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Abstract 

This study aims to enhance audio classification in diverse environments by leveraging a 

multimodal deep learning model. The primary objective is to address the limitations of 

existing models that often rely on a single type of audio feature, which may not fully capture 

the complexities of different audio environments. Our approach combines Mel-Frequency 

Cepstral Coefficients (MFCC) and spectrogram features, providing a more comprehensive 

representation of audio data. The process involves loading audio data, extracting MFCC and 

spectrogram features, and splitting the dataset into training and testing sets. Each feature type 

is processed through a dedicated Convolutional Neural Network (CNN) branch: one for 

MFCCs and another for spectrograms. The outputs from these branches are then concatenated 

and passed through fully connected dense layers to refine the learned features, capturing 

complex interactions between the two feature sets. The final classification results are 

produced using a SoftMax activation function, predicting the most likely audio environment. 

Our multimodal approach significantly improves classification accuracy, achieving a training 

accuracy of 99.96% and a test accuracy of 97.23%. This research not only addresses the gap 

in utilizing multiple audio features for classification but also has practical applications in 

various societal contexts, such as environmental monitoring, security systems, and smart city 

infrastructures, where accurate audio classification can lead to enhanced safety and 

efficiency. 

Keywords: Audio Classification, Multimodal Deep Learning, Convolutional Neural 

Networks, Mel-Frequency Cepstral Coefficients, Mel Spectrogram, and Environmental 

Sound Classification.   
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 1. Introduction 

In recent years, the field of audio classification has experienced significant advancements, 

primarily driven by the rapid development of deep learning technologies. Audio   

classification involves identifying and categorizing audio signals into predefined classes, 

such as speech, music, and environmental sounds. This capability has a wide range of 

applications, including speech recognition, music genre classification, environmental sound 

recognition, and audio-based monitoring systems. Accurate classification of audio signals is 

crucial across various domains, enhancing user experience in consumer electronics and 

ensuring safety in security systems. 

Traditional audio classification methods often rely on a single type of audio feature, such 

as Mel-Frequency Cepstral Coefficients (MFCCs), which capture the short-term power 

spectrum of sound. While these features have proven effective in many scenarios, they may 

not fully capture the complexities and variations present in different audio environments. For 

instance, environmental sounds can vary significantly based on factors such as background 

noise, recording conditions, and the presence of overlapping sounds. This variability 

necessitates a more robust approach to audio feature extraction and classification. 

The primary motivation behind this study is to address the limitations of existing audio 

classification models that rely solely on single-feature types. By incorporating multiple types 

of audio features, we aim to create a more comprehensive representation of audio data, which 

can lead to improved classification performance. The integration of multimodal features, 

specifically MFCCs and spectrograms, provides a richer and more diverse set of information 

that can better capture the nuances of different audio environments. 

The choice of MFCCs and spectrograms is driven by their complementary nature. MFCCs 

are widely used in speech and audio processing due to their ability to represent the power 

spectrum of sound in a compact form. Spectrograms, on the other hand, provide a visual 

representation of the frequency spectrum over time, capturing both temporal and spectral 

characteristics of the audio signal. By combining these features, we can leverage their 

strengths and mitigate their individual weaknesses. 

The main objectives of this study are as follows: 

• To develop a multimodal deep learning model for audio classification: This model 

will integrate MFCC and spectrogram features to provide a more comprehensive 

representation of audio data. 
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• To enhance classification accuracy in diverse audio environments: By utilizing a 

multimodal approach, we aim to improve the robustness and accuracy of audio classification, 

especially in challenging and variable conditions. 

• To demonstrate the practical applications of the proposed model: We will highlight 

how the enhanced classification performance can be applied in real-world scenarios, such as 

environmental monitoring, security systems, and smart city infrastructures. 

The proposed multimodal deep learning model follows a systematic approach to audio 

classification: 

• Data Acquisition: Audio data is collected from diverse environments, encompassing a 

wide range of sound sources and conditions. 

• Feature Extraction: Both MFCC and spectrogram features are extracted from the 

audio data. MFCCs capture the short-term power spectrum, while spectrograms provide a 

time-frequency representation of the audio signal. 

• Data Splitting: The dataset is divided into training and testing sets to evaluate the 

model's performance. 

• Model Architecture: The multimodal model consists of two dedicated Convolutional 

Neural Network (CNN) branches: one for processing MFCC features and another for 

spectrogram features. The outputs from these branches are concatenated and passed through 

fully connected dense layers to refine the learned features. 

