisecond may sway the intervention process.

Equally important is the analysis of adversarial robustness presented in Table 7; adversarial robustness
is another dimension of real-world applicability. The medical IoT devices could be prone to noise,
suffer from environmental interference, or could even be intentionally subjected to data perturbation.
The aforementioned superiority of the model can be interpreted through its capacity to withstand with
more than 90% accuracy FGSM perturbations while baseline drops to the mid 70% range, thus marking
its considerable superiority to such conditions. The Adversarial Robustness Enhanced Health Event
Validator (AR HEV) is credited with most of this robustness, serving as the gatekeeper to
compromised predictions. Thus, this guarantees that even under conditions of deliberate havoc, the
system continues to give clinically actionable and trustworthy outputs. Thus, taken in their entirety,
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Tables 2-7 make a persuasive argument for using the proposed architecture in a setting of continuous
real-time health care monitoring where accuracy, reliability, and resilience are non-negotiable for the
process.

4.2 Validated Hyperparameter Analysis

A rigorous statistical analysis was performed on the proposed cross-modal health event prediction
model to qualify the reliability of the observed improvements over baseline approaches. Throughout
all datasets, high expected values were attained consistently for the model across various key
performance indicators with average classification accuracies of 97.4% for ECG, 95.8% for EEGs,
96.5% for motion, and 98.1% for the integrated multimodal dataset samples. The variance across
repeated measures were, however, notably low, with standard deviations between 0.25% and 0.42%,
showing stable and reproducible performance under varying training and testing splits. The same level
of strong stability was exhibited by F1 scores, with mean values remaining above 95% for unimodal
datasets and about 97.8% for the multimodal fusion, with variances in all cases below 0.35%,
indicating that balance between sensitivity and specificity was not prone to random fluctuations in
selection of the training data samples.

Subsequently, to establish the strength of evidence of the improvements achieved, considerations of
statistical significance were tested in process. Accordingly, Paired sample t tests were performed, in
which the proposed model was compared against each of the baseline comparisons-Method [3],
Method [8], and Method [25]-for all five independent runs of the experiments. Resulting p Values for
accuracy, F1 score, and MCC comparisons were all less than 0.01, which infers a significant
improvement of the proposed model over the baselines at a confidence level of 99%. In addition,
analysis for the effect size using Cohen's d was greater than 0.8 on every occasion, which attests to a
large-sized improvement in all the metrics. With this combination of low variance mean, magnitude
of improvement as evidence, and strong statistical rationale lend credence and generalizability to the
proposed approach over the various conditions of operations.

Methods [3], [8], and [25] were taken to be the baselines because of their eminent positions and diverse
approaches within the multimodal biomedical signal fusion domain. Method [3] is a standard decision-
level fusion, with a method in which the weighting is fixed-it is very popular for its computational
simplicity, but in-built limitation in its adaptability. Method [8] represents using a deep learning-based
feature concatenation strategy, while popular among current neural-network-driven fusion models,
fails to provide reliable weighting based on the dynamics. Method [25] encompasses multi-stream
deep-ensemble methods, which are acknowledged for their robustness with heterogeneous data-
streams, but it does not employ reinforcement learning for adaptive alignment or fusions. Thus, these
methods cover the ground from classical deterministic fusion to modern deep-learning ensembles,
which provides a complete and fair comparative landscape for evaluating the proposed architecture
sets.

Once these results are placed comparative to the abovework, it is quite evident that the proposed
method is superior. The features of the proposed model-the reliability aware embedding, hierarchical
reinforcement learning based alignment, uncertainty aware decision fusion, temporal context
refinement, and adversarial validation-all ensure that the proposed model can dynamically adjust itself
to varying degrees of quality and temporal coherence along the specific characteristics of the
individual's state-monitoring signal. Here, the metrics offered steady high expected values across
datasets with very low variance, showing operational accuracy and parallel operational stability. Real-
time IoT healthcare monitoring must have this stability, where reliable prediction itself should not
fluctuate due to variations in sensors or levels of activity with the patient. With these validations and
methodological elaborations, we go further than our existing solutions, represented by references [3],
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[8], and [25], giving an extrinsic strength for the next-generation cross-modal health event prediction
frameworks.

4.3 Validation using Iterative Analysis with Practical Use Case Scenario Analysis

Consider, for example, a continuous remote health monitoring of an elderly cardiac patient via
wearable ECG, EEG, and motion sensors for IoT enabled platforms. In a 24-hour monitoring session,
the system extracts 250 Hz ECG signals, 256 Hz EEG signals, and 100 Hz tri-axial accelerometer and
gyroscope readings. Early in the morning, the ECG sensor signals briefly a drop in electrode contact
quality, monitored by its signal-to-noise ratio dropping from 35 dB to 18 dB for roughly 40 s. The
proposed model’s Reliability Scoring (RSC) module quantifies this drop by giving ECG a score of
0.55 for the process in contrast to its earlier reading of 0.95. Meanwhile, the EEG and motion sensors
sustain high signal quality with reliability scores of above 0.9 in the process. Weighted Feature
Embedding (WFE) then adjusts the representation from each modality by down-weighting the
influence of ECG while preserving the highest contribution from EEG and motion channels. The
Hierarchical Cross-Modal Reinforcement Alignment (HCMRA) component then synchronizes the
streams, correcting a detected lag for EEG of 120 ms with respect to ECG, while maintaining temporal
coherence between motion and cardiac signals.

