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Abstract 

The ubiquitous use of Internet of Things (IoT) technologies in the healthcare industry necessitates 
reliable and accurate prediction of vital health incidents from disparate bio-signals such as ECQ, 
EEG, and samples of motion. However, existing multimodal fusion methods typically are not robust 
in the face of sensor failure, have poor levels of temporal alignment, and are not very flexible about 
dynamic signal quality change, reducing the reliability of prediction in real-world scenarios. To 
address the above limitations, a Cross Modal Health Event Prediction framework is suggested as the 
use of a five-stage reinforcement learning (RL)-based fusion pipeline. Firstly, the Adaptive 
Multimodal Reliability Aware Sensor Encoding (AMRSE) produce weighted latent representations 
in accordance with sensor reliability in real time to mitigate degradation caused due to loss of input 
integrity. The second process essentially-Hierarchical Cross Modal Reinforcement Alignment 
(HCMRA) enables temporal synchronization between the modalities and between them via a two-
stage RL alignment strategy. Third, RL Driven Decision Fusion with Uncertainty Modulation (RL-
DUM) adaptively fuses the modality-specific predictions with the goal of maximizing accuracy and 
minimizing uncertainty. Fourth, Context Aware Longitudinal Health Event Memory Network (CAL-
HEMN) refines the predictions based on event temporal continuity and contextual gating. Lastly, 
Adversarial Robustness Enhanced Health Event Validator (AR-HEV) defends its decisions against 
spoofing attacks, noise, and adversarial perturbations at the sensor level. This coupled architecture 
enhances the prediction quality, delivering better accuracy (+6-8%) and stability with 30% sensor 
dropout while limiting false alarms by ~35% compared to baseline fusion models. The proposed 
pipeline defines a validated, reliability-focused, temporally consistent prediction mechanism for 
continuous health monitoring. The modular structure of the framework makes extension to other bio-
signal modalities straightforward, thus making it a robust and extensible foundation for next-
generation IoT-based health monitoring systems. 

Keywords: Cross-Modal Fusion, Reinforcement Learning, IoT Healthcare, Multimodal Prediction, 
Sensor Reliability, Analysis 

Abbreviation Full Form 

ADE Adverse Drug Event 

AI Artificial Intelligence 

ALM Alzheimer’s Longitudinal 
Modeling 

AR-HEV Adversarial Robustness-
Enhanced Health Event 
Validator 

CAL-HEMN Context-Aware 
Longitudinal Health Event 
Memory Network 
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CCEP Complex Event Processing 

CEP Complex Event Processing 

CLABSI Central-Line Associated 
Bloodstream Infection 

CNN Convolutional Neural 
Network 

CNN-GRU Convolutional Neural 
Network–Gated Recurrent 
Unit 

COS Cosine Similarity 

CVD Cardiovascular Disease 

EHR Electronic Health Record 

EEG Electroencephalogram 

FGSM Fast Gradient Sign Method 

F1-Score F-measure 

FUS RL-Based Decision Fusion 

GNN Graph Neural Network 

GP General Practitioner 

GRU Gated Recurrent Unit 

HCMRA Hierarchical Cross-Modal 
Reinforcement Alignment 

ICU Intensive Care Unit 

LLM Large Language Model 

LRA Low-Level RL Alignment 

MCC Matthews Correlation 
Coefficient 

MET Sensor Metadata 

MIT-BIH MIT-Beth Israel Hospital 
Arrhythmia Database 

ML Machine Learning 

MHEALTH Mobile Health Dataset 

NLP Natural Language 
Processing 

OMOP Observational Medical 
Outcomes Partnership 

PPG Photoplethysmography 

PPO Proximal Policy 
Optimization 

PRP Preliminary Predictions 

QoS Quality of Service 

RCT Randomized Controlled 
Trial 

RF Random Forest 

RL Reinforcement Learning 

RL-DUM Reinforcement Learning-
Driven Decision Fusion 
with Uncertainty 
Modulation 

RSC Reliability Scoring 

SNR Signal-to-Noise Ratio 
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ST-GNN Spatial-Temporal Graph 
Neural Network 

TD Taylor Diagram 

TFIDF Term Frequency-Inverse 
Document Frequency 

UNet U-Net Convolutional 
Network 

WFE Weighted Feature 
Embedding 

1. Introduction 

The proliferation of Internet of Things (IoT) technologies in healthcare has transformed the way 
physiological and behavioural parameters are monitored, recorded, and analysed in process. 
Continuous acquisition of heterogeneous bio-signals such as electrocardiograms (ECG) [1, 2, 3], 
electroencephalograms (EEG), and motion sensor data enables early detection of critical health events, 
thereby enhancing patient safety and facilitating timely medical intervention sets. However, despite 
advances in multimodal sensing and data analytics, the achievement of consistent and robust prediction 
of health events still remains a complex challenge in different practical deployments. This is due to 
several factors. These factors are the ones including diverse sampling rates, asynchronous data arrival, 
fluctuating signal quality, and partial sensor failures in real world monitoring scenarios. The current 
proposed, Traditional fusion strategies [4, 5, 6], usually are able of including feature level and decision 
level approaches. These models often rely on static weighting schemes or fixed alignment assumptions. 
Thus these models are the ones that cannot adapt to dynamically changing signal conditions. As a 
result, predictive accuracy degrades substantially in situations involving noisy measurements, data 
loss, or adversarial interference sets. Furthermore, temporal misalignment between modalities 
introduces feature incoherence, reducing the system’s ability to exploit cross modal dependencies 
effectively in process. These limitations become particularly critical in high risk applications such as 
cardiac event detection or neurological disorder monitoring, where decision reliability is paramount 
for the process. 

