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        Abstract— Our research endeavors to tackle the 

formidable challenges inherent in Underwater Wireless 

Power Transfer (UWPT), with a primary focus on 

optimizing charging efficiency and seamlessly adapting to 

the demanding underwater conditions. Leveraging solar 

power energy as the primary source, our system seamlessly 

switches to grid energy when solar energy levels are 

insufficient. The core objective revolves around designing a 

WPT system that achieves remarkable efficiency and unity 

power factor, critical for ensuring seamless power 

transmission in underwater environments. Through 

extensive prototyping and testing, our WPT system 

demonstrates the ability to transmit an output voltage of 

approximately 9V over an 6cm inside water gap, covering a 

maximum sliding distance of 8cm. This significant 

achievement underscores the system's capability to 

surmount the barriers of underwater power transfer, paving 

the way for sustainable operations in challenging aquatic 

environments. Moreover, our approach integrates diverse 

energy sources, including solar and grid energy, to enhance 

adaptability and energy generation capabilities, enabling 

consistent and optimized power generation vital for 

prolonged and reliable underwater applications. By 

amalgamating cutting-edge technologies and innovative 

design paradigms, our research endeavours to properly the 

advancement of underwater WPT. This integration of 

diverse energy sources not only ensures adaptability but 

also lays the groundwork for transformative solutions in 

underwater power transmission. Our work represents a 

significant step forward in addressing the challenges of 

underwater power transfer, offering promising prospects 

for sustainable and efficient energy transmission in aquatic 

environments. 

 

Key Words: Underwater Wireless Power Transfer 

(UWPT), Underwater Charging Systems, Underwater 

Energy Transfer Efficiency, Environmental Monitoring.  

 

I. INTRODUCTION 

  In an era where underwater exploration and utilization of 

aquatic resources are becoming increasingly vital, the 

efficient transmission of power beneath the waves presents a 

formidable challenge. Underwater wireless power transfer 

(UWPT) stands at the forefront of technological innovation, 

promising to revolutionize operations in aquatic 

environments. Our research is dedicated to surmounting the 

obstacles inherent in underwater power transmission, with a 

primary emphasis on optimizing efficiency and adaptability 

to the demanding underwater conditions. The core objective 

of our endeavour is to design and develop a robust WPT  

system capable of seamlessly adapting to the dynamic 

challenges of underwater environments. Central to our 

approach is the utilization of solar power energy as the 

primary source, harnessing the abundant energy from the sun 

to power underwater operations. However, recognizing the 

intermittent nature of solar energy availability, our system 

seamlessly integrates with grid energy sources, ensuring 

uninterrupted power supply even in adverse conditions. 

Efficiency and unity power factor are paramount in ensuring 

the seamless transmission of power underwater. Our research 

is dedicated to achieving remarkable efficiency levels, 

coupled with unity power factor, to optimize power 

transmission efficiency. Through extensive prototyping and 

rigorous testing, we aim to validate the efficacy of our system 

in transmitting power over significant distances underwater, 

overcoming the inherent challenges of underwater power 

transfer. One of the key achievements of our research is the 

demonstration of our WPT system's capability to transmit an 

output voltage of approximately 9V over an 6cm in water, 

with a maximum sliding distance of 8cm. This milestone not 

only underscores the technical prowess of our system but also 

positions it as a viable solution for powering underwater 

equipment and operations.  

 

Moreover, the integration of diverse energy sources, 

including solar and grid energy, enhances the adaptability 

and reliability of our system, ensuring sustained power 

generation in challenging aquatic environments. Our research 

represents a significant leap forward in the field of 

underwater WPT, laying the groundwork for transformative 

solutions in underwater power transmission. By 

amalgamating cutting-edge technologies and innovative 

design paradigms, we aim to propel the advancement of 

underwater power transmission, enabling sustainable and 

efficient energy transmission in aquatic environments. 