• Classification: The final classification is performed using a SoftMax activation 

function, which predicts the most likely audio environment based on the combined features. 

• Performance Evaluation: The model's performance is evaluated based on accuracy 

metrics for both the training and testing sets. The results demonstrate the effectiveness of the 

multimodal approach in improving classification accuracy. 

Significance and Contributions 

This research makes several significant contributions to the field of audio classification: 

• Multimodal Feature Integration: By combining MFCC and spectrogram features, we 

provide a more comprehensive representation of audio data, leading to improved 

classification performance. 
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• Robustness in Diverse Environments: The proposed model is designed to handle the 

variability and complexity of different audio environments, making it more robust and 

reliable. 

• Practical Applications: The enhanced classification accuracy has practical 

implications for various societal contexts, such as environmental monitoring, security 

systems, and smart city infrastructures. Accurate audio classification can lead to improved 

safety, efficiency, and user experience in these applications. 

• Benchmark Performance: The model achieves a training accuracy of 99.96% and a 

test accuracy of 97.23%, setting a new benchmark for audio classification in diverse 

environments.  

2. Related Work 

Jabeen et al. [1] examine a range of modalities such as images, videos, text, audio, body 

gestures, facial expressions, and physiological signals. Their study offers an in-depth analysis 

of both baseline approaches and recent advancements in multimodal deep learning from 2017 

to 2021. They propose a comprehensive taxonomy of multimodal deep learning methods and 

discuss various applications in detail. Additionally, the paper highlights key challenges 

within each domain and suggests potential future research directions. 

Kakub et al. [2] explore trends and challenges in bimodal Speech Emotion Recognition 

(SER), focusing on natural environment deployment. They introduce the DBMER model, 

which integrates CNNs, RNNs, and multi-head attention mechanisms, and identify optimal 

acoustic feature combinations and the importance of attention mechanisms. The study 

underscores the vital role of attention mechanisms in bimodal dyadic SER systems. Despite 

the advantages of combining these deep learning techniques, challenges such as limited 

datasets, difficulties in data acquisition, and issues in cross-corpus and multilingual studies 

persist. Their experiments demonstrate that combining these techniques with multi-level 

fusion approaches results in more accurate and robust outcomes. 

Jeon et al. [3] introduce an AVSR model that mimics human dialogue recognition and 

remains robust in noisy environments. It transforms word embeddings and log-Mel 

spectrograms into feature vectors using a dense spatial-temporal CNN, enhancing auditory 

and visual recognition. Tested in nine noisy environments, the model achieves a 1.711% error 

rate with a three-feature multi-fusion method, compared to the general rate of 3.939%, 

showcasing its effectiveness and stability. 

Utebayeva et al. [4] explored a deep learning method using Gated Recurrent Unit (GRU) 

to classify drone sounds, particularly at varying distances. The study aimed to determine if 

the sound classification method could recognize drones flying at different distances. In the 
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experiments, drones were launched at five-meter intervals from ground level. The results 

showed that drone sounds could be accurately recognized from distances of 10 meters or 

more, with an average accuracy of 94-98 percent. This system could be integrated into 

complex recognition systems as a functional component of bimodal and multi-modal systems. 

Kushwaha et al. [5] propose a multimodal prototypical approach that uses local audio-text 

embeddings to enhance the relevance of answers to audio queries, improving sound detection 

adaptability in diverse environments. The method first uses text to query a community of 

audio embeddings, selecting group centroids as prototypes. Then, it compares unseen audio 

to these prototypes for classification. Multiple ablation studies were conducted to assess the 

impact of embedding models and prompts. This unsupervised approach outperforms the zero-

shot state-of-the-art by an average of 12% across three sound recognition benchmarks. 

Shaqra et al. [6] introduce a multimodal emotion detection system using an Arabic dataset. 

Their model combines audio and visual data, showing that gender identification improves 

emotion recognition. The multimodal system achieves 75% accuracy for emotion detection 

and 60.11% for emotion recognition, outperforming individual audio (70% for anger) and 

visual (56.2% for surprise) models, and is the first to focus on Arabic content. 

Ding et al. [7] summarize resources for Acoustic Scene Classification (ASC) research and 

analyze ASC tasks from DCASE challenges. They discuss current algorithm limitations and 

future challenges for practical ASC applications. 