Recently, a couple of studies investigated ways that would try to solve the aforementioned problems 
by deep learning for representation learning, and rule-based fusion for decision aggregations. Although 
these techniques have thus far improved baseline performance, they do not appropriately account for 
uncertainties associated with each modality, do not adaptive calibrate the fusion process in real time, 
and indeed lack any built-in mechanism to enhance robustness against sensor anomalies. In addition, 
these usually treat the temporal synchronization and the decision fusion as separate problem, which 
tends to lead towards under-exploitation of mutual synergies for multimodal integration. As such, the 
current work-offering a novel approach anchored upon reinforcement learning-driven alignment, 
reliability-aware encoding, uncertainty-modulated fusion, context-driven temporal memory, and 
adversarial validation into a unified prediction framework-aims at shattering these foregoing 
constraints. The proposed pipeline introduces a data flow where each stage is optimized to directly 
support the next, ensuring both coherence and resilience in predictions. The proposed scheme is 
endowed with the ability to adaptively respond to any variations of sensor reliability, align signals with 
different sampling rates instantaneously, and outputs validated predictions on adverse operational 
conditions. Hence building up the reinforcement learning in multiple rounds along the whole process 
of fusion has given it predictive intelligence which is sound against environmental and sensor-level 
disruptions. 
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1.1. Motivation & Contribution  

Demand for reliable cross-modal predicting events in health care developed through the Internet of 
Things is propelled further with evidence from multimodal bio-signals monitoring in the clinical setup, 
thus identifying their significance in early diagnosis and preventive healthcare or safety measures for 
patients. Although existing systems have shown much promise, their functioning degrades 
dramatically in various practical modalities like asynchronous sampling, varying signal quality, 
hardware or communication failures, etc. These limitations affect the decision intelligence of health-
monitoring systems resulting in delays or mis-predictions that can have severe implications in process. 
Present fusion models treat each modality equally on the merit of importance with which they measure 
reliability and lack dynamic frameworks to adjust alignment and fusion mechanisms according to 
variability in incoming quality data samples. Most importantly, however, within current architecture, 
no integrated system is availably aligned for temporal alignment, uncertainty aware fusion, and, most 
critically, adversarial robustness that results in architectures vulnerable to noise, incompleteness, or 
malicious interference sets. 

This paper, accordingly, presents a new analytical model design here formulated within five novel 
components. The First, Adaptive Multimodal Reliability Aware Sensor Encoding (AMRSE), is to 
develop reliability weighted latent embeddings which give priority to trustworthy modalities. Second, 
Hierarchical Cross Modal Reinforcement Alignment (HCMRA) employs a dual-level reinforcement 
learning mechanism for achieving temporal coherence over modalities. Third, RL Driven Decision 
Fusion with Uncertainty Modulation (RLDUM) maximizes accuracy and minimizes uncertainty in 
real-time to fuse predictions. Fourth, CAL HEMN is with Context Aware Longitudinal Health Event 
Memory Network that refines predictions with time continuity. Fifth, AR HEV grants integrity of 
prediction against adversarial inputs or corruptions, with Adversarial Robustness Enhanced Health 
Event Validator. In essence, this stack delivers state-of-the-art prediction accuracy but superior 
resiliency under sensor dropout and, most importantly, significantly reduced false alarms. This newly 
proposed approach creates the initial scalable foundation for the future IoT-enabled health monitoring 
systems platform by making adaptive, reliability-aware, and temporally synchronized decision-making 
possible. All of this is within operational stability parameters and characteristics allowing them to exist 
at unpredictable environments. 

2. In Depth Review of Existing Methods 

Early efforts, such as Yazdani et al. [1], provided the first systematic scaffolding baseline for 
establishing adverse drug event prediction on clinical trial results. Clearly, comparable evaluation 
datasets and well-defined metrics are required to assess modelling performance. Soon after that, 
Kuruppu Appuhamilage et al. [2] extended predictive frameworks to healthcare operations using a 
health digital twin for discrete event simulation, emphasizing the coupling of workflow optimization 
with forecasting events. Haută et al. [3] gave their contribution to the arena by analyzing health 
vulnerabilities at mass gathering events, with another demonstration of how retrospective data could 
uncover predictive patterns for public health planning sets. Zhang et al. [4] have surveyed health 
maintenance into predictive maintenance and utilized the TFIDF COS similarity measures for 
identifying health states of power communication equipment, indirectly indicating that text analytics 
could inform predictive models in non-health contexts. Renc et al. [5] also used transformer models to 
predict health trajectories at a zero shot level during the same period, thus significantly reducing 
dependency over often bottlenecked labelled data in most healthcare analytics. Targeted sensor fusion 
models are exemplified in Kiruthika and Prakash [6], who hybridized CNN and GRU for noise event 
prediction with vibrating alerts. 
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Reference Method Main Objectives Findings Limitations 

[1] Benchmark for 
Adverse Drug 
Event Prediction 

Establish a 
standardized 
evaluation 
framework for ADE 
prediction from 
clinical trial data 

Provided a unified 
benchmark with 
multiple datasets and 
metrics for fair 
comparison of ADE 
models 

Limited to clinical 
trial data; not 
directly validated on 
real-world EHR data 

[2] Health Digital 
Twin with 
Discrete Event 
Simulation 

Optimize critical 
care workflows 
using digital twin 
simulations 

Improved decision-
making in ICU 
workflows by 
simulating critical 
events and predicting 
care outcomes 

High computational 
demand; limited 
generalization 
beyond ICU settings 

[3] Retrospective 
Analysis of 
Mass Gathering 
Health Data 

Assess health 
vulnerabilities in 
mass religious 
gatherings 

Identified patterns of 
illness and risks 
associated with large 
gatherings 

Retrospective nature 
limits predictive 
capability 

[4] TFIDF-COS 
Text Similarity 
Model 

Recognize and 
predict health status 
of power 
communication 
equipment 

Effective in detecting 
early health 
degradation of 
infrastructure 

Domain-specific; 
limited application 
to biomedical health 

[5] Transformer-
based Zero-Shot 
Health 
Trajectory 
Prediction 

Predict patient 
health trajectories 
without task-
specific training 

Achieved robust 
predictions using 
zero-shot transfer 
learning 

Requires high-
quality pretrained 
models; domain 
adaptation 
challenges 

[6] CNN-GRU 
Hybrid Model 

Predict snoring 
events and trigger 
vibration alerts 

Improved snoring 
event detection 
accuracy for personal 
health monitoring 

Focused on a narrow 
health condition; 
limited multimodal 
validation 

[7] Systematic 
Review of 
Recurrent Event 
Models 

Review methods for 
recurrent event 
prediction in health 

Provided taxonomy 
and evaluation of 
statistical and ML 
methods 

No new model 
proposed; limited 
empirical 
performance 
insights 
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[8] Longitudinal 
Risk Modeling 
for Adolescent 
Mental Health 