Through collaborative efforts and continuous refinement, our 

research endeavours to unlock new possibilities for 

underwater exploration and utilization, ushering in a new era 

of innovation beneath the waves. The exploration of 

Underwater Wireless Power Transfer (UWPT) represents a 

frontier in engineering, poised to revolutionize various 

underwater applications. However, this domain encounters 

significant obstacles, primarily concerning charging time and 

power transfer efficiency, particularly when reliant on solar 

energy sources.  

 

The underwater environment presents unique challenges, 

including increased attenuation and limited power 

transmission capabilities, making the optimization of WPT 

systems an intricate task. Addressing these challenges is 

crucial, prompting the development of innovative solutions. 

This study focuses on integrating the transformer induction 

concept and adaptive robotic technology to mitigate the 

limitations encountered in UWPT. By leveraging these 

concepts, the objective is to create a WPT system capable of 

not only enhancing charging efficiency but also adapting to 
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the dynamic underwater conditions, thereby improving 

overall performance. The proposed system's design 

emphasizes achieving high efficiency and unity power factor, 

crucial for effective power transfer. A primary goal is to 

establish a prototype that can successfully transmit an output 

voltage of approximately 9V over an 6cm water with a 

maximum sliding distance of 8cm. Additionally, the 

utilization of both solar and grid energy sources adds a 

versatile dimension to the system, allowing for optimized 

power generation, essential for sustained operations in 

challenging underwater environments. This introduction sets 

the stage for exploring the novel approach of integrating 

transformer induction and adaptive robotics in addressing the 

critical challenges faced in underwater WPT. The subsequent 

sections develop deeper into the technical aspects and 

experimental validations of this innovative system, aiming to 

demonstrate its feasibility and potential for revolutionizing 

power transfer in underwater settings. 

II. WPT METHODS OF UNDERWATER 

APPLICATIONS 

 

 
Fig 1. WPT Techniques 

 

1. Radiative WPT  

➢ Which is commonly referred as far-field WPT, contains 

WPT techniques based on lasers or Microwaves. 

➢ Radio Microwave face high attenuation at high 

frequencies in seawater. A few researchers made efforts 

for underwater wireless power transfer (UWPT) through 

radio waves but resulted in low efficiency. 

➢ Laser based WPT is not realistic because of its low 

efficiency and it is also harmful to interface caused by 

ambient light. 

 

2. Non-Radiative WPT 

➢ The nonradiative WPT systems involve inductive and 

capacitive power transmission techniques. 

➢ In this power transmission techniques, the power transfer 

through magnetic and electric fields is restricted to short 

distances up to tens of centimeters. 

➢ The capacitive wireless power transfer contains 

submerged electrodes however, CWPT has been 

neglected due to low coupling capacitance. 

➢ In IWPT, the coil diameter or number of turns should be 

increased to improve efficiency IWPT system can 

involve shield materials e.g. ferrite material for better 

performance. 

 

 

 

III. CIRCUIT DIAGRAM  

➢ Transmission Section 

 

 
Fig 2. Transmission Section 

 

➢ Receiving Section 

 

  
Fig 3. Receiving Section 

 

Solar panels primarily function to convert sunlight into 

electricity. This generated electricity can then be utilized to 

power the wireless power transfer system, either directly or 

by charging a battery for later use. Battery (12 V, 1.5 Ah): 

The primary function of the battery is to store electrical 

energy generated from various sources, such as solar panels 

or a charging station, in the form of chemical energy. This 

stored energy can then be used to power devices wirelessly 

when needed, providing a continuous power supply even 

when the primary power source is unavailable. Step down 

Transformer (230/12 V): A step-down transformer plays a 

crucial role in wireless power transfer systems by converting 

high voltage AC to a lower voltage, providing electrical 

isolation, potentially matching impedance, and stabilizing the 

output voltage to ensure safe, efficient, and reliable power 

transfer.  DC – AC Converter: A DC-AC converter, also 

known as an inverter, is a device that converts direct current 

(DC) electricity into alternating current (AC) electricity. Its 

primary function is to enable devices or systems that run on 

AC power to be powered by a DC power source.  Transmitter 

Coil: The transmitter coil is a critical component of wireless 

power transfer systems, responsible for generating the 

magnetic field necessary for transferring energy wirelessly to 

receiver coils, optimizing efficiency, facilitating proper 

alignment, and ensuring safety and compliance with 

regulations. 