Chelali et al. [8] enhance recognition system robustness against environmental noise 

through audiovisual data fusion. Their approach involves two steps: extracting low-level 

features—LPC and MFCC for acoustic data, and ZM and HOG for visual data—and then 

fusing these descriptors to improve each modality's efficiency, compared to score-based late 

integration. Using a multilayer perceptron (MLP) for classification, results show that the 

visual modality outperforms the acoustic one in noisy environments, and the fusion technique 

significantly boosts performance. 

Qu et al. [9] introduce a multi-branch 3D CNN model for precise classification, featuring 

frequency-domain signal representations, a 3D-SE-ResNet for capturing sound correlations, 

and an auxiliary supervised branch to reduce overfitting. Tested on the DCASE 2019 dataset, 

this model significantly outperforms existing methods. 

Tripathi et al. [10] present an attention-based model that highlights key frames in 

spectrograms and learns spatio-temporal relationships. Tested on ESC-10 and DCASE 2019 

Task-1(A) datasets, it achieves 11.50% and 19.50% accuracy improvements over baseline 

models, respectively, and effectively focuses on relevant spectrogram regions. 
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3. PROPOSED METHODOLOGY 

The dataset for this study is compiled from the NOIZEUS, AURORA databases, and a 

Kaggle audio dataset, featuring recordings from ten distinct environments [20]. These 

environments are meticulously categorized into directories as follows: Quiet Environment, Car 

Noise Environment, Cocktail Noise Environment, Restaurant Noise Environment, Street 

Noise Environment, Airport Noise Environment, Train Station Noise Environment, Group 

Setting Environment, Reverberant Spaces Environment, and Telephone Conversations 

Environment [11-16][21]. 

 

Fig.1. Flow Chart of Proposed Method. 

 

The flowchart provides a comprehensive overview of the process for training and 

evaluating a multimodal CNN model using MFCC and spectrogram features extracted from 

audio data. The process begins with loading the audio data, which is then separated into 

MFCC and spectrogram features. These features undergo extraction, after which the dataset is 
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split into training and testing sets. The MFCC features are processed through a specific 

convolutional neural network (CNN) branch designed to learn patterns from these coefficients, 

while the spectrogram features are processed through a separate CNN branch tailored to 

interpret the visual representation of audio frequencies over time [17-19]. 

Following feature extraction and processing through their respective CNN branches, the 

outputs from the MFCC and spectrogram branches are concatenated. This combined output is 

then passed through fully connected dense layers that refine the learned features, capturing 

complex interactions between the MFCC and spectrogram data. The final output layer 

produces classification results, typically using a softmax activation function to predict the 

most likely audio environment. This detailed yet streamlined workflow ensures the model can 

effectively utilize both types of audio features to achieve high classification accuracy. 

4. Results and Discussions 

The following section presents a detailed analysis of the results obtained from the study, 

highlighting the key findings and their implications. 

TABLE1: ACCURACY OF MULTIMODAL MODEL IN TRAINING AND TEST PHASES 

Multimodal Model Accuracy 

Training 99.96% 

Testing 97.23% 

 

The multimodal model demonstrated exceptional performance, achieving an accuracy of 

99.96% during training and maintaining a high accuracy of 97.23% on the test set, indicating 

strong generalization capabilities as shown in Table 1. 

TABLE2: PERFORMANCE METRICS FOR AUDIO CLASSIFICATION ACROSS DIFFERENT 
ENVIRONMENTS 

Environment Precision (%) Recall (%) F1-Score (%) 
Quiet Environment 100 100 100 

Car Noise Environment 89 100 94 

Cocktail Noise Environment 93 100 97 

Restaurant Noise Environment 80 100 89 
Street Noise Environment 100 90 95 

Airport Noise Environment 83 95 89 

Train Station Noise Environment 100 67 80 
Group Setting Environment 100 89 94 

Reverberant Spaces Environment 83 94 88 
Telephone Conversations Environment 94 89 91 
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The table 2 presents the performance metrics—Precision, Recall, and F1-Score—across 

various audio environments. Precision measures the accuracy of the model's positive 

predictions, Recall indicates the model's ability to identify all relevant instances, and F1-Score 

is the harmonic mean of Precision and Recall, providing a balanced measure of performance. 