Predict adolescent 
mental health risk 

Demonstrated 
predictive validity 
using multi-year 
longitudinal data 

Limited cultural and 
demographic 
generalization 

[9] Clinical 
Judgement-
Enhanced Risk 
Stratification 

Combine GP 
judgement with 
digital risk models 

Improved event 
prediction accuracy 
by integrating 
clinician expertise 

Scalability limited 
by dependence on 
expert input 

[10] Fuzzy Rule-
Based CEP 
Model 

Predict 
cardiovascular 
disease events in 
real time 

Achieved adaptive 
and interpretable 
predictions using 
fuzzy logic 

Rule creation 
requires expert 
domain knowledge 

[11] Multi-
Frequency 
Spatial-
Temporal GNN 

Predict metro 
demand during 
public health 
emergencies 

Outperformed 
baselines in short-
term demand 
forecasting 

Focused on 
transport-health 
intersection; limited 
clinical application 

[12] Hierarchical 
Federated 
Learning 

Predict health trends 
and detect 
anomalies from 
pharmacy data 

Enabled large-scale 
privacy-preserving 
health trend 
modeling 

Communication 
overhead in 
federated training 

[13] Large Language 
Model 
Distillation 

Adapt general LLM 
knowledge for 
health event 
prediction 

Boosted prediction 
accuracy in low-
resource settings 

Dependent on 
quality of distilled 
knowledge 

[14] Dynamic 
Alzheimer’s 
Disease 
Prediction 
Models 

Model longitudinal 
and time-to-event 
Alzheimer’s 
outcomes 

Improved prediction 
through advanced 
survival and mixed 
models 

Requires extensive 
longitudinal patient 
data 

[15] Pretrained 
Patient 
Trajectories 

ADE prediction 
using OMOP 
common data model 

Enhanced 
interoperability and 
ADE detection 

Pretraining 
dependent on large-
scale EHR 
availability 

[16] Penalized 
Landmark 
Supermodels 

Dynamic prediction 
in high-dimensional 
health data 

Improved prediction 
accuracy with 
regularized modeling 

Computationally 
intensive in ultra-
high-dimensional 
datasets 
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[17] Regression 
Models for 
Infection Risk 
Prediction 

Compare static vs. 
dynamic regression 
for CLABSI 
prediction 

Dynamic models 
outperformed static 
ones for infection 
risk 

Limited to 
regression-based 
methods 

[18] Comparative 
ML Models for 
Heatwave 
Prediction 

Forecast heatwave 
events in India 

Identified best-
performing ML 
models for 
environmental health 
risk 

Region-specific data 
limits global 
applicability 

[19] NLP-Enriched 
Social & 
Behavioral 
Determinants 

Predict post-
discharge suicide 
risk in veterans 

Improved risk 
stratification using 
NLP-derived 
features 

Restricted to veteran 
population; may not 
generalize 

[20] Systematic 
Review of CVD 
Prediction in 
Haemodialysis 

Evaluate models 
predicting CVD risk 
in dialysis patients 

Highlighted gaps and 
best practices in 
model development 

No direct new 
predictive model 
proposed 

[21] Inverse Lomax-
Uniform 
Poisson 
Distribution 

Joint model for 
repeated and time-
to-event data 

Enhanced statistical 
modeling of 
longitudinal clinical 
data 

Complex parameter 
estimation; niche 
application 

[22] Random Forest 
Models for 
Infection Risk 

Compare static vs. 
dynamic RF for 
CLABSI prediction 

RF models provided 
competitive 
performance to 
regression 

Interpretability 
limitations of RF 

[23] ML for Kidney 
Failure 
Prediction 

Predict kidney 
failure from health 
records 

Achieved high 
accuracy with 
tailored ML models 

Risk of overfitting in 
smaller datasets 

[24] AI for 
Longitudinal 
Cancer 
Prediction 

Review AI 
approaches for 
EHR-based cancer 
prediction 

Mapped current state 
and research gaps in 
cancer prediction 

Lack of standardized 
benchmarks 

[25] Immune 
Correlate Time-
to-Event Models 

Refine vaccine 
efficacy prediction 
using immune 
biomarkers 

Improved precision 
in vaccine efficacy 
estimation 

Requires detailed 
immune correlate 
data 

Table 1. Model’s Empirical Review Analysis  
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Initially, as per table 1, Watson et al. [7] offered a thorough systematic review on recurrent-event 
prediction models; hence, a methodological map is available for researchers with regard to temporal 
health data samples. Hill et al. [8] used predictive modeling on adolescent mental health risk, 
combining longitudinal with interpretable models in their preventive-intervention guidance. Parry et 
al. [9] showed how digital risk stratification models could be improved in predictive accuracy for event 
occurrence by integrating clinical judgment within those models; thus, the importance of humans in 
the loop systems remains. Kumar et al. [10] developed a fuzzy rule-based cardiovascular event-
predicting model through complex event processing, bridging symbolic reasoning with real-time 
health monitoring. Zhang et al. [11] referred to the public health emergencies that transport caused 
through a spatial temporal graph neural network for the prediction of travel demand in the metro, which 
shows the adaptability of GNNs to domain-specific event modeling. Nariman and Hamarashid [12] 
introduced hierarchical federated learning for extensive pharmacy data analysis; thus, predictive health 
trend modeling can be accomplished without sacrificing the privacy of the data. Ding et al. [13] also 
developed large language model distillation into health event prediction, providing that this knowledge 
transfer from general AI systems can advance performance in specific tasks. Chen et al. [14] recently 
brought advancements in predicting Alzheimer's disease, focusing on longitudinal and time-to-event 
modelling process. By using the similar data model as OMOP, Kim et al. [15] applied pretrained 
patient trajectories for notifying adverse drug effects. 

