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Abstract 

In this research paper, unsteady free convective MHD Casson blood flow are studied with stenosis artery. Thermo-diffusion, 

chemical reaction and heat source/absorption effects are considered. The mathematical modelling of said problems is remodeled 

into the system of PDE’s in cylindrical form with different physical boundary situations. For more impact of physical point of 

view, the Caputo-Fabrizio fractional ordered derivative is applied on governing momentum, energy, and concentration equations. 

The Laplace and Finite Hankel transformation is used to finding the analytical expression. From graphical results, it is seen that 

the thickness of blood is raised with increasing the values of magnetic fields. It is seen that, the Casson fluid parameter tends to 

improve both blood and magnetic particle velocity. It is also deduced that the heat source tends to raise the heat transfer process 

whereas thermo-diffusion tends to reduce the mass transfer process. 

 
Keywords: Stenosed artery; Magnetic field; Thermal diffusion; Casson fluid; Magnetic Particles; fractional derivative.  

Nomenclature:  

Symbol Physical variables 

A0 Pressure gradient (Systolic) 

A1 Pressure gradient (Diastolic) 

B⃗⃗  Magnetic Field 

γ Casson fluid parameter 

ω Pulsatile frequency 

R= 
KNλ

ρ
 Non – dimensional particle concentration parameter 

Ha Non – dimensional Hartman number 

∅ Phase angle 

F Inclination angle parameter 

D Differential operator  

λ Relaxation time 

R0 Regular artery radius  

L0 Stenosis Length 

d̅ Stenosis Location 

P Oscillating pressure gradient 
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Re =
Rz

2

λv
 Reynolds number 

 F =  
R0

λu0g
 Inclination angle parameter 

Pe Peclet Number 

Qm Metabolic Heat Source 

θm Metabolic Heat absorption 

G Particle mass parameter 

ρ Fluid density 

r Radial coordinator 

S Laplace transform parameter 

α Fractional parameter 

σ Electrical conductivity 

u(r, t) velocity of blood 

v(r, t) Velocity of the magnetic Particle 

N Magnetic particles number 

m The average mass of magnetic particles 

K Stokes constant 

υ Kinematic viscosity 

β =  
μB√2πc

μ

τr
 Casson fluid's material parameter 

μB Plastic dynamic viscosity 

τr Yield stress 

2πc A critical value of this model 

KN

ρ
(v − u) Force of relative motion between magnetic particles and blood. 

Sc Schmidt number 

Sr Soret parameter 

 Kc Chemical reaction parameter 

Dm Mass diffusivity (blood) 

KT Ratio of thermal diffusion ratio 

K2 Coefficient of Chemical reaction parameter 
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1. Introduction 

Blood flow via arteries is a significant physiological issue that biomedical researchers, physiologists, and therapists 

are all very interested in Controlling the flow of biological fluids for several surgical procedures. The human 

circulatory system may be impacted by electromagnetic fields present during such operations. Kollin [1] introduced 

the concept of electromagnetic fields in the context of medical study, while Korchevskii and Marochnik [2] 

investigated the external magnet to blood which is travels in human body. ECG patterns collected in a magnetic 

particle which can deliver the information on blood flow and a non-offensive way for measuring heart performance. 

Vardanyan [3] looked at the feasibility of using MHD concepts to the reduction and logical treatment of arterial 

hypertension. BFD problems in stenosis artery has been discussed by many researchers [4-5] Numerous potential 

applications in hemodynamic have been found thanks to these investigations. Ali et al. [6] discussed the magnetic 

fields effects on blood flow problems. The purpose of this research is to examine how a magnetic field impacts two-

phase blood flow. Pennes [7] published a fundamental study in the late 1940s that established the groundwork for 

mathematical modelling of heat transfer in biofluid engineering, providing the way for further research into heat 

transfer in tissues. Furthermore, convection fluxes in hemodynamic and radiative heat transfer in thermal radiation 

therapy biotechnologies have been studied. Barnothy [8] considered heat transfer effects on blood flow. It is also 

examining the above research papers; the external magnetic fields tend reduce the heat transfer process. Recently, 

many researchers find the numerical solutions of magnetic field effects on fluid flow problems with heat transfer and 

mass transfer in different physical parameter [9-10].  The blood in porous medium is very important phenomena 

which is applied in many engineering and medical branches. Ganesan and Palani [11] discussed free convective flow 

of viscous fluid whereas, Takhar et al. [12] considered stagnation area in rotating and translating spherical with 

Lorentz force.   

