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Abstract 

Productivity and profitability in brinjal crops depend on accurate disease identification and quality evaluation. 

The YOLOv8 deep learning algorithm and drone imaging are used in this study's automated method for real-time 

disease diagnosis. YOLOv8 obtained 89.6% mAP and 93.4% illness diagnostic accuracy from high-resolution 

images of brinjal fields taken by drones fitted with RGB and multispectral sensors. Comparing the automation to 

manual approaches, the field assessment time was decreased by 70%. Furthermore, a quality assessment tool 

evaluated brinjal fruit according to its size, shape, and color, which helped determine the best time to harvest it.  

 

Keywords: Brinjal Disease Diagnosis, YOLOv8 Algorithm, Drone-Based Imaging, Precision Agriculture, Real-

Time Object Detection, Crop Quality Assessment. 

 

1. Introduction 

The agricultural industry is essential to the global economy, with crops like brinjal being key staples in regions 

such as South Asia and the Mediterranean. Managing diseases like bacterial wilt and Phomopsis blight poses 

significant challenges, leading to reduced yields and financial losses. Traditional manual methods for diagnosing 
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crop diseases are labor-intensive, prone to errors, and inefficient for large-scale farming operations. Recent 

advancements in remote sensing and machine learning have enabled automated solutions, such as convolutional 

neural networks (CNNs). However, these methods often require substantial computational resources and struggle 

with detecting multiple diseases in one image. Drone-based imaging offers a practical alternative by capturing 

high-resolution multispectral and RGB data over large areas. YOLO algorithms, particularly the advanced 

YOLOv8, provide fast and accurate real-time object detection, making them ideal for agricultural use. Integrating 

drone imaging with YOLOv8 delivers an efficient, scalable, and accurate solution for disease detection and crop 

quality evaluation. This approach overcomes the limitations of manual methods and earlier machine learning 

models, advancing precision agriculture. 

2. Literature Review 

Recent advancements in machine learning, deep learning, and drone imaging have enhanced methods for crop 

disease detection and quality assessment. While traditional approaches like SVM, random forests, and decision 

trees have shown some success, they struggle with scalability and large datasets. Deep learning models, 

particularly CNNs, offer higher accuracy for diseases like bacterial wilt and potato blight but require significant 

computational power, limiting real-time application. Drone-based imaging has been effective for large-scale 

monitoring, enabling the detection of issues such as water stress and crop diseases, though many studies neglect 

quality assessment. Integrating machine learning with drone imaging, Gomez et al. (2022) achieved early disease 

detection but faced challenges in processing real-time data. YOLO models, especially YOLOv8, have proven 

efficient for real-time disease detection, achieving 89.6% mAP in apple crops, yet lack integration for quality 

evaluation. Studies attempting to merge disease detection with quality assessment, like those by Singh et al. (2023) 

and Ahmed et al. (2021), still face issues with accuracy and real-time implementation. These limitations highlight 

the need for scalable, efficient solutions in precision agriculture. 

3. Methodology 

The proposed research combines drone-based imaging technology with the YOLOv8 deep learning system to 

detect and analyze brinjal illness in real time. This part describes the detailed approach, which includes the system 

design, data collecting, preprocessing procedures, model training, and assessment measures. This technology is 

unique in that it can diagnose crop illnesses while also assessing fruit quality in a scalable and automated manner 

(see Fig. 1). 
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Fig.1. Workflow of the automated brinjal disease diagnosis and quality assessment system using drone-

based imaging and YOLOv8 model integration 

3.1. Data Collection Process 

The study utilized a DJI Matrice 300 RTK drone equipped with a 61 MP Sony Alpha 7R IV RGB camera and a 

Micasense RedEdge-MX multispectral camera to capture high-resolution images of brinjal crops. The RGB 

camera provided detailed visual data, while the multispectral camera captured five critical bands (blue, green, red, 

red edge, and near-infrared) for assessing crop health. Vegetation indices, such as the Normalized Difference 

Vegetation Index (NDVI), were calculated using this multispectral data. This approach enabled precise analysis 

of crop health at different growth stages. 

𝑁𝐷𝑉𝐼 =
(ேூோିோா஽)

(ேூோାோா஽)
                          (1) 

The drone was flown at a height of 20-30 meters, covering up to 20 acres per flight, with images captured at 80% 

front and 60% side overlap for comprehensive 3D crop modeling. Over multiple 25-30 minute flights, 10,000 

RGB and multispectral images were collected under various conditions, enhancing dataset robustness. LabelImg 

software was used to annotate disease types like bacterial wilt and Phomopsis blight, as well as quality parameters 

such as fruit size, shape, and color. The dataset was split into 80% training and 20% validation sets for model 
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development and evaluation. This structured approach provided diverse, labeled data for accurate disease 

detection and quality assessment. 