 

 

Fig. 2.  Confusion Matrix for Multimodal Model 

The provided figure 2 is a confusion matrix illustrating the performance of the audio 

classification model on the test dataset. The vertical axis represents the actual classes of the 

test samples, while the horizontal axis represents the predicted classes. Diagonal elements 

indicate correct predictions, with the "Quiet Environment" class showing an impressive 400 

correct predictions and only 1 misclassification. Other classes like "Car Noise Environment," 

"Cocktail Noise Environment," and "Restaurant Noise Environment" also show strong 

performance with minimal misclassifications. Off-diagonal elements reveal misclassifications, 

such as "Street Noise Environment" being incorrectly classified as "Car Noise Environment" 

and "Cocktail Noise Environment." The color gradient, ranging from white to dark blue, 

visually represents the number of samples, with darker shades indicating higher numbers. 

Overall, the model performs well on most classes but shows areas for improvement, 

particularly in distinguishing between similar noise environments, highlighting the 

effectiveness and limitations of the model. 
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Fig. 3.  Training and Validation Accuracy vs Epochs 

 

The graph in Figure 3 illustrates the training and validation accuracy of the multimodal 

CNN model over 20 epochs. Initially, both training and validation accuracies improve rapidly, 

reflecting the model's learning process. Around the 10th epoch, the training accuracy reaches 

above 95%, while the validation accuracy closely follows, indicating the model's ability to 

generalize well to unseen data. Post the 10th epoch, training accuracy continues to rise 

steadily, ultimately nearing 100%, whereas validation accuracy shows minor fluctuations yet 

remains above 95%. These trends suggest that the model effectively learns from the training 

data and performs consistently on the validation set, demonstrating its robustness and 

reliability in classifying audio environments. 

Figure 4 displays the training and validation loss of the multimodal CNN model over 20 

epochs. At the start, the training loss decreases sharply, indicating that the model quickly 

learns the underlying patterns in the training data. This rapid drop is mirrored by the validation 

loss, though it follows a slightly more gradual decline. After the initial epochs, both losses 

stabilize, with the training loss steadily decreasing towards zero, showcasing the model's 

improved performance. Meanwhile, the validation loss, although fluctuating, maintains a 

downward trend and remains consistently low. These observations suggest that the model not 

only fits the training data well but also generalizes effectively to the validation data, 

demonstrating minimal overfitting and high predictive accuracy. 
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Fig. 4.  Training and Validation Loss vs Epochs 

 

 

 

Fig. 5.  Receiver Operating Characteristic (ROC) Curve for Each Class 
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This figure 5 displays the ROC curves for a classification model tested across various noise 

environments, each represented by a different color. The classes include Quiet, Car Noise, 

Cocktail Noise, Restaurant Noise, Street Noise, Airport Noise, Train Station Noise, Group 

Setting, Reverberant Spaces, and Telephone Conversations. With an area under the curve 

(AUC) of 1.00 for all classes, the model demonstrates perfect classification performance, 

achieving ideal discrimination between the positive and negative classes in each environment. 

 

 
Fig. 6.  Precision- Recall Curve for Each Class 

 

This figure 6 illustrates the Precision-Recall (PR) curves for a classification model tested 

on various noise environments, with each class represented by a distinct color. The classes 

include Quiet, Car Noise, Cocktail Noise, Restaurant Noise, Street Noise, Airport Noise, Train 

Station Noise, Group Setting, Reverberant Spaces, and Telephone Conversations. The PR 

curves show how the model's precision and recall trade-off across different thresholds. Despite 

some variation, the curves indicate high precision and recall for most classes, demonstrating 

the model's strong performance in distinguishing between relevant and irrelevant instances 

across diverse noise environments. 
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5. Conclusion and Future Scope  

The previous work utilizing an RNN model with a FIR filter achieved a training accuracy 

of 98.50% and a test accuracy of 94.97% [21]. Building on this, the current study improved 

performance through a multimodal CNN approach that integrates both MFCC and 

spectrogram features. This enhanced method achieved a 99.96% training accuracy and a 

97.23% test accuracy, reflecting a 1.46% and 2.26% improvement, respectively. These results 

highlight the effectiveness of combining multiple audio features, resulting in more accurate 

classification of listening conditions, with practical applications in environmental monitoring 

and smart city systems. 

Future work can improve the multimodal model's robustness by incorporating more data 

sources and exploring new feature extraction techniques or additional modalities like visual or 

textual data. Advanced methods like transfer learning and domain adaptation could enhance 

performance in challenging environments. Real-time implementation in applications such as 

noise monitoring, smart devices, and assistive technologies should be explored. Continuous 

refinement with user feedback will be crucial for maintaining and advancing the model's 

performance and relevance. 
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