The two-phase flow model was studied by Abbas et al. [13] with imposing both temperature and velocity slips on 

the system. The researchers found that when the thermal slip parameter values increased, so did the blood flow 

temperature profile. They found that thermal slip enhances blood flow heat flux. Khaled and Vafai [14] discussed 

porous media's importance in flow and heat transport investigations in biological tissues. There is rare research on 

the topics of blood flow in stenosis artery where fractional-order derivatives are examined. Fractional Calculus more 

impactful research topic which is used in science and engineering domain. In mathematics, Studying the 

differentiation and integration with non-integer order mechanisms is expanding fields of fractional calculus. 

Recently, mathematicians and engineers found a fractional calculus is important concepts in various disciplines, 

such as electrochemistry, rheology, diffusion etc. The fractional type of derivative has been many effectively applied 

in many fields like fluid mechanics, biology, medical, etc. The Caputo fractional derivatives are considered in fluid 

flow problems where Laplace transforms is used to finding the solution of governing equations [15]. The thermos-

diffusion effects have been used for isotope separation and in mixture light and medium molecular weight. Mondal 

et al. [16] and Biswas et al. [17] find the numerical solution of hydrodynamic flow. Recently, Kataria and Patel [18] 

considered soret effects on MHD flow in porous medium. Maiti et al. [19] examined blood flow using fractional 

types of derivative with thermal radiation.  

 

2. Novelty of the Research work 

In this paper, the fractional time derivative model of Casson blood fluid flow in a stenosed artery is considered. The 

governing system of equations can be expressed in the fractional time derivative form and derived exact expression 

of blood velocity, magnetic field velocity, and temperature fields. The exact solutions were computed using LT and 

HT. Based on these solutions, we were able to calculate numerical results for the axial blood flow velocity, magnetic 

particle velocity and temperature profiles and presented through graphs. Mathematical Analysis of Bio magnetic 

fluid flow and Heat Transfer in Stenosed arteries is useful for improving human health. Magnetic field is used to 

reduce the blood viscosity which can be helpful for controlling the rate of blood flow. Due to this concept, we 

improve the health condition of patient which is suffer with cardiovascular disease.  It is important to blood flow 

through stenosed artery for understanding of circulatory disorders and hoping that this study is also useful for 

Journal of Engineering and Technology Management 72 (2024)

PAGE NO: 1088



development and treatment of blood circulation disorders in humans. Hence, the proposed research works is 

applicable for solving many cardiovascular diseases which is disturb the regular rate of blood flow circulations.  

3. Mathematical Formulation & Solution 

The focus of the current research is on unsteady fluid flow in an angled stenosed artery, which is outlined in Figure 

1 and z − axis is axial direction, while r − axis  indicates radial direction. The model was developed using the 

incompressible Casson blood fluid that is accelerated through fluctuating pressure. 

 
 

Fig. 1: Physical Sketch of the inclined stenosed artery 

 

Fig. 1 displays a graphic of the magnetic field B0 that is delivered to the body to increase blood flow, with the 

generated magnetic field considered to be minimal. At time zero, both the blood and the magnetic particles were at 

rest. Blood flow and heat transfer are modelled using the Navier-Stokes and energy equations, while the magnetic 

field is described by Maxwell's relations and particle motion is governed by Newton's second law. 

Unsteady motion in a cylinder with axis symmetry and radius R0, due to a pressure gradient 

−
∂P

∂z
= A0 + A1Cos (ωt),A0 > 0             (1) 

Geometrically, the stenosis is symmetric but non-symmetric in the radial direction, can be described as 

Rz = {
{ R0 − R0ξ { L0

q−1 (z̅ − d̅) − (z̅ − d̅)
q
}} , d̅ < z̅ <  d̅ + L0

R0                                                                 otherwise
     (2) 

Were,  ξ =
δqq−1

R0L0
q
(q−1)

,  
δ

R0
< 1 and z̅ =

d+L0

q
1

q−1

 , 

Rz and R0 represent the stenosed and un-stenosed radius of the artery, L0 represents the stenosis's length, and d̅ 

represents its position. q ≥ 2 indicate the shape of stenosis. 