IV. BLOCK DIAGRAM 

 

 
Fig 4. Block Diagram 
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Transmission Section  

A solar panel installed on the ship's surface captures sunlight 

and converts it into electrical energy. This energy can be used 

to power various systems on the ship or stored in a battery for 

later use. The solar panel can be connected to a battery 

system. The battery serves as an energy storage device, 

storing excess energy generated by the solar panel. It ensures 

a continuous power supply, especially when there's 

insufficient sunlight or during night-time. An inverter is 

necessary to convert the direct current (DC) electricity 

generated by the solar panel and stored in the battery into 

alternating current (AC) electricity. AC is commonly used for 

power transmission. The transmitter coil is a crucial part of 

the UWPT system. It's connected to the inverter and 

generates an alternating magnetic field. This field carries the 

electrical energy, which is then transmitted wirelessly 

through the water to a receiver coil. 

 

Receiver Section  

The receiver coil is positioned on the underwater vehicle and 

is designed to capture the wirelessly transmitted energy from 

the transmitter coil on the ship. It receives the alternating 

magnetic field and converts it back into electrical energy. The 

alternating current received by the receiver coil needs to be 

converted into direct current (DC) for use by the vehicle's 

systems. A rectifier circuit is used for this purpose, 

converting the AC signal into a pulsating DC signal. The 

pulsating DC signal from the rectifier needs to be regulated to 

ensure a stable voltage output. A voltage regulator circuit is 

employed to maintain a constant voltage level required for 

the vehicle's components. LEDs can serve as indicators to 

show the status of the received power, providing visual 

feedback on whether the system is receiving and converting 

power effectively. Voltage sensors can monitor the voltage 

level of the battery connected to the receiver system. These 

sensors provide information about the battery's charge level, 

ensuring it stays within safe operating limits. 

V. HARDWARE EXPERIMENT 

 

 
Fig 5. Hardware Model of Transmission Section 

 

The above Fig 5 shows the hardware model of transmission 

section 

➢ Solar Panel (12 V, 5W): Solar panels primarily function 

to convert sunlight into electricity. This generated 

electricity can then be utilized to power the wireless 

power transfer system, either directly or by charging a 

battery for later use.  

➢  Battery (12 V, 1.5 Ah): The primary function of the 

battery is to store electrical energy generated from 

various sources, such as solar panels or a charging 

station, in the form of chemical energy. This stored 

energy can then be used to power devices wirelessly 

when needed, providing a continuous power supply even 

when the primary power source is unavailable.  

➢ Step down Transformer (230/12 V): A step-down 

transformer plays a crucial role in wireless power 

transfer systems by converting high voltage AC to a 

lower voltage, providing electrical isolation, potentially 

matching impedance, and stabilizing the output voltage 

to ensure safe, efficient, and reliable power transfer.  

➢  DC – AC Converter: A DC-AC converter, also known as 

an inverter, is a device that converts direct current (DC) 

electricity into alternating current (AC) electricity. Its 

primary function is to enable devices or systems that run 

on AC power to be powered by a DC power source. 

➢  Transmitter Coil: The transmitter coil is a critical 

component of wireless power transfer systems, 

responsible for generating the magnetic field necessary 

for transferring energy wirelessly to receiver coils, 

optimizing efficiency, facilitating proper alignment, and 

ensuring safety and compliance with regulations. 

 

 
Fig 6. Hardware Model of Receiving Section 

 

The above Fig 6. Shows the hardware model of receiving 

section 

➢ Receiver Coil: The receiver coil is a critical component in 

wireless power transfer systems, responsible for 

converting the magnetic energy received from the 

transmitter coil into electrical energy, optimizing power 

transfer efficiency, ensuring proper alignment, and 

facilitating safe and effective wireless charging or power 

transfer. 

