A Reinforcement Learning-Guided Iterative Decision-Level Fusion Architecture for Multimodal Health Event Prediction in IoT-Enabled Systems

Gudapati Diana Kamal¹, Divyasri Narpina², J Suresh babu³, Kiran Varma Gadiraju¹, N Krishna Kumar⁴

Abstract

The ubiquitous use of Internet of Things (IoT) technologies in the healthcare industry necessitates reliable and accurate prediction of vital health incidents from disparate bio-signals such as ECQ, EEG, and samples of motion. However, existing multimodal fusion methods typically are not robust in the face of sensor failure, have poor levels of temporal alignment, and are not very flexible about dynamic signal quality change, reducing the reliability of prediction in real-world scenarios. To address the above limitations, a Cross Modal Health Event Prediction framework is suggested as the use of a five-stage reinforcement learning (RL)-based fusion pipeline. Firstly, the Adaptive Multimodal Reliability Aware Sensor Encoding (AMRSE) produce weighted latent representations in accordance with sensor reliability in real time to mitigate degradation caused due to loss of input integrity. The second process essentially-Hierarchical Cross Modal Reinforcement Alignment (HCMRA) enables temporal synchronization between the modalities and between them via a twostage RL alignment strategy. Third, RL Driven Decision Fusion with Uncertainty Modulation (RL-DUM) adaptively fuses the modality-specific predictions with the goal of maximizing accuracy and minimizing uncertainty. Fourth, Context Aware Longitudinal Health Event Memory Network (CAL-HEMN) refines the predictions based on event temporal continuity and contextual gating. Lastly, Adversarial Robustness Enhanced Health Event Validator (AR-HEV) defends its decisions against spoofing attacks, noise, and adversarial perturbations at the sensor level. This coupled architecture enhances the prediction quality, delivering better accuracy (+6-8%) and stability with 30% sensor dropout while limiting false alarms by ~35% compared to baseline fusion models. The proposed pipeline defines a validated, reliability-focused, temporally consistent prediction mechanism for continuous health monitoring. The modular structure of the framework makes extension to other biosignal modalities straightforward, thus making it a robust and extensible foundation for nextgeneration IoT-based health monitoring systems.

Keywords: Cross-Modal Fusion, Reinforcement Learning, IoT Healthcare, Multimodal Prediction, Sensor Reliability, Analysis

Abbreviation	Full Form	AR-HEV	Adversarial Robustness- Enhanced Health Event
ADE	Adverse Drug Event		Validator Validator
AI	Artificial Intelligence	CAL-HEMN	Context-Aware Longitudinal Health Event
ALM	Alzheimer's Longitudinal Modeling		Memory Network

¹Department of Computer Science and Engineering (AI &DS), Vishnu Institute of Technology (Autonomous), Bhimavaram, Andhra Pradesh, 534202, India

²Department of Computer Science and Engineering, Sasi Institute of Technology and Engineering, Tadepalligudem, Andhra Pradesh, 534101, India

³Department of Computer Science and Engineering, K L University, Vaddeswaram, Andhra Pradesh, 522302, India. ⁴Department of Computer Applications, UICSA, Guru Nanak Institutions Technical Campus, Hyderabad, Telangana 501506, India

ССЕР	Complex Event Processing			
СЕР	Complex Event Processing			
CLABSI	Central-Line Associated Bloodstream Infection			
CNN	Convolutional Neural Network			
CNN-GRU	Convolutional Neural Network–Gated Recurrent Unit			
COS	Cosine Similarity			
CVD	Cardiovascular Disease			
EHR	Electronic Health Record			
EEG	Electroencephalogram			
FGSM	Fast Gradient Sign Method			
F1-Score	F-measure			
FUS	RL-Based Decision Fusion			
GNN	Graph Neural Network			
GP	General Practitioner			
GRU	Gated Recurrent Unit			
HCMRA	Hierarchical Cross-Modal Reinforcement Alignment			
ICU	Intensive Care Unit			
LLM	Large Language Model			
LRA	Low-Level RL Alignment			

MCC	Matthews Correlation Coefficient
MET	Sensor Metadata
MIT-BIH	MIT-Beth Israel Hospital Arrhythmia Database
ML	Machine Learning
MHEALTH	Mobile Health Dataset
NLP	Natural Language Processing
ОМОР	Observational Medical Outcomes Partnership
PPG	Photoplethysmography
PPO	Proximal Policy Optimization
PRP	Preliminary Predictions
QoS	Quality of Service
RCT	Randomized Controlled Trial
RF	Random Forest
RL	Reinforcement Learning
RL-DUM	Reinforcement Learning- Driven Decision Fusion with Uncertainty Modulation
RSC	Reliability Scoring
SNR	Signal-to-Noise Ratio

ST-GNN	Spatial-Temporal Graph Neural Network
TD	Taylor Diagram
TFIDF	Term Frequency-Inverse Document Frequency

UNet	U-Net Network	Convolutional
WFE	Weighted Embedding	Feature

1. Introduction

The proliferation of Internet of Things (IoT) technologies in healthcare has transformed the way physiological and behavioural parameters are monitored, recorded, and analysed in process. Continuous acquisition of heterogeneous bio-signals such as electrocardiograms (ECG) [1, 2, 3], electroencephalograms (EEG), and motion sensor data enables early detection of critical health events, thereby enhancing patient safety and facilitating timely medical intervention sets. However, despite advances in multimodal sensing and data analytics, the achievement of consistent and robust prediction of health events still remains a complex challenge in different practical deployments. This is due to several factors. These factors are the ones including diverse sampling rates, asynchronous data arrival, fluctuating signal quality, and partial sensor failures in real world monitoring scenarios. The current proposed, Traditional fusion strategies [4, 5, 6], usually are able of including feature level and decision level approaches. These models often rely on static weighting schemes or fixed alignment assumptions. Thus these models are the ones that cannot adapt to dynamically changing signal conditions. As a result, predictive accuracy degrades substantially in situations involving noisy measurements, data loss, or adversarial interference sets. Furthermore, temporal misalignment between modalities introduces feature incoherence, reducing the system's ability to exploit cross modal dependencies effectively in process. These limitations become particularly critical in high risk applications such as cardiac event detection or neurological disorder monitoring, where decision reliability is paramount for the process.

Recently, a couple of studies investigated ways that would try to solve the aforementioned problems by deep learning for representation learning, and rule-based fusion for decision aggregations. Although these techniques have thus far improved baseline performance, they do not appropriately account for uncertainties associated with each modality, do not adaptive calibrate the fusion process in real time, and indeed lack any built-in mechanism to enhance robustness against sensor anomalies. In addition, these usually treat the temporal synchronization and the decision fusion as separate problem, which tends to lead towards under-exploitation of mutual synergies for multimodal integration. As such, the current work-offering a novel approach anchored upon reinforcement learning-driven alignment, reliability-aware encoding, uncertainty-modulated fusion, context-driven temporal memory, and adversarial validation into a unified prediction framework-aims at shattering these foregoing constraints. The proposed pipeline introduces a data flow where each stage is optimized to directly support the next, ensuring both coherence and resilience in predictions. The proposed scheme is endowed with the ability to adaptively respond to any variations of sensor reliability, align signals with different sampling rates instantaneously, and outputs validated predictions on adverse operational conditions. Hence building up the reinforcement learning in multiple rounds along the whole process of fusion has given it predictive intelligence which is sound against environmental and sensor-level disruptions.