The governing equations in cylindrical form are as  

∂u

∂t
= −

1

ρ
 
∂p

∂z
+ v ( 1 + 

1

β
 )  (

∂2u

∂r2 + 
1

r

∂u

∂r
) −

KN

ρ
(v − u) −

σβ0
2sinθ

ρ
u +

gβ

ρ
 ( T − T∞) + +  

gβ

ρ
 ( C − C∞)  (3) 

The magnetic particles are governed by Newton’s second law which can be written as, 

m
∂v

∂t
= K (u − v)                   (4) 

The energy equation in the cylindrical coordinate can be written as  

∂T

∂t
=

K1

ρCp
(
∂2T

∂r2
+ 

1

r

∂T

∂r
) +

Qm+θm

ρCp
                 (5) 

Concentration equation can be written as  

∂C

∂t
= Dm (

∂2C

∂r2
+ 

1

r

∂C

∂r
) +

DmKT

T∞
(
∂2T

∂r2
+ 

1

r

∂T

∂r
) − K2(C − C∞)              (6) 

The time-fractional model, equation (3) to equation (6) will be multiplied by λ = √
R0ρ

A0
.  
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λαDt
αu =  −

λ

ρ
 (A0 + A1 cos(ωt)) + λv ( 1 + 

1

β
 )  (

∂2u

∂r2
+ 

1

r

∂u

∂r
) +

KNλ

ρ
(v − u) −

σβ0
2sinθλ

ρ
u + gλsinϕ +

λgβT( T − T∞) + λgβC( C − C∞)         (7) 

λαDt
αv =

Kλ

m
 (u − v)           (8) 

λαDt
αT =

Kλ

ρCp
(
∂2T

∂r2
+ 

1

r

∂T

∂r
) +

Qm+θm

ρCp
        (9) 

λαDt
αC = Dmλ (

∂2C

∂r2
+ 

1

r

∂C

∂r
) +

λ Dm KT

T∞
(
∂2T

∂r2
+ 

1

r

∂T

∂r
) − K2(C − C∞)   -  (10) 

Where, Caputo-Fabrizio operator is  

Dt
αu(r, t)CF =

1

1−α
 ∫ exp (−

α(t−τ)

1−α
)

t

0
 
∂u(r,τ)

∂τ
 dτ        (11) 

The LT of Caputo-Fabrizio time fractional can be express as  

L{ Dt
αu(r, t)CF } =

sL{u(r,t)−u(r,0)}

(1−α) s+α
         (12) 

With α (0 < α < 1). 

The initial and boundary condition of the blood and magnetic particle, the stenosed artery of Radius Rz are  

u(r, 0) = 0 , v(r, 0) = 0, C(r, 0) = 0 & T(r, 0) = 0 at r ϵ [ 0 , Rz]  

u(r, t) = 0 , v(r, t) = 0, C(r, t) = 0 & T(r, t) = 0 at r =   Rz                    (13) 

The following dimensionless parameters can be introduced,  

r∗ =  
r

R0
 , t∗ = 

t

λ
 ,  u∗ =  

u

u0
 , A0

∗ =  
λA0

ρu0
  ,  A1

∗ = 
λA1

ρu0
  ,   g∗ = 

g

u0
2

R0

  

θ =  
T− Tω

Tω−T∞
 ,  Pr =  

μCp

k
,  Re =  

R0u0

v
 ,  Pe = Re. Pr , B0

∗ = 
λB0

ρu0
   

Sc = 
v

Dm
 , Sr =  

 Dm KT (Tω− T∞)

v T∞ (Cω− C∞)
 ,  C =  

C− Cω

Cω−C∞
 , Qm =  

R0Qm̅̅ ̅̅ ̅

u0ρcp( Tω−T∞)
 , θm = 

R0θm̅̅ ̅̅ ̅

u0ρcp( Tω−T∞)
  