➢ Voltage Sensor: A voltage sensor is an electronic device 

that detects and measures the voltage level in an 

electrical circuit or system. Its primary function is to 

provide information about the voltage present in the 

circuit or system for various purposes. 

➢  AC -DC Converter: AC-DC converters play a crucial 

role in converting AC power from the mains supply into 

the DC power required by a wide range of electronic 

devices and systems, providing voltage conversion, 

filtering, regulation, efficiency optimization, and 

protection features 

➢ Arduino UNO: The Arduino Uno can monitor key 

parameters of the WPT system, such as voltage, current, 

and temperature, using sensors or feedback mechanisms. 

This information can be used to adjust system 
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parameters in real-time, detect faults or abnormalities, 

and provide feedback to the user.  

➢ LCD Display: An LCD display can indicate the charging 

status of devices wirelessly charged within the system. It 

can show information such as the battery level, charging 

progress, or estimated time remaining until full charge. 

This feedback allows users to monitor the charging 

process conveniently.  

➢ L293D Driver Board: The L293D driver board provides 

an easy-to-use and cost-effective solution for controlling 

DC motors and stepper motors in various robotics, 

automation, and DIY projects, offering features such as 

bidirectional motor control, current amplification, 

built-in protection, and compatibility with 

microcontrollers. 

 

VI. EXPERIMENTAL SETUP 

 

 
Fig 7. Experimental Setup of UWPT for Normal Water 

 

The above Fig 7 shows the experimentl setup of UWPT 

where transmitter and receiver coil is placed in side the tank 

filled with normal water of 1.5 ltrs. We determined that the 

voltage were able to transfer from transmitter to receiver side 

efficiently. 

Fig 8. Experimental Setup of UWPT for Sea Water 

The above Fig 8 shows the experimentl setup of UWPT 

where transmitter and receiver coil is placed in side the tank 

filled with Sea water of 1.5 ltrs. We determined that the 

voltage were able to transfer from transmitter to receiver side 

efficiently. 

 

Fig 9. Experimental Setup of UWPT for Normal Water 

 

The above Fig 9 shows the experimentl setup of UWPT 

where transmitter and receiver coil is placed in side the tank 

filled with dust water of 1.5 ltrs. We determined that the 

voltage were able to transfer from transmitter to receiver side 

efficiently. 

VII. ACHIEVED RESULTS 

 

Table 1:-  Voltage parameter of UWPT for Different Medium                

(Normal Water) 

Transmitted Voltage = 12 V 

Sl No Distance 

in  

cm 

Received Voltage in volts for Different 

Mediums 

Air Wood Plastic Cardboard 

1 2 11.4 6.50 8.62 7.82 

2 4 10.1 4.96 7.3 6.8 

3 6 8.5 3.9 6.5 5.3 

4 8 6 3.49 5.21 4.5 

5 10 4.6 1.91 4.9 3.9 

6 12 3.8 1.88 3.03 1.9 

 

 

 

 
Fig 10 Graphical Representation for UWPT for Different 

Mediums (Normal Warter) 
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The experiment comparing multiple materials, including 

cardboard, wood, plastic, and air, was effectively carried out. 

The result was reported in Table 1 above under normal water 

circumstances. We recorded the receiving voltage by 

adjusting the distance from 2 to 12 cm while maintaining the 

transmission voltage of 12 V. From the above, the Received 

voltage (v/s) Distance is shown in Fig. 10. In comparison to 

other media, distance from the graph indicates that air 

facilitates voltage transfer more effectively. Using wood and 

cardboard as a medium, the voltage cannot be transferred 

effectively because wood functions as a dielectric substance, 

which means that it can store electric energy. This 

characteristic is not appropriate for voltage transmission.  