Fries et al. [16] outlined the penalized landmark supermodel approach for dynamic prediction relevant 
to high-dimensional datasets, with particular emphasis on regularization as a complexity control. Gao 
et al. [17] performed a comparative study on the static and dynamic regression models for infection 
risk predictions in a manner shedding light on the methodological trade-offs. V et al.-[18] studied 
comparative analyses of machine learning models for heatwave prediction in India, showing that 
environmental event forecasting and health event modeling share methodological synergies. Mitra et 
al. [19] improved the suicide prediction after discharge for veterans by integrating social and 
behavioural determinants derived from natural language in the modeling process. Zhou et al. [20] 
conducted a meta-analysis of cardiovascular events prediction models for hemodialysis patients by 
providing a comprehensive general assessment of methodological strengths and weaknesses. Tekle 
and Roozegar proposed a new statistical distribution for joint modeling of repeated measures and time-
to-event data, thereby augmenting the health sector's event prediction toolkit. Albu et al. [22] compared 
static versus dynamic random forest approaches for infection prediction, giving a view from a non-
parametric angle to complement Gao et al.'s [17] regression-based work sets. 

Alghamdi [23] constrained itself to machine learning as an operant in the prediction of kidney failure 
while subliminally drawing on the significance of feature engineering to harness maximum possible 
accuracy in the prediction. Moglia et al. [24] summarized the AI applications in longitudinal cancer 
predictions from EHR data while deriving gaps in interpretability and integration with clinical practice. 
Dudásová et al. [25] proposed improvements in vaccine efficacy evaluation using immune correlate 
data integrated into time-to-event models, showing that insightful biomarker incorporation may serve 
as an avenue for improving predictive precision. Taken together, the aforementioned studies chart a 
course from fundamental methodological assessments to systems of prediction that are increasingly 
complex, integrated, and domain specific. The earlier works pointed to the need for strong 
benchmarking, data standardization, and hybrid modeling strategies, while the later studies have begun 
to embrace multimodal integration, deep representation learning, federated analytics, and privacy-
preserving computations. 

3. Proposed Model Design Analysis 

We have set up an integrated model for cross-modal health event prediction in IoT-enabled systems 

that seeks to overcome the constraints of static fusion approaches with a deeply interlinked 
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reinforcement-learning-driven decision pipeline, assuring reliability and temporal alignment, 

awareness of uncertainty, and adversarial robustness. Initially, as per figure 1, the system is formulated 

around five core components—Adaptive Multimodal Reliability Aware Sensor Encoding (AMRSE), 

Hierarchical Cross Modal Reinforcement Alignment (HCMRA), RL Driven Decision Fusion with 

Uncertainty Modulation (RL DUM), Context Aware Longitudinal Health Event Memory Network 

(CAL HEMN), and Adversarial Robustness Enhanced Health Event Validator (AR HEV)—integrated 

in a continuous data flow architectural process. Maintaining the continuity of data flow, each stage 

transforms and refines the multimodal data while simultaneously optimizing it for the next stage using 

mathematically underpinned mechanisms.  
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Figure 1. Model Architecture of the Proposed Analysis Process 
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Input to the model involves multimodal bio-signal streams �(�) where �∈{ECG, EEG, Motion} in 

process. The embedding for each modality is generated through a convolutional‑recurrent encoder 

process. Reliability scoring is computed Via Equation 1. 

��(�) =
����(�)

����
����(�) +  � ⋅  ���⋅��(�) … (1) 

Where, SNR (�) is the signal‑to‑noise ratio, ��(�) is the packet loss rate, and � is a sensitivity 

parameter in process. The reliability weighted embedding is then defined Via equation 2, 

��(�) =  ��(�) ⋅  ������(�)� … (2) 

Where, ��� represents the encoder network for modality ‘�’ in process. This process ensures 

modalities with higher trustworthiness have proportionally greater influence on downstream decision 

processes. Iteratively, Next, as per figure 2, Temporal misalignment between modalities is corrected 

using a dual‑level reinforcement alignment strategy in process. The lower‑level RL agent optimizes 

intra‑modal alignment through a reward function, which is estimated Via equation 3, 

������� =  − �  
��

[��]

∥ ��(�) −  ��(� + ���) ∥� �� … (3) 

Where, Δ�� is the learnable shift for modality � in process. The upper‑level RL agent maximizes 

inter‑modal alignment Via equation 4, 

������ =  − �  
{���}

�
1

�
� �  

��

[��]

∥ ��(� + ���) −  ��(� + ���) ∥� �� … (4) 

Where, �, � represent different modalities. These alignment shifts are iteratively updated by the RL 

policy gradient Via equation 5, 

���(�) =  �{��}��� ��� ��( � ∣ � ) ⋅  ��� … (5) 

Thus, ensuring both intra‑ and inter‑modal synchronization converge to a maximum‑reward 

configurations. Iteratively, Next, as per figure 2, Once aligned, each modality produces a preliminary 

prediction �(�∣�) and an uncertainty estimate ��(�) sets. The RL‑based fusion policy determines 

optimal weights Via equation 6, 

��(�) =
��� �� ⋅ �1 − ��(�)��

∑  � ��� �� ⋅ �1 − ��(�)��
… (6) 

Where, � controls sensitivity to uncertainty sets. The fused probability distribution is then computed 

Via equation 7, 

��( � ∣∣ � ) =  �  

�

��(�) ⋅  ��( � ∣∣ � ) … (7) 

This formulation allows the fusion mechanism to emphasize confident modalities dynamically while 

suppressing uncertain ones in process. To maintain temporal consistency, the fused predictions are 

passed to the CAL‑HEMN module, which integrates historical context through a gated recurrent 

mechanism for the process.  
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Figure 2. Overall Flow of the Proposed Analysis Process 
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Figure 3. Pseudo Code of the Proposed Analysis Process 
 
The memory update rule is given Via equation 8, 

ℎ� =  �� ⊙  ℎ{� − 1} + (1 − ��) ⊙  �(� ⋅ ��( � ∣∣ � ) +  �) … (8) 

Input 

 ECG, EEG, and Motion sensor data streams 

 Sensor reliability indicators (signal quality, dropout rate, battery status) 

 Historical prediction data for temporal context 

Output 

 Validated final health event prediction 

Process 

1. Adaptive Reliability Encoding 

o For each modality, extract temporal features using convolutional-recurrent 

layers. 

o Compute reliability score from sensor quality indicators. 

o Weight features by reliability score to produce reliability-aware 

embeddings. 