             (14) 

Introducing the dimensionless parameter, the equations (7) to (10) and (13) can be written as,   

Dt
αu =  A0 + A1 cos(ωt) + β1 [

∂2u

∂r2
+ 

1

r

∂u

∂r
] + R(v − u) − M2u + Grθ + Gm C +

sinϕ

F
      (15) 

GDt
αv = u − v            (16)  

PeDt
αθ = (

∂2θ

∂r2
+ 

1

r

∂θ

∂r
) +  Pe(Qm + θm )         (17)  

ReSc C = (
∂2C

∂r2
+ 

1

r

∂C

∂r
) + Sr Sc (

∂2θ

∂r2 + 
1

r

∂θ

∂r
) − Sc Kc Re

2C      (18)  
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With,  

u (
r

Rz
, 0) = 0 , v (

r

Rz
, 0) = 0 , θ (

r

Rz
, 0) = 0 &  C (

r

Rz
, 0) = 0  at 

r

Rz
 ϵ [ 0 , 1]  

u (
r

Rz
, t) = 0 , v (

r

Rz
, t) = 0 , θ (

r

Rz
, t) = 0 &  C (

r

Rz
, t)  at 

r

Rz
 =   1      (19) 

3.1 Solution of the Problem 

Now, the LT is a well-suited technique. After the transformation process, we obtain the equations (17) can be 

written as, 

Pe
S θ̅(r,s)

S+ α(1−s)
= [

∂2θ̅(r,s)

∂r2
+ 

1

r

∂θ̅(r,s)

∂r
] + Pe

Qm+θm

S
             (20) 

With boundary condition θ̅(1, s) = 0 

Applying Finite Hankel transformation of order zero in equations (20) with boundary condition (19), the following 

equation can be obtained.  

Pe
S θH

̅̅ ̅̅ (rn,s)

S+ α(1−s)
= −rnθH

̅̅̅̅ (rn, s) + Pe
Qm+θm

S
.
J1(rn)

rn
        (21) 

θH
̅̅̅̅ (rn, s) =  

Pe (Qm+θm)

S [rn+Pe
S 

S+ α(1−s)
]
.
J1(rn)

rn
         (22) 

Now, rearrange the equation (22)  

θH
̅̅̅̅ (rn, s) = [

1

S+B15
B13 +

1

S−B15
B14]

J1(rn)

rn
        (23) 

Similarly, we process for Concentration equation (18), we get  

ReSc 
S C̅(r,s)

S+ α(1−s)
= (

∂2C̅(r,s)

∂r2
+ 

1

r

∂C̅(r,s)

∂r
) + Sr Sc (

∂2θ̅(r,s)

∂r2
+ 

1

r

∂θ̅(r,s)

∂r
) − Sc Kc Re

2 C̅(r, s)      (24) 

With boundary condition C̅(1, s) = 0.  

Applying Finite Hankel transformation of order zero in equations (24) with boundary condition (19), the following 

equation can be obtained.  

ReSc 
S CH̅̅ ̅̅ (r,s)

S+ α(1−s)
= −rnCH

̅̅̅̅ (rn, s) + Sr Sc (−rn)θH
̅̅̅̅ (rn, s) − Sc Kc Re

2 CH
̅̅̅̅ (rn, s)              (25) 

ReSc 
S CH̅̅ ̅̅ (r,s)

S+ α(1−s)
= −rnCH

̅̅̅̅ (rn, s) + Sr Sc (−rn)
Pe (Qm+θm)

S [rn+Pe
S 

S+ α(1−s)
]
.
J1(rn)

rn
− Sc Kc Re

2 CH
̅̅̅̅ (rn, s)    (26) 

[
ReSc .S 

S+ α(1−s)
+ rn + Sc Kc Re

2] CH
̅̅̅̅ (r, s) =  − rnSr Sc [

Pe (Qm+θm)

S [rn+Pe
S 

S+ α(1−s)
]
] .