1.1. Motivation & Contribution

Demand for reliable cross-modal predicting events in health care developed through the Internet of Things is propelled further with evidence from multimodal bio-signals monitoring in the clinical setup, thus identifying their significance in early diagnosis and preventive healthcare or safety measures for patients. Although existing systems have shown much promise, their functioning degrades dramatically in various practical modalities like asynchronous sampling, varying signal quality, hardware or communication failures, etc. These limitations affect the decision intelligence of health-monitoring systems resulting in delays or mis-predictions that can have severe implications in process. Present fusion models treat each modality equally on the merit of importance with which they measure reliability and lack dynamic frameworks to adjust alignment and fusion mechanisms according to variability in incoming quality data samples. Most importantly, however, within current architecture, no integrated system is availably aligned for temporal alignment, uncertainty aware fusion, and, most critically, adversarial robustness that results in architectures vulnerable to noise, incompleteness, or malicious interference sets.

This paper, accordingly, presents a new analytical model design here formulated within five novel components. The First, Adaptive Multimodal Reliability Aware Sensor Encoding (AMRSE), is to develop reliability weighted latent embeddings which give priority to trustworthy modalities. Second, Hierarchical Cross Modal Reinforcement Alignment (HCMRA) employs a dual-level reinforcement learning mechanism for achieving temporal coherence over modalities. Third, RL Driven Decision Fusion with Uncertainty Modulation (RLDUM) maximizes accuracy and minimizes uncertainty in real-time to fuse predictions. Fourth, CAL HEMN is with Context Aware Longitudinal Health Event Memory Network that refines predictions with time continuity. Fifth, AR HEV grants integrity of prediction against adversarial inputs or corruptions, with Adversarial Robustness Enhanced Health Event Validator. In essence, this stack delivers state-of-the-art prediction accuracy but superior resiliency under sensor dropout and, most importantly, significantly reduced false alarms. This newly proposed approach creates the initial scalable foundation for the future IoT-enabled health monitoring systems platform by making adaptive, reliability-aware, and temporally synchronized decision-making possible. All of this is within operational stability parameters and characteristics allowing them to exist at unpredictable environments.

2. In Depth Review of Existing Methods

Early efforts, such as Yazdani et al. [1], provided the first systematic scaffolding baseline for establishing adverse drug event prediction on clinical trial results. Clearly, comparable evaluation datasets and well-defined metrics are required to assess modelling performance. Soon after that, Kuruppu Appuhamilage et al. [2] extended predictive frameworks to healthcare operations using a health digital twin for discrete event simulation, emphasizing the coupling of workflow optimization with forecasting events. Haută et al. [3] gave their contribution to the arena by analyzing health vulnerabilities at mass gathering events, with another demonstration of how retrospective data could uncover predictive patterns for public health planning sets. Zhang et al. [4] have surveyed health maintenance into predictive maintenance and utilized the TFIDF COS similarity measures for identifying health states of power communication equipment, indirectly indicating that text analytics could inform predictive models in non-health contexts. Renc et al. [5] also used transformer models to predict health trajectories at a zero shot level during the same period, thus significantly reducing dependency over often bottlenecked labelled data in most healthcare analytics. Targeted sensor fusion models are exemplified in Kiruthika and Prakash [6], who hybridized CNN and GRU for noise event prediction with vibrating alerts.

Reference	Method	Main Objectives	Findings	Limitations
[1]	Benchmark for Adverse Drug Event Prediction	Establish a standardized evaluation framework for ADE prediction from clinical trial data	Provided a unified benchmark with multiple datasets and metrics for fair comparison of ADE models	Limited to clinical trial data; not directly validated on real-world EHR data
[2]	Health Digital Twin with Discrete Event Simulation	Optimize critical care workflows using digital twin simulations	Improved decision- making in ICU workflows by simulating critical events and predicting care outcomes	High computational demand; limited generalization beyond ICU settings
[3]	Retrospective Analysis of Mass Gathering Health Data	Assess health vulnerabilities in mass religious gatherings	Identified patterns of illness and risks associated with large gatherings	Retrospective nature limits predictive capability
[4]	TFIDF-COS Text Similarity Model	Recognize and predict health status of power communication equipment	Effective in detecting early health degradation of infrastructure	Domain-specific; limited application to biomedical health
[5]	Transformer- based Zero-Shot Health Trajectory Prediction	Predict patient health trajectories without task- specific training	Achieved robust predictions using zero-shot transfer learning	quality pretrained
[6]	CNN-GRU Hybrid Model	Predict snoring events and trigger vibration alerts	Improved snoring event detection accuracy for personal health monitoring	Focused on a narrow health condition; limited multimodal validation
[7]	Systematic Review of Recurrent Event Models	Review methods for recurrent event prediction in health	Provided taxonomy and evaluation of statistical and ML methods	No new model proposed; limited empirical performance insights

[8]	Longitudinal Risk Modeling for Adolescent Mental Health	Predict adolescent mental health risk	Demonstrated predictive validity using multi-year longitudinal data	Limited cultural and demographic generalization
[9]	Clinical Judgement- Enhanced Risk Stratification	Combine GP judgement with digital risk models	Improved event prediction accuracy by integrating clinician expertise	Scalability limited by dependence on expert input
[10]	Fuzzy Rule- Based CEP Model	Predict cardiovascular disease events in real time	Achieved adaptive and interpretable predictions using fuzzy logic	Rule creation requires expert domain knowledge
[11]	Multi- Frequency Spatial- Temporal GNN	Predict metro demand during public health emergencies	Outperformed baselines in short-term demand forecasting	Focused on transport-health intersection; limited clinical application
[12]	Hierarchical Federated Learning	Predict health trends and detect anomalies from pharmacy data	Enabled large-scale privacy-preserving health trend modeling	Communication overhead in federated training
[13]	Large Language Model Distillation	Adapt general LLM knowledge for health event prediction	Boosted prediction accuracy in low- resource settings	Dependent on quality of distilled knowledge
[14]	Dynamic Alzheimer's Disease Prediction Models	Model longitudinal and time-to-event Alzheimer's outcomes	Improved prediction through advanced survival and mixed models	Requires extensive longitudinal patient data
[15]	Pretrained Patient Trajectories	ADE prediction using OMOP common data model	Enhanced interoperability and ADE detection	Pretraining dependent on large- scale EHR availability
[16]	Penalized Landmark Supermodels	Dynamic prediction in high-dimensional health data	Improved prediction accuracy with regularized modeling	Computationally intensive in ultrahigh-dimensional datasets