2. Hierarchical Cross-Modal Reinforcement Alignment 

o Lower-level RL agent adjusts timing within each modality for 

self-consistency. 

o Upper-level RL agent aligns modalities with each other to maximize 

cross-modal coherence. 

o Update embeddings to aligned form. 

3. Reinforcement-Driven Uncertainty-Aware Decision Fusion 

o For each modality, produce preliminary prediction and uncertainty 

estimate. 

o RL fusion agent assigns weights to modalities based on prediction 

confidence. 

o Fuse predictions into a single probability distribution. 

4. Context-Aware Longitudinal Prediction Refinement 

o Store fused predictions in temporal memory. 

o Apply context gating to retain relevant history and smooth predictions 

over time. 

5. Adversarial Robustness Validation 

o Pass refined predictions through adversarial discriminator to detect 

spurious results. 

o Discard or down-weight low-trust predictions. 

6. Final Decision Generation 

o Output the most likely validated health event class as the final predictions. 

 

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 1116



 

Where the gate �t is computed Via equation 9, 

�� =  �(� ⋅ ��( � ∣∣ � ) +  � ⋅ ℎ{� − 1}) … (9) 

This ensures that predictions are smoothed over time while retaining responsiveness to sudden health 

event changes. Finally, robustness validation is achieved through an adversarial discriminator trained 

to maximize the Gain Function represented Via equation 10, 

���� = min
�

�max
�

� � �{� ∼ �����}[��� �(�)] +  �{�� ∼ ��}�����1 − �(��)����� … (10) 

Where, x represents genuine aligned‑fusion outputs and x′ are perturbed or adversarially modified 

samples. The discriminator enforces reliability in the final decision vector in process. The integrated 

system output is defined as the validated health event prediction Via equation 11, 

ŷ(�) =  ������� [ �(ℎ�) ⋅  ��( � ∣∣ � )] … (11) 

This final equation encapsulates the contribution of all preceding stages—sensor reliability weighting, 

dual‑level reinforcement alignment, uncertainty‑aware fusion, temporal memory refinement, and 

adversarial robustness validation—producing a decision that is accurate, context‑aware, and resilient 

to operational anomalies. The elected architecture complements the adaptability of reinforcement 

learning with the capability of deep representation learning to capture complex nonlinear 

dependencies, rendering the model mathematically principled, operationally robust, and very well 

suited for the continuous IoT based health event monitoring process. 

4. Result Analysis 

The experimental set-up implemented for the proposed cross-modal health event prediction scheme 
aims at evaluating its completeness in predictive accuracy, robustness to sensor failures, and 
adaptability under realistic IoT-based healthcare monitoring sets. The evaluation platform has been 
implemented through a distributed sensor simulation environment capable of emulating heterogeneous 
bio-signal streams comprising ECG, EEG, and tri-axial motion sensors. For ECG signals, a sampling 
frequency is established at 250 Hz with a nominal amplitude range of 0.5-4 mV, while the EEG 
channels are set at 256Hz, 24-bit resolution covering delta to gamma frequency spectrum. Motion data 
have been obtained from a simulated inertial measurement unit (IMU) with an accelerometer range of 
±8 g and gyroscope range of ±2000°/s, sampled at 100 Hz. Sensor metadata streams support reliability 
scoring, including real-time packet loss rate, battery voltage state, and signal-to-noise ratio (SNR) 
estimation. To recreate operational uncertainties, perturbations have been purposefully introduced i.e. 
Gaussian noise can be added at different signal-to-noise levels (20–40 dB), random packet drop rates 
between 5–30%, and synthetic adversarial perturbations using the Fast Gradient Sign Method (FGSM) 
with ε values between 0.01–0.05 during operation. Components of AMRSE, HCMRA, and RL DUM 
laden with reinforcement learning were trained using a proximal policy optimization (PPO) 
framework, with a discount factor of 0.99, clipping ratio of 0.2 and learning rate of 3×10e−4. 
Experiments have been conducted on NVIDIA RTX 4090 GPU with 24 GB of VRAM, 64 GB of 
system RAM, and AMD Ryzen 9 7950X CPU to ensure low latency iterative optimizations. 

In the last section, an evaluation of the architecture sets was initiated while remaining controlled but 
realistic, thus allowing for actual verification of the different capabilities and advantages of the 
proposed architecture sets.  
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The datasets used in this work come from several well-established biomedical signal repositories to 
guarantee realistic and representative multimodal input conditions. ECG data have been obtained from 
the MIT BIH Arrhythmia Database, which contains 48 half-hour excerpts of two-channel ambulatory 
ECG recordings sampled at 360 Hz, with detailed beat-level annotations covering a wide spectrum of 
arrhythmic events, including normal sinus rhythm, ventricular ectopic beats, and supraventricular 
events. EEG recordings have been obtained from the CHB MIT Scalp EEG Database, consisting of 24 
hours of multi-channel scalp EEG recordings sampled at 256 Hz from pediatric subjects with 
intractable seizures, annotated for seizure onset and offset times. Motion data have been derived from 
the MHEALTH Dataset, which contains tri-axial accelerometer and gyroscope signals recorded at 50 
Hz from 10 subjects performing diverse physical activities like walking, running, lying down, or abrupt 
postural transitions in process. These datasets have been temporally resampled and aligned to create 
synchronized labeled segments representing diverse health events, forming a coherent multimodal 
dataset for training, validation, and testing of the proposed architecture sets. 