J1(rn)

rn
    (27) 

CH
̅̅̅̅ (r, s) =  −

Sr Sc rnPe (Qm+θm)

(S [rn+Pe
S 

S+ α(1−s)
])[

ReSc .S 

S+ α(1−s)
+rn+Sc Kc Re

2]
.
J1(rn)

rn
       (28) 

Now, rearrange the equation (28)  
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CH
̅̅̅̅ (r, s) =  

B16

(S [B17+Pe
S 

S+ α(1−s)
]) [

B19.S 

S+ α(1−s)
+rn+B18]

.
J1(rn)

rn
        (29) 

CH
̅̅̅̅ (r, s) =  

B16 (S +α(1−S))2

S (B17S+ B17α− B17αS+PeS)(B19S+ B18α+ B18S−B18αS) 
.
J1(rn)

rn
      (30) 

CH
̅̅̅̅ (r, s) =  

B16 (S +α(1−S))2

S ((B17− B17α+Pe)S+ B17α)((B19+ B18−B18α)S+ B18α) 
.
J1(rn)

rn
      (31) 

CH
̅̅̅̅ (r, s) =  

B16 (S +α(1−S))2

S (B20S+ B22)(B21S+ B23) 
.
J1(rn)

rn
                (32) 

CH
̅̅̅̅ (r, s) =  

B16

B20.B21

( α2+2α(1−α)S+(1−α)2S2)

 S (S+ 
B22
B20

)(S+ 
B23
B21

) 
.
J1(rn)

rn
            (33) 

CH
̅̅̅̅ (r, s) =  

B16

B20.B21

( α2+2α(1−α)S+(1−α)2S2)

 S (S+ 
B22
B20

) (S+ 
B23
B21

) 
.
J1(rn)

rn
            (34) 

CH
̅̅̅̅ (r, s) =  

B24 ( α2+B25S+B26S2)

 S (S+ B27) (S+ B28) 
.
J1(rn)

rn
                 (35) 

CH
̅̅̅̅ (r, s) = ( 

B29

S
+

B30

S+ B27
+

B29

S+ B28
) .

J1(rn)

rn
                (36) 

Now applying the Laplace transform of equations (15) and (16) can be express as,  

S u̅(r,s)

S+ α(1−s)
 = 

A0

S
+ 

A1S

s2+ω2 + β1  (
∂2u̅(r,s)

∂r2
+ 

1

r

∂u̅(r,s)

∂r
) + Rv̅ − ( R + Ha2)u̅(r, s) + Grθ̅ + Gm C̅ + 

sin∅

SF
    

            (37) 

G 
S v̅(r,s)

S+ α(1−s)
 = u̅(r, s) − v̅(r, s)         (38) 

v̅(r, s) =  
S+ α(1−α)

GS+S+ α(1−s)
 u̅(r, s)         (39) 

With boundary condition u̅(1, s) = 0, v̅(1, s) = 0. 

Input the equation (23), (36) and (39) in (37), the following equation can be obtained,  

[
s

S+α(1−S)
− R (

S+ α(1−α)

GS+S+ α(1−s)
) + R + Ha2 ] u̅(r, s) = 

A0

S
+ 

A1S

s2+ω2 + β1  (
∂2u̅

∂r2 + 
1

r

∂u̅

∂r
) + Grθ̅ + Gm C̅ + 

sinϕ

SF
    

            (40) 

Applying Finite Hankel transformation of order zero in equations (40) with boundary condition (19), the following 

equation can be obtained.  

[
s

S+α(1−S)
− R (

S+ α(1−α)

GS+S+ α(1−s)
) + R + Ha2 ] uH̅̅̅̅ (rn, s)= [

A0

S
+ 

A1S

s2+ω2 +
sinϕ

SF
  ]

J1(rn)

rn
− rnβ1uH̅̅̅̅ (rn, s) + Gr [

1

S+B15
B13 +

1

S−B15
B14]

J1(rn)

rn
+ Gm ( 

B29

S
+

B30

S+ B27
+

B29

S+ B28
) .

J1(rn)

rn
      (41) 

uH̅̅̅̅ (rn, s) =  
S2B5+SB6+ α2

S2B2+SB3+B4
 [

1

S
 (A0 +

sinϕ

F
+ 

A1S

s2+ω2)]
J1(rn)

rn
+ Gr [

1

S+B15
B13 +

1

S−B15
B14]

J1(rn)

rn
+ Gm ( 

B29

S
+

B30

S+ B27
+

B29

S+ B28
) .