 

 

Table 2:-  Voltage parameter of UWPT for Different Medium                

(Sea Water) 

Transmitted Voltage = 12 V 

Sl 

No 

Distance 

in  

cm 

Received Voltage in volts for Different 

Mediums 

Air Wood Plastic Cardboard 

1 2 9.5 7.2 9.75 7.8 

2 4 8.6 6.43 8.53 6.8 

3 6 7.2 5.01 7.65 5.52 

4 8 5.20 3.9 5.65 4.7 

5 10 4.3 2.87 4.9 3.8 

6 12 3.9 1.65 3.02 1.9 

 

 

 

 
Fig 11: Graphical Representation for UWPT for Different 

Mediums (Sea Water) 

 

The experiment comparing multiple materials, including 

cardboard, wood, plastic, and air, was effectively carried out. 

The result was reported in Table 2 above under sea water 

circumstances. We recorded the receiving voltage by 

adjusting the distance from 2 to 12 cm while maintaining the 

transmission voltage of 12 V. From the above, the Received 

voltage (v/s) Distance is shown in Fig. 11. In comparison to 

other media, distance from the graph indicates that air 

facilitates voltage transfer more effectively.  

 

 

 

 

Table 3:-  Voltage parameter of UWPT for Different Medium  

(Dust Water)  

 

               

 

 

Figure 12: Graphical Representation for UWPT for Different 

Mediums (Dust Water) 

 

The experiment comparing multiple materials, including 

cardboard, wood, plastic, and air, was effectively carried out. 

The result was reported in Table 3 above under sea water 

circumstances. We recorded the receiving voltage by 

adjusting the distance from 2 to 12 cm while maintaining the 

transmission voltage of 12 V. From the above, the Received 

voltage (v/s) Distance is shown in Fig. 12. In comparison to 

other media, distance from the graph indicates that air 

facilitates voltage transfer more effectively.  

 

VIII. CONCLUSION 

In conclusion, underwater wireless power transfer 

technology holds significant promise for enabling numerous 

applications in the exploration, monitoring, and utilization of 

the ocean's resources. Despite the challenges posed by the 

harsh underwater environment, advancements in this field 

have showcased the feasibility and potential for efficient and 

sustainable power delivery beneath the waves. As research 

and development efforts continue to improve the efficiency, 

range, and reliability of underwater wireless power transfer 

systems, we can expect to see expanded capabilities and 

innovation that will drive advancements in marine science, 

Transmitted Voltage = 12 V 

Sl 

No 

Distance 

in  

cm 

Received Voltage in volts for Different 

Mediums 

Air Wood Plastic Cardboard 

1 2 10.95 6.8 8.7 7.6 

2 4 8.1 4.7 7.2 6.6 

3 6 6.38 3.8 6.3 5.1 

4 8 4.2 3.1 4.34 4.1 

5 10 3.18 1.9 3.5 3.7 

6 12 2.19 1.2 2.02 1.6 
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industry, and environmental monitoring. Ultimately, 

underwater wireless power transfer has the capacity to 

revolutionize how we power and communicate with 

underwater devices, paving the way for a more connected and 

sustainable ocean ecosystem. 

➢ The UWPT experiment was successfully completed, using 

different material and typical normal water conditions to 

wirelessly transfer power from the transmitter coil to the 

receiver coil. In comparison to other media, we can 

conclude that air transfers voltage effectively. The 

voltage of the receiver was 11.4 V at a distance of 2 cm. 

➢ The UWPT experiment was successfully completed, using 

different material and typical sea water conditions to 

wirelessly transfer power from the transmitter coil to the 

receiver coil. In comparison to other media, we can 

conclude that air transfers voltage effectively. The 

voltage of the receiver was 9.5 V at a distance of 2 cm. 

➢ The UWPT experiment was successfully completed, using 

different material and typical dust water conditions to 

wirelessly transfer power from the transmitter coil to the 

receiver coil. In comparison to other media, we can 

conclude that air transfers voltage effectively. The 

voltage of the receiver was 10.95 V at a distance of 2 cm. 
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