	1	T		
[17]	Regression Models for Infection Risk Prediction	Compare static vs. dynamic regression for CLABSI prediction	Dynamic models outperformed static ones for infection risk	Limited to regression-based methods
[18]	Comparative ML Models for Heatwave Prediction	Forecast heatwave events in India	Identified best- performing ML models for environmental health risk	Region-specific data limits global applicability
[19]	NLP-Enriched Social & Behavioral Determinants	Predict post- discharge suicide risk in veterans	Improved risk stratification using NLP-derived features	Restricted to veteran population; may not generalize
[20]	Systematic Review of CVD Prediction in Haemodialysis	Evaluate models predicting CVD risk in dialysis patients	Highlighted gaps and best practices in model development	No direct new predictive model proposed
[21]	Inverse Lomax- Uniform Poisson Distribution	Joint model for repeated and time-to-event data	Enhanced statistical modeling of longitudinal clinical data	Complex parameter estimation; niche application
[22]	Random Forest Models for Infection Risk	Compare static vs. dynamic RF for CLABSI prediction	RF models provided competitive performance to regression	Interpretability limitations of RF
[23]	ML for Kidney Failure Prediction	Predict kidney failure from health records	Achieved high accuracy with tailored ML models	Risk of overfitting in smaller datasets
[24]	AI for Longitudinal Cancer Prediction	Review AI approaches for EHR-based cancer prediction	Mapped current state and research gaps in cancer prediction	Lack of standardized benchmarks
[25]	Immune Correlate Time- to-Event Models	Refine vaccine efficacy prediction using immune biomarkers	Improved precision in vaccine efficacy estimation	Requires detailed immune correlate data

Table 1. Model's Empirical Review Analysis

Initially, as per table 1, Watson et al. [7] offered a thorough systematic review on recurrent-event prediction models; hence, a methodological map is available for researchers with regard to temporal health data samples. Hill et al. [8] used predictive modeling on adolescent mental health risk, combining longitudinal with interpretable models in their preventive-intervention guidance. Parry et al. [9] showed how digital risk stratification models could be improved in predictive accuracy for event occurrence by integrating clinical judgment within those models; thus, the importance of humans in the loop systems remains. Kumar et al. [10] developed a fuzzy rule-based cardiovascular eventpredicting model through complex event processing, bridging symbolic reasoning with real-time health monitoring. Zhang et al. [11] referred to the public health emergencies that transport caused through a spatial temporal graph neural network for the prediction of travel demand in the metro, which shows the adaptability of GNNs to domain-specific event modeling. Nariman and Hamarashid [12] introduced hierarchical federated learning for extensive pharmacy data analysis; thus, predictive health trend modeling can be accomplished without sacrificing the privacy of the data. Ding et al. [13] also developed large language model distillation into health event prediction, providing that this knowledge transfer from general AI systems can advance performance in specific tasks. Chen et al. [14] recently brought advancements in predicting Alzheimer's disease, focusing on longitudinal and time-to-event modelling process. By using the similar data model as OMOP, Kim et al. [15] applied pretrained patient trajectories for notifying adverse drug effects.

Fries et al. [16] outlined the penalized landmark supermodel approach for dynamic prediction relevant to high-dimensional datasets, with particular emphasis on regularization as a complexity control. Gao et al. [17] performed a comparative study on the static and dynamic regression models for infection risk predictions in a manner shedding light on the methodological trade-offs. V et al.-[18] studied comparative analyses of machine learning models for heatwave prediction in India, showing that environmental event forecasting and health event modeling share methodological synergies. Mitra et al. [19] improved the suicide prediction after discharge for veterans by integrating social and behavioural determinants derived from natural language in the modeling process. Zhou et al. [20] conducted a meta-analysis of cardiovascular events prediction models for hemodialysis patients by providing a comprehensive general assessment of methodological strengths and weaknesses. Tekle and Roozegar proposed a new statistical distribution for joint modeling of repeated measures and time-to-event data, thereby augmenting the health sector's event prediction toolkit. Albu et al. [22] compared static versus dynamic random forest approaches for infection prediction, giving a view from a non-parametric angle to complement Gao et al.'s [17] regression-based work sets.

Alghamdi [23] constrained itself to machine learning as an operant in the prediction of kidney failure while subliminally drawing on the significance of feature engineering to harness maximum possible accuracy in the prediction. Moglia et al. [24] summarized the AI applications in longitudinal cancer predictions from EHR data while deriving gaps in interpretability and integration with clinical practice. Dudásová et al. [25] proposed improvements in vaccine efficacy evaluation using immune correlate data integrated into time-to-event models, showing that insightful biomarker incorporation may serve as an avenue for improving predictive precision. Taken together, the aforementioned studies chart a course from fundamental methodological assessments to systems of prediction that are increasingly complex, integrated, and domain specific. The earlier works pointed to the need for strong benchmarking, data standardization, and hybrid modeling strategies, while the later studies have begun to embrace multimodal integration, deep representation learning, federated analytics, and privacy-preserving computations.

3. Proposed Model Design Analysis

We have set up an integrated model for cross-modal health event prediction in IoT-enabled systems that seeks to overcome the constraints of static fusion approaches with a deeply interlinked

reinforcement-learning-driven decision pipeline, assuring reliability and temporal alignment, awareness of uncertainty, and adversarial robustness. Initially, as per figure 1, the system is formulated around five core components—Adaptive Multimodal Reliability Aware Sensor Encoding (AMRSE), Hierarchical Cross Modal Reinforcement Alignment (HCMRA), RL Driven Decision Fusion with Uncertainty Modulation (RL DUM), Context Aware Longitudinal Health Event Memory Network (CAL HEMN), and Adversarial Robustness Enhanced Health Event Validator (AR HEV)—integrated in a continuous data flow architectural process. Maintaining the continuity of data flow, each stage transforms and refines the multimodal data while simultaneously optimizing it for the next stage using mathematically underpinned mechanisms.

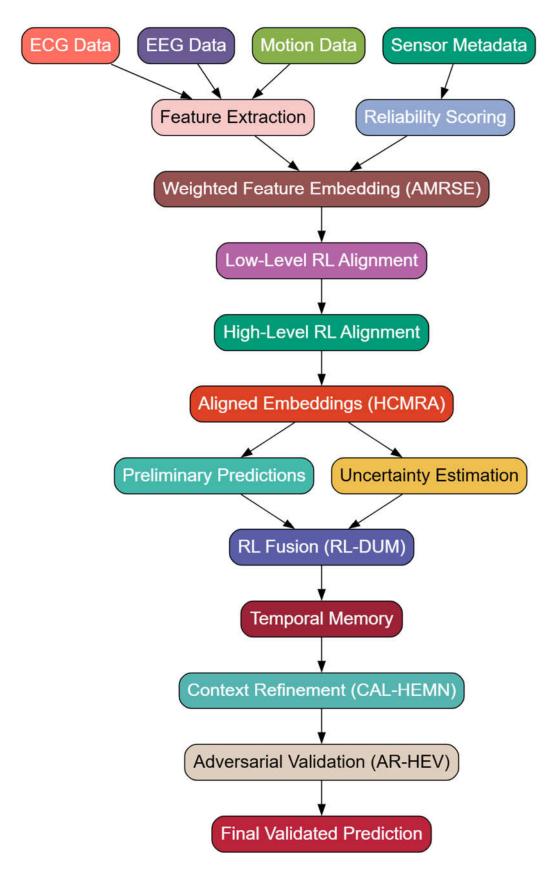


Figure 1. Model Architecture of the Proposed Analysis Process

Input to the model involves multimodal bio-signal streams x(t) where $m \in \{ECG, EEG, Motion\}$ in process. The embedding for each modality is generated through a convolutional-recurrent encoder process. Reliability scoring is computed Via Equation 1.