As the day progressed, the patient engaged in moderate walking activity while minor cardiac
abnormalities were detected in the ECG stream with moderate confidence (0.76) and normal neural
patterns from the EEG were observed with high confidence (0.93) in the Preliminary Predictions (PRP)
stage. These predictions are fused together by the Reinforcement Learning-Driven Decision Fusion
with Uncertainty Modulation (RL-DUM), emphasizing the highly reliable EEG signal while still
accounting for the ECG information for a more holistic analysis. Context-Aware Longitudinal Health
Event Memory Network (CAL-HEMN) integrates this fused prediction with stable readings prior,
recognizing a subtle but consistent increase in the irregular heartbeat probability from 0.12 in the
morning to 0.31 by late afternoon. Before final reporting, the Adversarial Robustness-Enhanced Health
Event Validator (AR-HEV) checks the fused output for anomalies like sensor spoofing or spikes of
noise and certifies the output to be reliable in process. The resulting validated output, in turn, flags an
"increased cardiac irregularity risk", with 0.88 full confidence thus triggering an immediate alert to the
patient's healthcare provider while suggesting further clinical assessments. This exercise illustrates the
capabilities of the proposed architecture not only to adapt to varying sensor conditions in real-time but
also to stay highly predictive, enabling an informed and timely medical decision-making process.

5. Conclusions & Future Scopes

The proposed integrated model for cross-modal health event prediction in IoT-based health systems exhibited
superior performance compared with all state-of-the-art baseline models as indicated by the results in Tables 2
to 7 in process. The unimodal datasets for the MIT BIH ECG, CHB MIT EEG, MHEALTH Motion, and
integrated multimodality provided classification accuracies of 97.4%, 95.8%, and 96.5%, respectively, and an
astounding 98.1% for the multimodal dataset samples. This increase of almost 4.3% in multimodal prediction
accuracy suggests this in comparison to the best performing baseline. F1 scores have had consistently good
values with the multimodal setup achieving 97.8%; balanced sensitivity and specificity sets were confirmed.
Robust operation was confirmed in a simulation for 30% sensor dropout, where the proposed system was able
to keep accuracy at 95.4%, while the corresponding baseline drops at the 87-89% range sets. This is a strong
indication that this monitoring can be trustworthy in real-world applications, where sensor disconnections or
declining performance are unavoidable in process. Prediction latency was significantly trimmed to merely 23.4
ms under the multimodal setup, thereby granting the system a 4-7 ms advantage over rival methods - an
improvement deemed vital in real-time clinical situations like arrhythmia diagnosis or seizure monitoring.
Additionally, adversarial robustness testing across FGSM attacks revealed that the system was able to maintain
an accuracy of 92.2%, whereas baselines fell to 77%-81% level, which reflected the success of the adversarial
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validation phase. Overall, these findings demonstrate that the proposed method is a distinctive blend of
predictive accuracy, operational resilience, and security robustness and hence highly appropriate for real time,
continuous IoT healthcare applications.

Future Scope

Future enhancements to the herein proposed model can consider expanding the multimodal input space to
include various types of bio-signal modalities, e.g., photoplethysmography (PPG), respiratory incidence rate
sensors, or continuous blood oxygen saturation monitors. This can allow for expansion of the physiological
context that can be captured by the architecture and can further enhance prediction accuracies for multi-system
or complex health events. In addition, optimization might be facilitated with wearable devices building up a
capability for adaptive sampling that would support increased deployment duration in resource-constrained
environments. The reinforcement learning paradigm may be enhanced through the incorporation of meta-
learning methods to facilitate swift adaptation of patient cases or newly occurring sensor configurations without
substantial retraining. Real-world verification with massive clinical trials would develop a richer sense of the
system's long-term behavior, the calibrated behavior needed for individual patients, and the medical workflow
interaction. To further enhance the security of systems under deployment, counter-advanced perturbation
methods such as Projected Gradient Descent (PGD) and spatial-temporal signal manipulation attacks would
demand increased adversarial robustness. Lastly, for decentralized healthcare networks' scalability, low-latency,
and fast decision-making, independent of persistent cloud connectivity sets but instead employing on-device
inference optimization, will prove to be highly pivotal in operation sets.

Limitations

Although the architecture put forward works quite well, there are still some drawbacks. To begin with, the
assessment has been carried out with public-domain datasets and simulated controlled conditions; although they
usually reflect certain characteristics of an actual patient monitoring setting, they cannot fully simulate the range
and unforeseen consequences of actual patient monitoring settings. Performance drifts which had not been
extensively investigated in process could be a result of conditions like: electrode misplacement; artificial motion
in the wearable; and random environmental noise. Second, although the present model displays robustness up
to 30% simulated sensor dropout, unusual situations with concurrent multi-sensor failure, as well as long-lasting
network outages, would most likely also have deleterious effects on decision reliability sets. From a
computational perspective, combining multiple reinforcement learning agents in combination across aligning
and fusing phases adds system complexity and increased inference costs over individual simple models.
Optimization latencies have reached 23.4 ms for multimodal prediction, although additional optimization would
be required for applications with ultra-low latency in clinical processes, e.g., closed-loop neurostimulation.
Finally, while the adversarial robustness module effectively counters FGSM-based attacks, the robustness of
the system against more advanced, adaptive attack vectors remains to be proven. These limitations reveal the
ongoing tuning and real-world verification required to reach the operational promise of the proposed
architecture sets
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