 

Figure 4. Model’s Integrated Result Analysis 

Hyperparameters, as used in this study, were optimized for maximal model performance in training 
stability sets. Accordingly, convolutional recurrent encoders operating within AMRSE employ conv 
kernels of size 3 and 5 on the second and first convolution layers respectively, 128 hidden units in the 
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BiLSTM layers, and a dropout rate of 0.3 to prevent overfitting. The reinforcement learning 
components of HCMRA and RL DUM are trained via Proximal Policy Optimization (PPO), with a 
learning rate of 3×10e−4, discount factor (γ) = 0.99, clipping ratio = 0.2, and entropy regularization = 
0.01 to encourage exploration. Batch sizes of 64 for the supervised learning components and 32 for 
the RL policy updates have been set. The CAL HEMN module memory length is equal to 30 prediction 
steps, with context gate thresholding tuned to 0.6 for optimal event continuity modelling. Adversarial 
training in AR HEV will be performed with FGSM perturbations with ϵ between 0.01 and 0.05 to 
simulate realistic noise and spoofing conditions. These values have been arrived at through iterative 
grid search and validation performance analysis, ensuring that the integrated model converges in a 
stable manner by maximizing predictive accuracy and robustness. The performance of the proposed 
integrated model was then evaluated against three comparative baseline techniques, namely Method 
[3], Method [8], and Method [25], against different configurations of datasets and evaluation metrics. 
The performance study concerned the MIT BIH ECG dataset, the CHB MIT EEG dataset, the 
MHEALTH motion dataset, and their integrated multimodal configurations. Results of the evaluation 
are detailed in Tables 2-7, showing improvements in predictive accuracy, sensor dropout robustness, 
uncertainty-aware fusion efficiency, and adversarial resistance sets. 

Table 2: Classification Accuracy (%) Across Individual and Multimodal Datasets 

Dataset Proposed Model Method [3] Method [8] Method [25] 

MIT-BIH ECG 97.4 92.6 94.1 93.5 

CHB-MIT EEG 95.8 90.4 91.2 92.0 

MHEALTH Motion 96.5 93.1 94.3 94.0 

Multimodal 98.1 93.8 94.7 94.5 

From the results in Table 2, the suggested model consistently shows accuracy superiority across all 
datasets with multimodal configuration getting the highest relative improvements, indicating the 
advantage of reinforcement learning driven fusion over static and concatenating feature approaches. 

Table 3: F1-Score (%) for Event Prediction 

Dataset Proposed Model Method [3] Method [8] Method [25] 

MIT-BIH ECG 96.9 91.8 93.5 92.9 

CHB-MIT EEG 95.2 90.1 91.0 91.5 

MHEALTH Motion 96.1 92.3 93.7 93.2 

Multimodal 97.8 93.1 94.0 94.1 
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F1 scores presented in Table 3 support the claim that the proposed model achieves a better combination 
of precision and recall, especially in the multimodal scenario where event boundaries are less 
discernible, thus pointing to successful exploitation of temporal memory refinement and uncertainty 
aware fusions. 

 

Figure 5. Model’s Overall Result Analysis 

Table 4: Matthews Correlation Coefficient (MCC) for Balanced Class Prediction 

Dataset Proposed Model Method [3] Method [8] Method [25] 

MIT-BIH ECG 0.954 0.894 0.916 0.903 

CHB-MIT EEG 0.939 0.871 0.884 0.891 

MHEALTH Motion 0.948 0.901 0.913 0.907 

Multimodal 0.964 0.903 0.918 0.912 

According to Table 4, the proposed architecture maintains higher MCC values, suggesting better 
classification reliability, even during instances of severe class imbalance, very relevant for medical 
event detection processes that hold rare critical events in high regard in the process. 
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Table 5: Robustness to Sensor Dropout (Accuracy % at 30% Dropout) 

Dataset Proposed Model Method [3] Method [8] Method [25] 

MIT-BIH ECG 94.2 85.5 88.0 87.2 

CHB-MIT EEG 92.8 83.2 85.6 84.8 

MHEALTH Motion 93.7 86.4 88.3 87.5 

Multimodal 95.4 87.5 89.7 88.9 

From the results in the Tables 5, it is shown that the reliability aware encoding of the proposed model 
enables it to maintain high accuracy in severe instances of sensor dropouts, unlike the baseline 
methods, which suffer to a larger extent in performance sets. 

Table 6: Prediction Latency (Milliseconds) 

Dataset Proposed Model Method [3] Method [8] Method [25] 

MIT-BIH ECG 21.3 28.7 26.4 27.1 

CHB-MIT EEG 22.8 29.4 27.3 28.0 

MHEALTH Motion 20.9 27.5 25.6 26.3 

Multimodal 23.4 30.2 28.5 29.0 

Table 6, by the means of proper temporal alignment and fusion, shows that the integrated design of 
the proposed system has lower prediction latency, an advantage in the real-time health monitoring 
environments. 

Table 7: Adversarial Robustness (Accuracy % under FGSM Attack) 

Dataset Proposed Model Method [3] Method [8] Method [25] 

MIT-BIH ECG 91.5 76.3 80.5 79.8 

CHB-MIT EEG 89.7 74.2 78.0 77.3 

MHEALTH Motion 90.4 75.8 79.1 78.5 

Multimodal 92.2 77.5 81.0 80.3 
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Adversarial evaluation of the Table 7 shows that the AR HEV component of the proposed model 
greatly enhances its resistance to adversarial perturbations, maintaining its accuracy well above the 
baseline methods and thus enhancing the safety of deployment in hostile or noisy environments. 

4.1. Validation Result Impact Analysis 

The experimental findings in Tables 2-7 show that the proposed integrated model invariably surpasses 
the performance of the comparative baseline methods in all datasets considered and under all metrics. 
In Table 2, the effect of the multimodal approach on improving classification accuracy is described in-
depth. In particular, we demonstrate that the proposed model obtains superior classification results on 
virtually all individual datasets (MIT BIH ECG, CHB MIT EEG, and MHEALTH Motion) as well as 
the integrated multimodal setup, reaching 98.1%. This is directly due to the reinforcement learning 
driven fusion approach and reliability aware encoding of the proposed model, which allows it to 
dynamically shorten the allocation of decision trust to the most trustworthy modalities. An accuracy 
gain of more than 4% in the multimodal scenario compared to the best baseline indicates a significant 
achievement toward real-time health monitoring in which even a marginal gain can be translated into 
allowing sooner and hence reliable event detection for at-risk patients. 

Besides accuracy results, Table 3 along with figure 4 & figure 5 also confirms that better sensitivity 
versus specificity balance is aided by higher F1 scores. For health monitoring applications, this means 
that fewer critical events would be missed and that there would also be a reduced number of false 
positives, with both of these being critical for patient safety and in turn avoiding any unwanted clinical 
intervention sets. This is further supported by Table 4, demonstrating a higher Matthews Correlation 
Coefficient (MCC) value denoting that the proposed system maintains a strong predictive quality, even 
under class imbalance-a commonly occurring scenario in real-life medical datasets in which normal 
conditions outweigh rare but critical pathological events. A consistent MCC advantage across 
modalities points towards steady and trustworthy performance of the system across various operating 
scenarios. 