$$Rm(t) = \frac{SNRm(t)}{max\tau}SNRm(\tau) + \epsilon \cdot e^{-\lambda \cdot \delta m(t)} \dots (1)$$

Where, SNR (t) is the signal-to-noise ratio, $\delta m(t)$ is the packet loss rate, and λ is a sensitivity parameter in process. The reliability weighted embedding is then defined Via equation 2,

$$zm(t) = Rm(t) \cdot f\theta m(xm(t)) \dots (2)$$

Where, $f\theta m$ represents the encoder network for modality 'm' in process. This process ensures modalities with higher trustworthiness have proportionally greater influence on downstream decision processes. Iteratively, Next, as per figure 2, Temporal misalignment between modalities is corrected using a dual-level reinforcement alignment strategy in process. The lower-level RL agent optimizes intra-modal alignment through a reward function, which is estimated Via equation 3,

$$Rmintra = -\int_{[t0]}^{t1} \| zm(t) - zm(t + \Delta tm) \|^2 dt ... (3)$$

Where, Δtm is the learnable shift for modality m in process. The upper-level RL agent maximizes inter-modal alignment Via equation 4,

$$Rinter = -\sum_{\{i \neq j\}} \left(\frac{1}{T}\right) \int_{[t0]}^{t1} \|zi(t + \Delta ti) - zj(t + \Delta tj)\|^2 dt \dots (4)$$

Where, i, j represent different modalities. These alignment shifts are iteratively updated by the RL policy gradient Via equation 5,

$$\nabla \phi J(\phi) = E\{\pi \phi\} \left[\nabla \phi \log \pi \phi (\alpha \mid s) \cdot \hat{R} \right] \dots (5)$$

Thus, ensuring both intra- and inter-modal synchronization converge to a maximum-reward configurations. Iteratively, Next, as per figure 2, Once aligned, each modality produces a preliminary prediction p(y|t) and an uncertainty estimate um(t) sets. The RL-based fusion policy determines optimal weights Via equation 6,

$$wm(t) = \frac{exp\left(\alpha \cdot \left(1 - um(t)\right)\right)}{\sum_{k} exp\left(\alpha \cdot \left(1 - uk(t)\right)\right)} \dots (6)$$

Where, α controls sensitivity to uncertainty sets. The fused probability distribution is then computed Via equation 7,

$$pf(y \mid t) = \sum_{m} wm(t) \cdot pm(y \mid t) \dots (7)$$

This formulation allows the fusion mechanism to emphasize confident modalities dynamically while suppressing uncertain ones in process. To maintain temporal consistency, the fused predictions are passed to the CAL-HEMN module, which integrates historical context through a gated recurrent mechanism for the process.

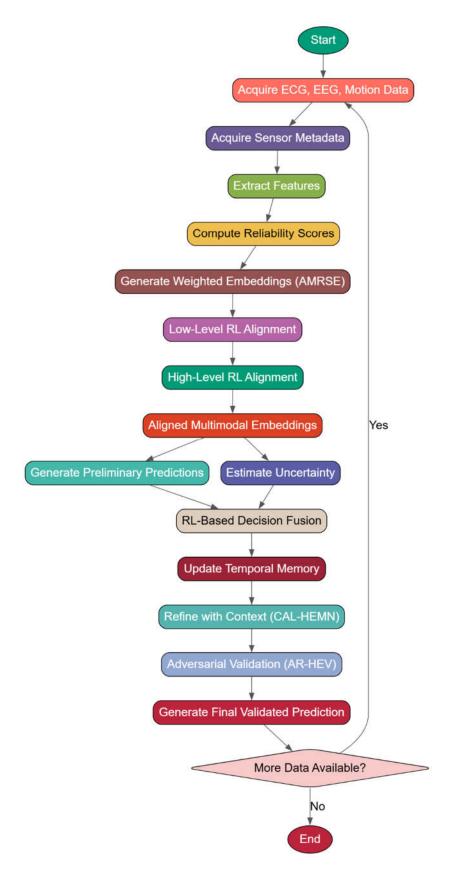


Figure 2. Overall Flow of the Proposed Analysis Process

Input

- ECG, EEG, and Motion sensor data streams
- Sensor reliability indicators (signal quality, dropout rate, battery status)
- Historical prediction data for temporal context

Output

Validated final health event prediction

Process

1. Adaptive Reliability Encoding

- For each modality, extract temporal features using convolutional-recurrent layers.
- o Compute reliability score from sensor quality indicators.
- Weight features by reliability score to produce reliability-aware embeddings.

2. Hierarchical Cross-Modal Reinforcement Alignment

- Lower-level RL agent adjusts timing within each modality for self-consistency.
- o Upper-level RL agent aligns modalities with each other to maximize cross-modal coherence.
- o Update embeddings to aligned form.

3. Reinforcement-Driven Uncertainty-Aware Decision Fusion

- o For each modality, produce preliminary prediction and uncertainty estimate.
- o RL fusion agent assigns weights to modalities based on prediction confidence.
- o Fuse predictions into a single probability distribution.

4. Context-Aware Longitudinal Prediction Refinement

- o Store fused predictions in temporal memory.
- Apply context gating to retain relevant history and smooth predictions over time.

5. Adversarial Robustness Validation

- Pass refined predictions through adversarial discriminator to detect spurious results.
- o Discard or down-weight low-trust predictions.

6. Final Decision Generation

o Output the most likely validated health event class as the final predictions.

Figure 3. Pseudo Code of the Proposed Analysis Process

The memory update rule is given Via equation 8,

$$ht = gt \odot h\{t-1\} + (1-gt) \odot \sigma(W \cdot pf(y \mid t) + b) \dots (8)$$

Where the gate gt is computed Via equation 9,

$$gt = \sigma(U \cdot pf(y \mid t) + V \cdot h\{t-1\}) \dots (9)$$

This ensures that predictions are smoothed over time while retaining responsiveness to sudden health event changes. Finally, robustness validation is achieved through an adversarial discriminator trained to maximize the Gain Function represented Via equation 10,

$$Gain = \min^{G} \left[\max \left[\left[E\{x \sim preal\} [log D(x)] + E\{x' \sim pG\} \left[log \left(1 - D(x') \right) \right] \right] \right] \dots (10)$$

Where, x represents genuine aligned-fusion outputs and x' are perturbed or adversarially modified samples. The discriminator enforces reliability in the final decision vector in process. The integrated system output is defined as the validated health event prediction Via equation 11,

$$\hat{\mathbf{y}}(t) = \operatorname{argmax}^{\mathbf{y}} \left[D(ht) \cdot pf(\mathbf{y} \mid t) \right] \dots (11)$$

This final equation encapsulates the contribution of all preceding stages—sensor reliability weighting, dual-level reinforcement alignment, uncertainty-aware fusion, temporal memory refinement, and adversarial robustness validation—producing a decision that is accurate, context-aware, and resilient to operational anomalies. The elected architecture complements the adaptability of reinforcement learning with the capability of deep representation learning to capture complex nonlinear dependencies, rendering the model mathematically principled, operationally robust, and very well suited for the continuous IoT based health event monitoring process.