J1(rn)

rn
           (42) 
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∴ uH̅̅̅̅ (rn, s) =  [
B9

S−B7
+

B10

S−B8
] [

1

S
 (A0 +

sinϕ

F
+ 

A1S

s2+ω2)]
J1(rn)

rn
+ Gr [

1

S+B15
B13 +

1

S−B15
B14]

J1(rn)

rn
+ Gm ( 

B29

S
+

B30

S+ B27
+

B29

S+ B28
) .

J1(rn)

rn
         (43) 

∴ uH̅̅̅̅ (rn, s) = (A0 +
sinϕ

F
) [

S−1

S−B7
B9 +

S−1

S−B8
B10]

J1(rn)

rn
+ 

A1S

s2+ω2 [
1

S−B7
B9 +

1

S−B8
B10]

J1(rn)

rn
+ Gr [

1

S+B15
B13 +

1

S−B15
B14]

J1(rn)

rn
+ Gm ( 

B29

S
+

B30

S+ B27
+

B29

S+ B28
) .

J1(rn)

rn
         (44) 

Where, uH̅̅̅̅ (rn, s) =  ∫ r.
1

0
u̅(r, s)J0(rn, r) dr  represents the finite Hankel transformation of the velocity and 

temperature function.  

u̅(r, s) = LT[u̅(r, t)] , θ̅(r, s) = LT[θ̅(r, t)] and C̅(r, s) = LT[C̅(r, t)]     (45) 

And rn, n = 1,2,3,… .. are the positive roots of an equation J0(x) = 0. 

The inverse Laplace transform of the image function can be written as, 

LT−1 [
1

Sω+y
] =  Fω(−y, t) =  ∑

(−y)nt(n+1)w−1

Γ((n+1)w)

∞
n=0  ;  ω > 0      (46) 

LT−1 [
Sz

Sw+y
] =  Rw,z(−y, t) =  ∑

(−y)nt(n+1)w−1−z

Γ((n+1)w−z)

∞
n=0  ;  Re(w − z) > 0     (47) 

Now, Applying the Inverse Laplace transform of equations (23), (36) and (44) are   

∴ θH
̅̅̅̅ (rn, t) =

J1(rn)

rn
[B13e

−B15t +
B14

B15
(1 − e−B15t)]  =

J1(rn)

rn
[B13F1(−B15, t) + B14Ri−1(−B15, t)]   

            (48) 

∴ CH
̅̅̅̅ (rn, t) =  

J1(rn)

rn
[B29 + B30e

−B27t + B31e
−B31t]       (49) 

∴ uH̅̅̅̅ (rn, t) =
J1(rn)

rn
[(eB7t − 1) (

A0

B7
B9 +

B9sinϕ

B7F
) + (eB8t − 1) (

A0

B8
B10 +

B10sinϕ

B8F
) + A1B9e

B7t ∗ cos(ωt) +

A1B10e
B8t ∗ cos(ωt)] + Gr

J1(rn)

rn
[B13F1(−B15, t) + B14Ri−1(−B15, t)] + Gm

J1(rn)

rn
[B29 + B30e

−B27t + B31e
−B31t]  

            (50) 

The exact expression of blood velocity, Temperature and Concentration profiles are obtained by taking the Inverse 

Hankel transformation of equations (48) - (50), we get 

θ(r, t) = 2 ∑
J0(

r

rz
rn)

rnJ1
2(rn)

∞
n=1 × θH(rn, t)        (51) 

θ(r, t) = 2 ∑
J0(

r

rz
rn)

rnJ1
2(rn)

∞
n=1 × [B13e

−B15t +
B14

B15
(1 − e−B15t)]      (52) 

C(r, t) = 2 ∑
J0(

r

rz
rn)

rnJ1
2(rn)

∞
n=1 × CH(rn, t)         (53) 

C(r, t) = 2 ∑
J0(

r

rz
rn)

rnJ1
2(rn)

∞
n=1 × [B29 + B30e

−B27t + B31e
−B31t]      (54) 
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u(r, t) = 2 ∑
J0(

r

rz
rn)

rnJ1
2(rn)