3.2 Data Preprocessing for YOLOv8 Model 

Before being processed by the YOLOv8 deep learning model, images underwent necessary preprocessing 

procedures to improve quality and extract significant features, ensuring the most accurate disease identification 

and fruit quality rating. A Gaussian filter was used to eliminate the presence of unwanted noise in the raw photos. 

The Gaussian filter is mathematically expressed as Eq. (2): 

𝐺(𝑥, 𝑦) =
ଵ

ଶగఙమ 𝑒
ି

ೣమశ೤మ

మ഑మ                                         (2) 

In two dimensions, the Gaussian distribution is represented as G(x, y), with the standard deviation (σ) controlling 

the level of smoothing. This method effectively suppressed noise while preserving essential edges needed for 

extracting disease-related features. To enhance image contrast, histogram equalization was applied, redistributing 

pixel intensity values to improve visibility, especially under low-light conditions. The transformation function TT 

for histogram equalization is provided in Eq (3). 

𝑇(𝑟௞) =
(௅ିଵ)

ெே
∑  ௞

௝ୀ଴ 𝑛௝                                         (3) 

Where 𝑟௞ is the pixel intensity, L is the total number of intensity levels, M and N are the dimensions of the image, 

𝑛௝  is the number of pixels with intensity  𝑟௝. To meet the YOLOv8 input criteria, all images were scaled to 416×416 

pixels.  

3.3 YOLOv8 Model Architecture for Disease Detection and Quality Assessment (Proposed Methodology) 

The YOLOv8 model architecture is precisely built to allow for rapid and accurate real-time object recognition, 

making it ideal for agricultural applications such as disease diagnosis and crop quality evaluation. This 

architecture is made up of three main components: the backbone, the neck, and the head, each of which contributes 

uniquely to the feature extraction, fusion, and final object detection processes.  
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3.3.1 Backbone (CSPDarknet53) 

The YOLOv8 design is based on CSPDarknet53, an improved and efficient form of the Darknet architecture that 

effectively extracts hierarchical feature representations.This section goes into the backbone's detailed structure 

and activities, demonstrating how each layer and block contributes to the model's overall functionality. 

CSPDarknet53 uses convolutional layers, residual blocks, and a Cross Stage Partial (CSP) network to optimize 

gradient flow and reduce computational complexity. These components work together to achieve the high-level 

feature extraction required for object detection. 

3.3.2. Neck (Path Aggregation Network - PANet) 

The Path Aggregation Network (PANet) in YOLOv8 acts as a vital link between the backbone and detection head, 

facilitating multi-scale feature fusion for detecting objects of varying sizes, crucial for brinjal disease 

identification. It combines top-down and bottom-up pathways to improve semantic richness and localization 

accuracy. The top-down pathway up-samples high-level features from deeper layers and integrates them with 

lower-level features to preserve critical details. This approach ensures enhanced detection precision and 

adaptability across diverse scales. PANet’s design strengthens the model’s ability to handle complex agricultural 

data effectively. 

This operation is mathematically expressed by Eq. (13): 

𝐹୳୮
௟ = 𝑈(𝐹௟ାଵ) ⊕ 𝐹௟                                 (4) 

where 𝐹୳୮
௟  is the feature map at level l after the up-sampling operation U(⋅), and ⊕ denotes element-wise addition 

or concatenation of the feature maps. Up-sampling guarantees that semantic information is conveyed across the 

feature hierarchy. In contrast, the bottom-up pathway combines high-resolution features from shallower to deeper 

layers, improving the network's ability to locate small disease patches on brinjal crops. This operation is stated as 

Equation (5): 

𝐹 ୭୵୬
௟ = 𝐷(𝐹௟) ⊕ 𝐹௟ିଵ                                            (5) 
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D(⋅) denotes the downsampling process, which is commonly a strided convolution to minimize the feature map 

size. PANet combines these channels to record both global context and fine-grained data, allowing for robust 

multi-scale detection.  

3.3.3 Detection Head 

The detection head is the final component in YOLOv8 that generates detection outputs such as bounding box 

coordinates and class probabilities for detected regions .This head uses the enhanced multi-scale feature maps 

provided by PANet to generate predictions that are both precise and computationally economical. YOLOv8's 

bounding box regression predicts coordinates (x, y, w, and h) using predefined anchor boxes and learnt offsets. 

The bounding box prediction equations are Eq. (6): 

𝑥 = 𝑥଴ + Δ𝑥, 𝑦 = 𝑦଴ + Δ𝑦, 𝑤 = 𝑤଴ ⋅ 𝑒ఋ௪, ℎ = ℎ଴ ⋅ 𝑒ఋ௛                                (6) 

Here, (𝑥଴, 𝑦଴) are the anchor box center coordinates, Δx and Δy are the learned offsets that adjust the box position, 

𝑤଴ and ℎ଴ are the anchor box dimensions, and δw and δh are learned scaling factors.  