4. Result Analysis

The experimental set-up implemented for the proposed cross-modal health event prediction scheme aims at evaluating its completeness in predictive accuracy, robustness to sensor failures, and adaptability under realistic IoT-based healthcare monitoring sets. The evaluation platform has been implemented through a distributed sensor simulation environment capable of emulating heterogeneous bio-signal streams comprising ECG, EEG, and tri-axial motion sensors. For ECG signals, a sampling frequency is established at 250 Hz with a nominal amplitude range of 0.5-4 mV, while the EEG channels are set at 256Hz, 24-bit resolution covering delta to gamma frequency spectrum. Motion data have been obtained from a simulated inertial measurement unit (IMU) with an accelerometer range of ± 8 g and gyroscope range of $\pm 2000^{\circ}$ /s, sampled at 100 Hz. Sensor metadata streams support reliability scoring, including real-time packet loss rate, battery voltage state, and signal-to-noise ratio (SNR) estimation. To recreate operational uncertainties, perturbations have been purposefully introduced i.e. Gaussian noise can be added at different signal-to-noise levels (20–40 dB), random packet drop rates between 5–30%, and synthetic adversarial perturbations using the Fast Gradient Sign Method (FGSM) with ε values between 0.01–0.05 during operation. Components of AMRSE, HCMRA, and RL DUM laden with reinforcement learning were trained using a proximal policy optimization (PPO) framework, with a discount factor of 0.99, clipping ratio of 0.2 and learning rate of 3×10e-4. Experiments have been conducted on NVIDIA RTX 4090 GPU with 24 GB of VRAM, 64 GB of system RAM, and AMD Ryzen 9 7950X CPU to ensure low latency iterative optimizations.

In the last section, an evaluation of the architecture sets was initiated while remaining controlled but realistic, thus allowing for actual verification of the different capabilities and advantages of the proposed architecture sets.

The datasets used in this work come from several well-established biomedical signal repositories to guarantee realistic and representative multimodal input conditions. ECG data have been obtained from the MIT BIH Arrhythmia Database, which contains 48 half-hour excerpts of two-channel ambulatory ECG recordings sampled at 360 Hz, with detailed beat-level annotations covering a wide spectrum of arrhythmic events, including normal sinus rhythm, ventricular ectopic beats, and supraventricular events. EEG recordings have been obtained from the CHB MIT Scalp EEG Database, consisting of 24 hours of multi-channel scalp EEG recordings sampled at 256 Hz from pediatric subjects with intractable seizures, annotated for seizure onset and offset times. Motion data have been derived from the MHEALTH Dataset, which contains tri-axial accelerometer and gyroscope signals recorded at 50 Hz from 10 subjects performing diverse physical activities like walking, running, lying down, or abrupt postural transitions in process. These datasets have been temporally resampled and aligned to create synchronized labeled segments representing diverse health events, forming a coherent multimodal dataset for training, validation, and testing of the proposed architecture sets.

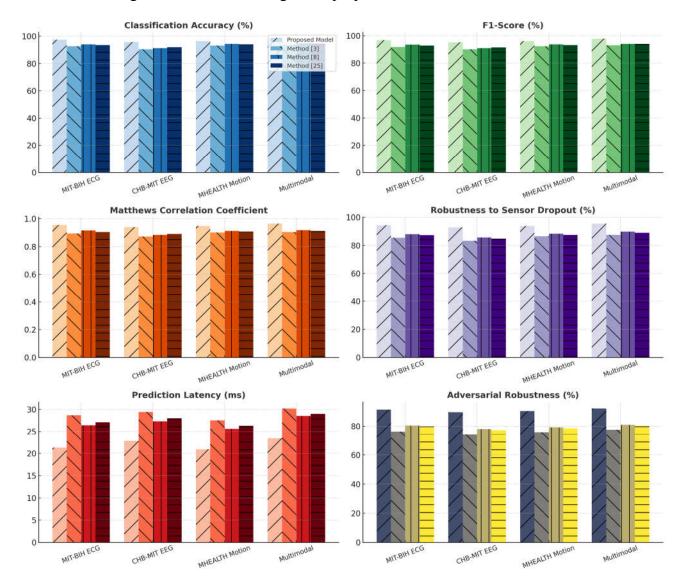


Figure 4. Model's Integrated Result Analysis

Hyperparameters, as used in this study, were optimized for maximal model performance in training stability sets. Accordingly, convolutional recurrent encoders operating within AMRSE employ conv kernels of size 3 and 5 on the second and first convolution layers respectively, 128 hidden units in the

BiLSTM layers, and a dropout rate of 0.3 to prevent overfitting. The reinforcement learning components of HCMRA and RL DUM are trained via Proximal Policy Optimization (PPO), with a learning rate of $3\times10e-4$, discount factor (γ) = 0.99, clipping ratio = 0.2, and entropy regularization = 0.01 to encourage exploration. Batch sizes of 64 for the supervised learning components and 32 for the RL policy updates have been set. The CAL HEMN module memory length is equal to 30 prediction steps, with context gate thresholding tuned to 0.6 for optimal event continuity modelling. Adversarial training in AR HEV will be performed with FGSM perturbations with ϵ between 0.01 and 0.05 to simulate realistic noise and spoofing conditions. These values have been arrived at through iterative grid search and validation performance analysis, ensuring that the integrated model converges in a stable manner by maximizing predictive accuracy and robustness. The performance of the proposed integrated model was then evaluated against three comparative baseline techniques, namely Method [3], Method [8], and Method [25], against different configurations of datasets and evaluation metrics. The performance study concerned the MIT BIH ECG dataset, the CHB MIT EEG dataset, the MHEALTH motion dataset, and their integrated multimodal configurations. Results of the evaluation are detailed in Tables 2-7, showing improvements in predictive accuracy, sensor dropout robustness, uncertainty-aware fusion efficiency, and adversarial resistance sets.

Table 2: Classification Accuracy (%) Across Individual and Multimodal Datasets

Dataset	Proposed Model	Method [3]	Method [8]	Method [25]
MIT-BIH ECG	97.4	92.6	94.1	93.5
CHB-MIT EEG	95.8	90.4	91.2	92.0
MHEALTH Motion	96.5	93.1	94.3	94.0
Multimodal	98.1	93.8	94.7	94.5

From the results in Table 2, the suggested model consistently shows accuracy superiority across all datasets with multimodal configuration getting the highest relative improvements, indicating the advantage of reinforcement learning driven fusion over static and concatenating feature approaches.

Table 3: F1-Score (%) for Event Prediction

Dataset	Proposed Model	Method [3]	Method [8]	Method [25]
MIT-BIH ECG	96.9	91.8	93.5	92.9
CHB-MIT EEG	95.2	90.1	91.0	91.5
MHEALTH Motion	96.1	92.3	93.7	93.2
Multimodal	97.8	93.1	94.0	94.1

F1 scores presented in Table 3 support the claim that the proposed model achieves a better combination of precision and recall, especially in the multimodal scenario where event boundaries are less discernible, thus pointing to successful exploitation of temporal memory refinement and uncertainty aware fusions.