∞
n=1 × uH(rn, t) + Gr 2 ∑

J0(
r

rz
rn)

rnJ1
2(rn)

∞
n=1 × θH(rn, t) + Gm2 ∑

J0(
r

rz
rn)

rnJ1
2(rn)

∞
n=1 × CH(rn, t)   

            (55) 

u(r, t) = 2 ∑
J0(

r

rz
rn)

rnJ1
2(rn)

∞
n=1 [(eB7t − 1) (

A0

B7
B9 +

B9sinϕ

B7F
) + (eB8t − 1)(

A0

B8
B10 +

B10sinϕ

B8F
) +   A1B9e

B7t ∗ cos(ωt) +

A1B10e
B8t ∗ cos(ωt)] + Gr 2 ∑

J0(
r

rz
rn)

rnJ1
2(rn)

∞
n=1 × [B13e

−B15t +
B14

B15
(1 − e−B15t)] + Gm2 ∑

J0(
r

rz
rn)

rnJ1
2(rn)

∞
n=1 × [B29 +

B30e
−B27t + B31e

−B31t]         (56) 

The magnetic particle velocity can be obtained from equation (39)  

v(r, t) =  B33(1 − B32)[u(r, t) ∗ eB12t], 0 < α < 1        (57) 

 

4. Numerical Results and Analysis 

By analysing the effects of different parameter on blood and magnetic particle velocities, energy and concentration 

profiles, the numerical result is obtained and represent through the Fig. 2 to 20.  Figure 2 to 3 show the effects of A0 

and A1 on blood velocity where another parameter is fixed. It is seen that the motion of the blood improves with 

increasing values of the parameters. Physically, when we increase the pressure gradient, fluid is accelerated due to 

this reason the velocity of the blood flow is increased. The Casson fluid parameter effects on both velocities which 

is describe in Fig. 4 to 5. It is seen that both velocities increase with increasing in the parameter. Casson's behaviour 

is more important in small arteries because of the possibility of red blood cell collection and cell distribution there 

owing to rotation of the artery's axis.  

 

 

Fig. 2: A0 on Blood Velocity 
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Fig. 3: A1 on Blood Velocity 

 

 

 

Fig. 4: 𝛾 on Blood Velocity 
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Fig. 5: 𝛾 on Magnetic Particle Velocity 

 

Fig. 6: 𝑅 on Blood Velocity 
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Fig. 7: 𝑀 on Blood Velocity 

 

Fig. 8: 𝑀 on Magnetic Particle Velocity. 
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Fig. 9: 𝑃𝑒 on Temperature. 
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Fig. 10: 𝑄𝑚 on Temperature 

 

 

Fig. 11: θ𝑚 on Temperature. 
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Fig. 12: 𝐺 on Magnetic Particle Velocity. 

 

Fig. 13: 𝑅𝑒 on Concentration 
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Fig. 14: 𝑆𝑟 on Concentration 

 

 

Fig. 15: 𝛼 & 𝑃𝑒 on Temperature 
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Fig. 16: 𝛼 & 𝑄𝑚 on Temperature 

 

Fig. 17: 𝛼 & 𝜃𝑚 on Temperature 
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Fig. 18: 𝛼 & 𝑆𝑟 on Concentration 

 

Fig. 19: 𝛼 & 𝐾𝑐 on Concentration. 
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Fig. 6 show the particle concentration R tends to reduce the motion of the flow. Physically, when we increase the 

value of R the thickness of the fluid is increase. The effects of external magnet on blood and magnetic particle 

velocity which is describe in Fig. 7 to 8. From the Figure and physical point of view, magnetic fields tend to reduce 

the motion of the blood flow. Figure 9 show the Prandtl number effects on temperature profiles. Physically, thermal 

diffusivity gives the measurement of how the temperature will be changed when it is cold or heated. Form the 

figures, it is concluded that the increases the thermal diffusivity, the heat transfer process is raised as well as motion 

of both flow is also improved. If thermal diffusivity is more, then heat diffusion is less. Fig. 10 to 11 show the 

effects of heat generation and absorption parameter on blood velocity, magnetic particle velocity and temperature 

profiles. Because of heat generation, heat transfer process is increase and motion of blood and magnetic particle 

become raised. These results agree with real situation because when we increase the value of heat generation, the 

fluid become thinner and so fluid is more accelerated. The size of the particles is what determines the value of the 

parameter for the particle mass known as G. According to Fig. 12, the magnetic particle velocity tends to decrease as 

the mass parameter is increased. As shown in Fig. 13, concentration profiles vary with the Reynolds number. The 