3.4. Model Training of YOLOv8 

The model training phase for the YOLOv8 architecture, which is designed to detect and analyze the quality of 

brinjal crops, is critical to ensuring robust and accurate performance. The algorithm was trained using a 

meticulously annotated collection of images of brinjal plants with various disease kinds and quality markers. The 

optimization was carried out using the Stochastic Gradient Descent (SGD) algorithm with momentum, which is 

well-known for its ability to reduce the composite loss function and accelerate convergence. 

Optimization and Loss Function 

The Stochastic Gradient Descent (SGD) algorithm iteratively adjusts the model weights to minimize the loss 

function. The update rule for weight W at each iteration t is given by Eq. (19). 

𝑊௧ାଵ = 𝑊௧ − 𝜂(∇ℒ(𝑊௧) + 𝛾𝑚௧)                                    (7) 

Where 𝑊௧  represents the weights at iteration t, η is the learning rate, ∇L is the gradient of the loss function L with 

respect to  𝑊௧ , γ is the momentum coefficient (typically between 0.9 and 0.99), 𝑚௧  is the moving average of the 

gradients up to iteration t, updated as Eq. (20): 
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𝑚௧ = 𝛾𝑚௧ିଵ + ∇ℒ(𝑊௧)                                          (8) 

4. Experiments and Analysis 

This section presents the findings of trials using the YOLOv8 model for real-time disease detection and quality 

assessment in brinjal crops. The findings are presented in the form of tables and figures to provide a clear picture 

of the model's performance across multiple metrics, training configurations, and real-time processing capabilities. 

Each outcome is thoroughly described, emphasizing crucial insights and surprising patterns pertinent to the study's 

objectives. 

4.1 Software and Hardware Requirements 

The YOLOv8 model for real-time brinjal disease detection utilized a DJI Matrice 300 RTK drone with 

multispectral and RGB sensors to capture high-resolution images, processed on NVIDIA Tesla V100 GPUs for 

rapid analysis. A 1TB SSD managed the large dataset, while Ubuntu 20.04 provided a stable software 

environment. Python 3.8 and PyTorch 1.12 were used for model development, and Dash with Plotly enabled real-

time result visualization through an interactive dashboard. This setup offered an efficient and reliable solution for 

precision agriculture. 

4.2. Quality Assessment Module Analysis 

The quality assessment tool effectively evaluated the size and shape of brinjal fruits, a crucial factor for 

determining their market readiness. Bounding boxes detected by the system were used to estimate fruit size and 

calculate aspect ratios, distinguishing between elongated and round shapes. Aspect ratios ranged from 1.18 to 

1.50, enabling precise classification. For instance, Fruit No. 1 was estimated to measure 15x20 cm with an aspect 

ratio of 1.33, indicating an elongated shape. Similarly, Fruit No. 3, measuring 8x10 cm with an aspect ratio of 

1.25, was classified as round. These predictions showed high confidence values between 0.71 and 0.96. 
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Fig.3. Detection results showcasing various brinjal diseases identified with confidence scores using the 

YOLOv8 model 

The results indicate that the aspect ratio effectively categorizes fruits into elongated and spherical groups, which 

is essential for market classification based on consumer preferences. Confidence scores ranging from 0.71 to 0.96 

highlight the model's precision in assessing fruit quality. This accuracy ensures the system's reliability for practical 

agricultural applications, enabling farmers to efficiently sort and grade their produce. 

4.3 Disease Detection and Field Visualization 

 For instance, the model showed high confidence in detecting Bacterial Wilt, with values reaching 94%. Detection 

confidence averaged 90.5% for Phomopsis Blight and 87.3% for Anthracnose. This approach demonstrated the 

system's reliability in identifying and localizing crop diseases effectively. 
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Fig.4. RGB histogram for analyzed fruits, indicating variations in color that correspond to different 

stages of ripeness 

5. Conclusion 

This present research introduced an automated system for diagnosing brinjal diseases and assessing quality using 

drone imagery and the YOLOv8 deep learning algorithm. The system achieved a mean average precision (mAP) 

of 89.6% and a disease diagnosis accuracy of 93.4%, significantly outperforming traditional methods. It reduced 

large-scale field assessment time by 70% and provided timely insights to farmers. The quality evaluation module 

assessed fruit size, shape, and color, identifying market-ready produce with 75% accuracy. Future enhancements 

should include support for additional diseases, IoT-based real-time monitoring, and improved dataset diversity for 

greater adaptability. 
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