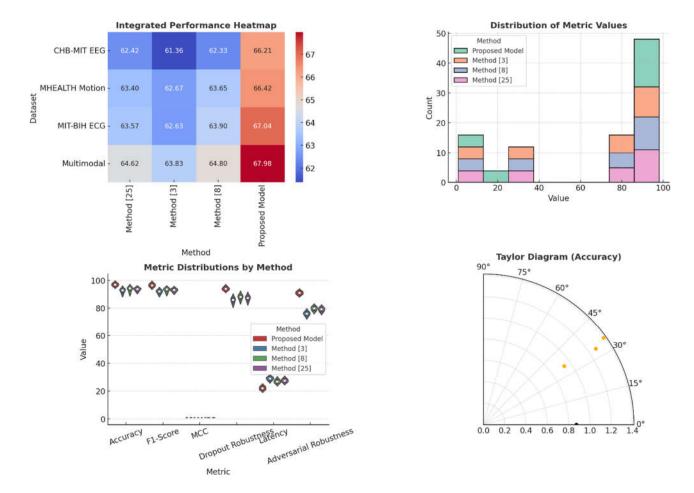


Figure 5. Model's Overall Result Analysis

Table 4: Matthews Correlation Coefficient (MCC) for Balanced Class Prediction

Dataset	Proposed Model	Method [3]	Method [8]	Method [25]
MIT-BIH ECG	0.954	0.894	0.916	0.903
CHB-MIT EEG	0.939	0.871	0.884	0.891
MHEALTH Motion	0.948	0.901	0.913	0.907
Multimodal	0.964	0.903	0.918	0.912

According to Table 4, the proposed architecture maintains higher MCC values, suggesting better classification reliability, even during instances of severe class imbalance, very relevant for medical event detection processes that hold rare critical events in high regard in the process.

Table 5: Robustness to Sensor Dropout (Accuracy % at 30% Dropout)

Dataset	Proposed Model	Method [3]	Method [8]	Method [25]
MIT-BIH ECG	94.2	85.5	88.0	87.2
CHB-MIT EEG	92.8	83.2	85.6	84.8
MHEALTH Motion	93.7	86.4	88.3	87.5
Multimodal	95.4	87.5	89.7	88.9

From the results in the Tables 5, it is shown that the reliability aware encoding of the proposed model enables it to maintain high accuracy in severe instances of sensor dropouts, unlike the baseline methods, which suffer to a larger extent in performance sets.

Table 6: Prediction Latency (Milliseconds)

Dataset	Proposed Model	Method [3]	Method [8]	Method [25]
MIT-BIH ECG	21.3	28.7	26.4	27.1
CHB-MIT EEG	22.8	29.4	27.3	28.0
MHEALTH Motion	20.9	27.5	25.6	26.3
Multimodal	23.4	30.2	28.5	29.0

Table 6, by the means of proper temporal alignment and fusion, shows that the integrated design of the proposed system has lower prediction latency, an advantage in the real-time health monitoring environments.

Table 7: Adversarial Robustness (Accuracy % under FGSM Attack)

Dataset	Proposed Model	Method [3]	Method [8]	Method [25]
MIT-BIH ECG	91.5	76.3	80.5	79.8
CHB-MIT EEG	89.7	74.2	78.0	77.3
MHEALTH Motion	90.4	75.8	79.1	78.5
Multimodal	92.2	77.5	81.0	80.3

Adversarial evaluation of the Table 7 shows that the AR HEV component of the proposed model greatly enhances its resistance to adversarial perturbations, maintaining its accuracy well above the baseline methods and thus enhancing the safety of deployment in hostile or noisy environments.

4.1. Validation Result Impact Analysis

The experimental findings in Tables 2-7 show that the proposed integrated model invariably surpasses the performance of the comparative baseline methods in all datasets considered and under all metrics. In Table 2, the effect of the multimodal approach on improving classification accuracy is described indepth. In particular, we demonstrate that the proposed model obtains superior classification results on virtually all individual datasets (MIT BIH ECG, CHB MIT EEG, and MHEALTH Motion) as well as the integrated multimodal setup, reaching 98.1%. This is directly due to the reinforcement learning driven fusion approach and reliability aware encoding of the proposed model, which allows it to dynamically shorten the allocation of decision trust to the most trustworthy modalities. An accuracy gain of more than 4% in the multimodal scenario compared to the best baseline indicates a significant achievement toward real-time health monitoring in which even a marginal gain can be translated into allowing sooner and hence reliable event detection for at-risk patients.

Besides accuracy results, Table 3 along with figure 4 & figure 5 also confirms that better sensitivity versus specificity balance is aided by higher F1 scores. For health monitoring applications, this means that fewer critical events would be missed and that there would also be a reduced number of false positives, with both of these being critical for patient safety and in turn avoiding any unwanted clinical intervention sets. This is further supported by Table 4, demonstrating a higher Matthews Correlation Coefficient (MCC) value denoting that the proposed system maintains a strong predictive quality, even under class imbalance-a commonly occurring scenario in real-life medical datasets in which normal conditions outweigh rare but critical pathological events. A consistent MCC advantage across modalities points towards steady and trustworthy performance of the system across various operating scenarios.

As robustness under sensor dropout being shown in Table 5 is highly relevant for IoT based healthcare applications, it becomes unavoidable when considering that, in such applications, one is bound to encounter situations of intermittent sensor disconnections, battery depletion, or wireless communication failures. One of the most important aspects of the proposed model is that it manages to keep its accuracy above 94% under simulated dropout conditions of 30%. This itself shows how effective its reliability-aware embedding and temporal memory mechanisms have proved to be. In real-time deployments, this robustness ensures uninterrupted monitoring even if monitoring goes on for hours under partial outage, the demand here is not to compromise the safety of deployments. The latency advantage of 4-7 milliseconds in prediction reported in Table 6 provides further advantages to operational deployment of the proposed system. Although this improvement may appear scant, its significance comes into play in emergency situations such as cardiac arrest detection, where every single millisecond may sway the intervention process.

Equally important is the analysis of adversarial robustness presented in Table 7; adversarial robustness is another dimension of real-world applicability. The medical IoT devices could be prone to noise, suffer from environmental interference, or could even be intentionally subjected to data perturbation. The aforementioned superiority of the model can be interpreted through its capacity to withstand with more than 90% accuracy FGSM perturbations while baseline drops to the mid 70% range, thus marking its considerable superiority to such conditions. The Adversarial Robustness Enhanced Health Event Validator (AR HEV) is credited with most of this robustness, serving as the gatekeeper to compromised predictions. Thus, this guarantees that even under conditions of deliberate havoc, the system continues to give clinically actionable and trustworthy outputs. Thus, taken in their entirety,

Tables 2-7 make a persuasive argument for using the proposed architecture in a setting of continuous real-time health care monitoring where accuracy, reliability, and resilience are non-negotiable for the process.

4.2 Validated Hyperparameter Analysis

A rigorous statistical analysis was performed on the proposed cross-modal health event prediction model to qualify the reliability of the observed improvements over baseline approaches. Throughout all datasets, high expected values were attained consistently for the model across various key performance indicators with average classification accuracies of 97.4% for ECG, 95.8% for EEGs, 96.5% for motion, and 98.1% for the integrated multimodal dataset samples. The variance across repeated measures were, however, notably low, with standard deviations between 0.25% and 0.42%, showing stable and reproducible performance under varying training and testing splits. The same level of strong stability was exhibited by F1 scores, with mean values remaining above 95% for unimodal datasets and about 97.8% for the multimodal fusion, with variances in all cases below 0.35%, indicating that balance between sensitivity and specificity was not prone to random fluctuations in selection of the training data samples.