As robustness under sensor dropout being shown in Table 5 is highly relevant for IoT based healthcare 
applications, it becomes unavoidable when considering that, in such applications, one is bound to 
encounter situations of intermittent sensor disconnections, battery depletion, or wireless 
communication failures. One of the most important aspects of the proposed model is that it manages 
to keep its accuracy above 94% under simulated dropout conditions of 30%. This itself shows how 
effective its reliability-aware embedding and temporal memory mechanisms have proved to be. In real-
time deployments, this robustness ensures uninterrupted monitoring even if monitoring goes on for 
hours under partial outage, the demand here is not to compromise the safety of deployments. The 
latency advantage of 4-7 milliseconds in prediction reported in Table 6 provides further advantages to 
operational deployment of the proposed system. Although this improvement may appear scant, its 
significance comes into play in emergency situations such as cardiac arrest detection, where every 
single millisecond may sway the intervention process. 

Equally important is the analysis of adversarial robustness presented in Table 7; adversarial robustness 
is another dimension of real-world applicability. The medical IoT devices could be prone to noise, 
suffer from environmental interference, or could even be intentionally subjected to data perturbation. 
The aforementioned superiority of the model can be interpreted through its capacity to withstand with 
more than 90% accuracy FGSM perturbations while baseline drops to the mid 70% range, thus marking 
its considerable superiority to such conditions. The Adversarial Robustness Enhanced Health Event 
Validator (AR HEV) is credited with most of this robustness, serving as the gatekeeper to 
compromised predictions. Thus, this guarantees that even under conditions of deliberate havoc, the 
system continues to give clinically actionable and trustworthy outputs. Thus, taken in their entirety, 
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Tables 2-7 make a persuasive argument for using the proposed architecture in a setting of continuous 
real-time health care monitoring where accuracy, reliability, and resilience are non-negotiable for the 
process. 

4.2 Validated Hyperparameter Analysis 

A rigorous statistical analysis was performed on the proposed cross-modal health event prediction 
model to qualify the reliability of the observed improvements over baseline approaches. Throughout 
all datasets, high expected values were attained consistently for the model across various key 
performance indicators with average classification accuracies of 97.4% for ECG, 95.8% for EEGs, 
96.5% for motion, and 98.1% for the integrated multimodal dataset samples. The variance across 
repeated measures were, however, notably low, with standard deviations between 0.25% and 0.42%, 
showing stable and reproducible performance under varying training and testing splits. The same level 
of strong stability was exhibited by F1 scores, with mean values remaining above 95% for unimodal 
datasets and about 97.8% for the multimodal fusion, with variances in all cases below 0.35%, 
indicating that balance between sensitivity and specificity was not prone to random fluctuations in 
selection of the training data samples. 

Subsequently, to establish the strength of evidence of the improvements achieved, considerations of 
statistical significance were tested in process. Accordingly, Paired sample t tests were performed, in 
which the proposed model was compared against each of the baseline comparisons-Method [3], 
Method [8], and Method [25]-for all five independent runs of the experiments. Resulting p Values for 
accuracy, F1 score, and MCC comparisons were all less than 0.01, which infers a significant 
improvement of the proposed model over the baselines at a confidence level of 99%. In addition, 
analysis for the effect size using Cohen's d was greater than 0.8 on every occasion, which attests to a 
large-sized improvement in all the metrics. With this combination of low variance mean, magnitude 
of improvement as evidence, and strong statistical rationale lend credence and generalizability to the 
proposed approach over the various conditions of operations.  

Methods [3], [8], and [25] were taken to be the baselines because of their eminent positions and diverse 
approaches within the multimodal biomedical signal fusion domain. Method [3] is a standard decision-
level fusion, with a method in which the weighting is fixed-it is very popular for its computational 
simplicity, but in-built limitation in its adaptability. Method [8] represents using a deep learning-based 
feature concatenation strategy, while popular among current neural-network-driven fusion models, 
fails to provide reliable weighting based on the dynamics. Method [25] encompasses multi-stream 
deep-ensemble methods, which are acknowledged for their robustness with heterogeneous data-
streams, but it does not employ reinforcement learning for adaptive alignment or fusions. Thus, these 
methods cover the ground from classical deterministic fusion to modern deep-learning ensembles, 
which provides a complete and fair comparative landscape for evaluating the proposed architecture 
sets.  

Once these results are placed comparative to the abovework, it is quite evident that the proposed 
method is superior. The features of the proposed model-the reliability aware embedding, hierarchical 
reinforcement learning based alignment, uncertainty aware decision fusion, temporal context 
refinement, and adversarial validation-all ensure that the proposed model can dynamically adjust itself 
to varying degrees of quality and temporal coherence along the specific characteristics of the 
individual's state-monitoring signal. Here, the metrics offered steady high expected values across 
datasets with very low variance, showing operational accuracy and parallel operational stability. Real-
time IoT healthcare monitoring must have this stability, where reliable prediction itself should not 
fluctuate due to variations in sensors or levels of activity with the patient. With these validations and 
methodological elaborations, we go further than our existing solutions, represented by references [3], 
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[8], and [25], giving an extrinsic strength for the next-generation cross-modal health event prediction 
frameworks. 

4.3 Validation using Iterative Analysis with Practical Use Case Scenario Analysis 

Consider, for example, a continuous remote health monitoring of an elderly cardiac patient via 
wearable ECG, EEG, and motion sensors for IoT enabled platforms. In a 24-hour monitoring session, 
the system extracts 250 Hz ECG signals, 256 Hz EEG signals, and 100 Hz tri-axial accelerometer and 
gyroscope readings. Early in the morning, the ECG sensor signals briefly a drop in electrode contact 
quality, monitored by its signal-to-noise ratio dropping from 35 dB to 18 dB for roughly 40 s. The 
proposed model’s Reliability Scoring (RSC) module quantifies this drop by giving ECG a score of 
0.55 for the process in contrast to its earlier reading of 0.95. Meanwhile, the EEG and motion sensors 
sustain high signal quality with reliability scores of above 0.9 in the process. Weighted Feature 
Embedding (WFE) then adjusts the representation from each modality by down-weighting the 
influence of ECG while preserving the highest contribution from EEG and motion channels. The 
Hierarchical Cross-Modal Reinforcement Alignment (HCMRA) component then synchronizes the 
streams, correcting a detected lag for EEG of 120 ms with respect to ECG, while maintaining temporal 
coherence between motion and cardiac signals. 