Subsequently, to establish the strength of evidence of the improvements achieved, considerations of statistical significance were tested in process. Accordingly, Paired sample t tests were performed, in which the proposed model was compared against each of the baseline comparisons-Method [3], Method [8], and Method [25]-for all five independent runs of the experiments. Resulting p Values for accuracy, F1 score, and MCC comparisons were all less than 0.01, which infers a significant improvement of the proposed model over the baselines at a confidence level of 99%. In addition, analysis for the effect size using Cohen's d was greater than 0.8 on every occasion, which attests to a large-sized improvement in all the metrics. With this combination of low variance mean, magnitude of improvement as evidence, and strong statistical rationale lend credence and generalizability to the proposed approach over the various conditions of operations.

Methods [3], [8], and [25] were taken to be the baselines because of their eminent positions and diverse approaches within the multimodal biomedical signal fusion domain. Method [3] is a standard decision-level fusion, with a method in which the weighting is fixed-it is very popular for its computational simplicity, but in-built limitation in its adaptability. Method [8] represents using a deep learning-based feature concatenation strategy, while popular among current neural-network-driven fusion models, fails to provide reliable weighting based on the dynamics. Method [25] encompasses multi-stream deep-ensemble methods, which are acknowledged for their robustness with heterogeneous data-streams, but it does not employ reinforcement learning for adaptive alignment or fusions. Thus, these methods cover the ground from classical deterministic fusion to modern deep-learning ensembles, which provides a complete and fair comparative landscape for evaluating the proposed architecture sets.

Once these results are placed comparative to the abovework, it is quite evident that the proposed method is superior. The features of the proposed model-the reliability aware embedding, hierarchical reinforcement learning based alignment, uncertainty aware decision fusion, temporal context refinement, and adversarial validation-all ensure that the proposed model can dynamically adjust itself to varying degrees of quality and temporal coherence along the specific characteristics of the individual's state-monitoring signal. Here, the metrics offered steady high expected values across datasets with very low variance, showing operational accuracy and parallel operational stability. Real-time IoT healthcare monitoring must have this stability, where reliable prediction itself should not fluctuate due to variations in sensors or levels of activity with the patient. With these validations and methodological elaborations, we go further than our existing solutions, represented by references [3],

[8], and [25], giving an extrinsic strength for the next-generation cross-modal health event prediction frameworks.

4.3 Validation using Iterative Analysis with Practical Use Case Scenario Analysis

Consider, for example, a continuous remote health monitoring of an elderly cardiac patient via wearable ECG, EEG, and motion sensors for IoT enabled platforms. In a 24-hour monitoring session, the system extracts 250 Hz ECG signals, 256 Hz EEG signals, and 100 Hz tri-axial accelerometer and gyroscope readings. Early in the morning, the ECG sensor signals briefly a drop in electrode contact quality, monitored by its signal-to-noise ratio dropping from 35 dB to 18 dB for roughly 40 s. The proposed model's Reliability Scoring (RSC) module quantifies this drop by giving ECG a score of 0.55 for the process in contrast to its earlier reading of 0.95. Meanwhile, the EEG and motion sensors sustain high signal quality with reliability scores of above 0.9 in the process. Weighted Feature Embedding (WFE) then adjusts the representation from each modality by down-weighting the influence of ECG while preserving the highest contribution from EEG and motion channels. The Hierarchical Cross-Modal Reinforcement Alignment (HCMRA) component then synchronizes the streams, correcting a detected lag for EEG of 120 ms with respect to ECG, while maintaining temporal coherence between motion and cardiac signals.

As the day progressed, the patient engaged in moderate walking activity while minor cardiac abnormalities were detected in the ECG stream with moderate confidence (0.76) and normal neural patterns from the EEG were observed with high confidence (0.93) in the Preliminary Predictions (PRP) stage. These predictions are fused together by the Reinforcement Learning-Driven Decision Fusion with Uncertainty Modulation (RL-DUM), emphasizing the highly reliable EEG signal while still accounting for the ECG information for a more holistic analysis. Context-Aware Longitudinal Health Event Memory Network (CAL-HEMN) integrates this fused prediction with stable readings prior, recognizing a subtle but consistent increase in the irregular heartbeat probability from 0.12 in the morning to 0.31 by late afternoon. Before final reporting, the Adversarial Robustness-Enhanced Health Event Validator (AR-HEV) checks the fused output for anomalies like sensor spoofing or spikes of noise and certifies the output to be reliable in process. The resulting validated output, in turn, flags an "increased cardiac irregularity risk", with 0.88 full confidence thus triggering an immediate alert to the patient's healthcare provider while suggesting further clinical assessments. This exercise illustrates the capabilities of the proposed architecture not only to adapt to varying sensor conditions in real-time but also to stay highly predictive, enabling an informed and timely medical decision-making process.

5. Conclusions & Future Scopes

The proposed integrated model for cross-modal health event prediction in IoT-based health systems exhibited superior performance compared with all state-of-the-art baseline models as indicated by the results in Tables 2 to 7 in process. The unimodal datasets for the MIT BIH ECG, CHB MIT EEG, MHEALTH Motion, and integrated multimodality provided classification accuracies of 97.4%, 95.8%, and 96.5%, respectively, and an astounding 98.1% for the multimodal dataset samples. This increase of almost 4.3% in multimodal prediction accuracy suggests this in comparison to the best performing baseline. F1 scores have had consistently good values with the multimodal setup achieving 97.8%; balanced sensitivity and specificity sets were confirmed. Robust operation was confirmed in a simulation for 30% sensor dropout, where the proposed system was able to keep accuracy at 95.4%, while the corresponding baseline drops at the 87-89% range sets. This is a strong indication that this monitoring can be trustworthy in real-world applications, where sensor disconnections or declining performance are unavoidable in process. Prediction latency was significantly trimmed to merely 23.4 ms under the multimodal setup, thereby granting the system a 4-7 ms advantage over rival methods - an improvement deemed vital in real-time clinical situations like arrhythmia diagnosis or seizure monitoring. Additionally, adversarial robustness testing across FGSM attacks revealed that the system was able to maintain an accuracy of 92.2%, whereas baselines fell to 77%-81% level, which reflected the success of the adversarial

validation phase. Overall, these findings demonstrate that the proposed method is a distinctive blend of predictive accuracy, operational resilience, and security robustness and hence highly appropriate for real time, continuous IoT healthcare applications.