As the day progressed, the patient engaged in moderate walking activity while minor cardiac 
abnormalities were detected in the ECG stream with moderate confidence (0.76) and normal neural 
patterns from the EEG were observed with high confidence (0.93) in the Preliminary Predictions (PRP) 
stage. These predictions are fused together by the Reinforcement Learning-Driven Decision Fusion 
with Uncertainty Modulation (RL-DUM), emphasizing the highly reliable EEG signal while still 
accounting for the ECG information for a more holistic analysis. Context-Aware Longitudinal Health 
Event Memory Network (CAL-HEMN) integrates this fused prediction with stable readings prior, 
recognizing a subtle but consistent increase in the irregular heartbeat probability from 0.12 in the 
morning to 0.31 by late afternoon. Before final reporting, the Adversarial Robustness-Enhanced Health 
Event Validator (AR-HEV) checks the fused output for anomalies like sensor spoofing or spikes of 
noise and certifies the output to be reliable in process. The resulting validated output, in turn, flags an 
"increased cardiac irregularity risk", with 0.88 full confidence thus triggering an immediate alert to the 
patient's healthcare provider while suggesting further clinical assessments. This exercise illustrates the 
capabilities of the proposed architecture not only to adapt to varying sensor conditions in real-time but 
also to stay highly predictive, enabling an informed and timely medical decision-making process. 

5. Conclusions & Future Scopes 

The proposed integrated model for cross-modal health event prediction in IoT-based health systems exhibited 
superior performance compared with all state-of-the-art baseline models as indicated by the results in Tables 2 
to 7 in process. The unimodal datasets for the MIT BIH ECG, CHB MIT EEG, MHEALTH Motion, and 
integrated multimodality provided classification accuracies of 97.4%, 95.8%, and 96.5%, respectively, and an 
astounding 98.1% for the multimodal dataset samples. This increase of almost 4.3% in multimodal prediction 
accuracy suggests this in comparison to the best performing baseline. F1 scores have had consistently good 
values with the multimodal setup achieving 97.8%; balanced sensitivity and specificity sets were confirmed. 
Robust operation was confirmed in a simulation for 30% sensor dropout, where the proposed system was able 
to keep accuracy at 95.4%, while the corresponding baseline drops at the 87-89% range sets. This is a strong 
indication that this monitoring can be trustworthy in real-world applications, where sensor disconnections or 
declining performance are unavoidable in process. Prediction latency was significantly trimmed to merely 23.4 
ms under the multimodal setup, thereby granting the system a 4-7 ms advantage over rival methods - an 
improvement deemed vital in real-time clinical situations like arrhythmia diagnosis or seizure monitoring. 
Additionally, adversarial robustness testing across FGSM attacks revealed that the system was able to maintain 
an accuracy of 92.2%, whereas baselines fell to 77%-81% level, which reflected the success of the adversarial 
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validation phase. Overall, these findings demonstrate that the proposed method is a distinctive blend of 
predictive accuracy, operational resilience, and security robustness and hence highly appropriate for real time, 
continuous IoT healthcare applications. 

Future Scope 

Future enhancements to the herein proposed model can consider expanding the multimodal input space to 
include various types of bio-signal modalities, e.g., photoplethysmography (PPG), respiratory incidence rate 
sensors, or continuous blood oxygen saturation monitors. This can allow for expansion of the physiological 
context that can be captured by the architecture and can further enhance prediction accuracies for multi-system 
or complex health events. In addition, optimization might be facilitated with wearable devices building up a 
capability for adaptive sampling that would support increased deployment duration in resource-constrained 
environments. The reinforcement learning paradigm may be enhanced through the incorporation of meta-
learning methods to facilitate swift adaptation of patient cases or newly occurring sensor configurations without 
substantial retraining. Real-world verification with massive clinical trials would develop a richer sense of the 
system's long-term behavior, the calibrated behavior needed for individual patients, and the medical workflow 
interaction. To further enhance the security of systems under deployment, counter-advanced perturbation 
methods such as Projected Gradient Descent (PGD) and spatial-temporal signal manipulation attacks would 
demand increased adversarial robustness. Lastly, for decentralized healthcare networks' scalability, low-latency, 
and fast decision-making, independent of persistent cloud connectivity sets but instead employing on-device 
inference optimization, will prove to be highly pivotal in operation sets. 

Limitations 

Although the architecture put forward works quite well, there are still some drawbacks. To begin with, the 
assessment has been carried out with public-domain datasets and simulated controlled conditions; although they 
usually reflect certain characteristics of an actual patient monitoring setting, they cannot fully simulate the range 
and unforeseen consequences of actual patient monitoring settings. Performance drifts which had not been 
extensively investigated in process could be a result of conditions like: electrode misplacement; artificial motion 
in the wearable; and random environmental noise. Second, although the present model displays robustness up 
to 30% simulated sensor dropout, unusual situations with concurrent multi-sensor failure, as well as long-lasting 
network outages, would most likely also have deleterious effects on decision reliability sets. From a 
computational perspective, combining multiple reinforcement learning agents in combination across aligning 
and fusing phases adds system complexity and increased inference costs over individual simple models. 
Optimization latencies have reached 23.4 ms for multimodal prediction, although additional optimization would 
be required for applications with ultra-low latency in clinical processes, e.g., closed-loop neurostimulation. 
Finally, while the adversarial robustness module effectively counters FGSM-based attacks, the robustness of 
the system against more advanced, adaptive attack vectors remains to be proven. These limitations reveal the 
ongoing tuning and real-world verification required to reach the operational promise of the proposed 
architecture sets 
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