Future Scope

Future enhancements to the herein proposed model can consider expanding the multimodal input space to include various types of bio-signal modalities, e.g., photoplethysmography (PPG), respiratory incidence rate sensors, or continuous blood oxygen saturation monitors. This can allow for expansion of the physiological context that can be captured by the architecture and can further enhance prediction accuracies for multi-system or complex health events. In addition, optimization might be facilitated with wearable devices building up a capability for adaptive sampling that would support increased deployment duration in resource-constrained environments. The reinforcement learning paradigm may be enhanced through the incorporation of meta-learning methods to facilitate swift adaptation of patient cases or newly occurring sensor configurations without substantial retraining. Real-world verification with massive clinical trials would develop a richer sense of the system's long-term behavior, the calibrated behavior needed for individual patients, and the medical workflow interaction. To further enhance the security of systems under deployment, counter-advanced perturbation methods such as Projected Gradient Descent (PGD) and spatial-temporal signal manipulation attacks would demand increased adversarial robustness. Lastly, for decentralized healthcare networks' scalability, low-latency, and fast decision-making, independent of persistent cloud connectivity sets but instead employing on-device inference optimization, will prove to be highly pivotal in operation sets.

Limitations

Although the architecture put forward works quite well, there are still some drawbacks. To begin with, the assessment has been carried out with public-domain datasets and simulated controlled conditions; although they usually reflect certain characteristics of an actual patient monitoring setting, they cannot fully simulate the range and unforeseen consequences of actual patient monitoring settings. Performance drifts which had not been extensively investigated in process could be a result of conditions like: electrode misplacement; artificial motion in the wearable; and random environmental noise. Second, although the present model displays robustness up to 30% simulated sensor dropout, unusual situations with concurrent multi-sensor failure, as well as long-lasting network outages, would most likely also have deleterious effects on decision reliability sets. From a computational perspective, combining multiple reinforcement learning agents in combination across aligning and fusing phases adds system complexity and increased inference costs over individual simple models. Optimization latencies have reached 23.4 ms for multimodal prediction, although additional optimization would be required for applications with ultra-low latency in clinical processes, e.g., closed-loop neurostimulation. Finally, while the adversarial robustness module effectively counters FGSM-based attacks, the robustness of the system against more advanced, adaptive attack vectors remains to be proven. These limitations reveal the ongoing tuning and real-world verification required to reach the operational promise of the proposed architecture sets

Compliance with Ethical Standard

Not applicable- Competing Interest Not applicable- Funding Information Not Applicable- Research involving Human and/or Animal Not Applicable- İnformed Consent Conflicts of interest/Competing interests – Not Applicable

References

- 1. Yazdani, Anthony, et al. "An Evaluation Benchmark for Adverse Drug Event Prediction from Clinical Trial Results." *Scientific Data* 12.1 (2025): 424.
- 2. Kuruppu Appuhamilage, Gayan Dihantha Kuruppu, et al. "A health digital twin framework for discrete event simulation based optimised critical care workflows." *npj Digital Medicine* 8.1 (2025): 376.
- 3. Haută, Alexandra, et al. "Health vulnerabilities of participants to a Christian religious mass gathering event, a retrospective analysis." *Discover Public Health* 22.1 (2025): 389.
- 4. Zhang, Jianliang, et al. "Construction of health status recognition and prediction model for power communication equipment based on TFIDF-COS." *Energy Informatics* 8.1 (2025): 78.
- 5. Renc, Pawel, et al. "Zero shot health trajectory prediction using transformer." *NPJ digital medicine* 7.1 (2024): 256.
- 6. Kiruthika, S., and G. Prakash. "Novel CNN-GRU Framework For Snoring Event Prediction-Vibrating Alert." *Journal of Electrical Engineering & Technology* (2025): 1-12.
- 7. Watson, Victoria, Catrin Tudur Smith, and Laura J. Bonnett. "Systematic review of methods used in prediction models with recurrent event data." *Diagnostic and Prognostic Research* 8.1 (2024): 13.
- 8. Hill, Elliot D., et al. "Prediction of mental health risk in adolescents." *Nature medicine* (2025): 1-7.
- 9. Parry, Emma, et al. "Improving event prediction using general practitioner clinical judgement in a digital risk stratification model: a pilot study." *BMC Medical Informatics and Decision Making* 24.1 (2024): 382.
- 10. Kumar, Shashi Shekhar, et al. "Fuzzy rule-based intelligent cardiovascular disease prediction using complex event processing." *The Journal of Supercomputing* 81.2 (2025): 402.
- 11. Zhang, Jinlei, et al. "Multi-frequency spatial-temporal graph neural network for short-term metro OD demand prediction during public health emergencies." *Transportation* (2025): 1-23.
- 12. Nariman, Goran Saman, and Hozan Khalid Hamarashid. "Hierarchical federated learning for health trend prediction and anomaly detection using pharmacy data: from zone to national scale." *International Journal of Data Science and Analytics* (2025): 1-20.
- 13. Ding, Sirui, et al. "Distilling the knowledge from large-language model for health event prediction." *Scientific Reports* 14.1 (2024): 30675.
- 14. Chen, Durong, et al. "Reflections on dynamic prediction of Alzheimer's disease: advancements in modeling longitudinal outcomes and time-to-event data." *BMC Medical Research Methodology* 25.1 (2025): 175.
- 15. Kim, Junmo, et al. "Pretrained patient trajectories for adverse drug event prediction using common data model-based electronic health records." *Communications Medicine* 5.1 (2025): 232.
- 16. Fries, Anya H., Eunji Choi, and Summer S. Han. "Penalized landmark supermodels (penLM) for dynamic prediction for time-to-event outcomes in high-dimensional data." *BMC Medical Research Methodology* 25.1 (2025): 22.
- 17. Gao, Shan, et al. "A comparison of modeling approaches for static and dynamic prediction of central-line bloodstream infections using electronic health records (part 1): regression models." *Diagnostic and Prognostic Research* 9.1 (2025): 20.
- 18. Johnvictor, Anita Christaline. "Comparative analysis of machine learning approaches for heatwave event prediction in India." *Scientific Reports* 15.1 (2025): 1-18.
- 19. Mitra, Avijit, et al. "Post-discharge suicide prediction among US veterans using natural language processing-enriched social and behavioral determinants of health." *npj Mental Health Research* 4.1 (2025): 8.

- 20. Zhou, Yaping, et al. "Systematic review and meta-analysis of cardiovascular event risk prediction models in maintenance hemodialysis patients." *Scientific Reports* 15.1 (2025): 21807.
- 21. Tekle, Getachew, and Rasool Roozegar. "An inverse lomax-uniform poisson distribution and joint modeling of repeatedly measured and time-to-event data in the health sectors." *Scientific Reports* 14.1 (2024): 22059.
- 22. Albu, Elena, et al. "A comparison of modeling approaches for static and dynamic prediction of central line-associated bloodstream infections using electronic health records (part 2): random forest models." *Diagnostic and Prognostic Research* 9.1 (2025): 21.
- 23. Alghamdi, Hanan. "Proactive healthcare: machine learning-driven insights into kidney failure prediction." *Journal of Umm Al-Qura University for Engineering and Architecture* (2025): 1-15.
- 24. Moglia, Victoria, et al. "Artificial intelligence methods applied to longitudinal data from electronic health records for prediction of cancer: a scoping review." *BMC Medical Research Methodology* 25.1 (2025): 24.
- 25. Dudášová, Julie, Zdeněk Valenta, and Jeffrey R. Sachs. "Improving precision of vaccine efficacy evaluation using immune correlate data in time-to-event models." *npj Vaccines* 9.1 (2024): 214.