Reynolds number is inversely proportional to the fluid's concentration profiles. The fluid's velocity gradually 

increases as Reynold's number rises whereas, the concentration decreases. Physically, lower viscosity (increased 

velocity) will increase. Fig. 14 show the effects of thermos-diffusion on concentration profiles. It is seen that the 

mass transfer process delayed with both parameters. This result is strongly agreement with published works. Fig. 15 

to 19 indicate the effects of fractional derivative parameter 𝛼 on temperature and concentration parameter. From all 

figures, it is concluded that the heat transfer process delayed whereas, improve the mass transfer process with 

increasing the value of 𝛼 = 0.2, 𝛼 = 0.4, 𝑎𝑛𝑑 𝛼 = 0.8 It is indicated that the fractional derivative is important 

phenomena to understanding the nature of fractional derivative.  

 

4. Conclusion  

 

The following are the key findings of the current study. 

• It is notable that the axial velocity of blood flow can be reduced by applying magnetic field of the correct 

strength. This method can be used to treat hypotension by bringing the patient's blood pressure up to a 

healthy level. Magnetic fields at different angles effectively reduce strokes, swellings, and pains. The 

effects of magnetic fields on blood flow which leads to change the viscosity, which is helpful for 

controlling the motion of fluid. 

• The systolic pressure gradient and diastolic pressure gradient tends to improve the blood velocity. Due to 

these effects, the flow of blood may be in normal form in stenosis artery.  

• Heat generation tends to improve the heat transfer process as well as blood flow. 

• The concentration level of the fluid rises with the falls due to the thermos-diffusion. This result will be 

important to investigate during cancer hyperthermia treatment. 

• Fractional order parameter α tends to delay the heat transfer process whereas, improve the mass transfer 

process.  

Appendix: 

𝐵1 =  𝑅 + 𝐻𝑎2 + 𝐵1𝑟𝑛
2  

𝐵2 = 1 + 𝐺 − 𝛼 − 𝑅 − 𝑅𝛼2 + 2𝑅𝛼 + 𝐵1 + 𝐵1𝛼
2 − 2𝛼𝐵1 + 𝐺𝐵1 − 𝐺𝛼𝐵1  

𝐵3 =  𝛼 + 2𝑅𝛼2 − 2𝑅𝛼 − 2𝐵1𝛼
2 + 2𝛼𝐵1 + 𝐺𝛼𝐵1  

𝐵4 = 𝐵1𝛼
2 −  𝑅𝛼2, 𝐵5 = 1 + 𝛼2 − 2𝛼 + 𝐺 + 𝐺𝛼 , 𝐵6 = −2𝛼2 + 2𝛼 + 𝐺𝛼  

𝐵7 =  
−𝐵3±√𝐵3

2−4𝐵2𝐵4

2𝐵2
, 𝐵8 =

−𝐵3±√𝐵3
2−4𝐵2𝐵4

2𝐵2
, 𝐵9 =

𝐵7
2𝐵5+𝐵7𝐵6+𝛼2

𝐵7−𝐵8
,     

𝐵10 =
𝐵8

2𝐵5+𝐵8𝐵6+𝛼2

𝐵8−𝐵7
, 𝐵11 = (𝑟𝑛)(1 − 𝛼) + 𝑃𝑒 , 𝐵12 =  (𝑟𝑛). 𝛼  
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𝐵13 =  𝑃𝑒

(𝑄𝑚 + 𝜃𝑚)(1 − 𝛼)

𝐵11
, 𝐵14 = 𝑃𝑒

(𝑄𝑚 + 𝜃𝑚). 𝛼

𝐵11
, 𝐵15 = 

𝐵12

𝐵11
,  

𝐵16 = −𝑆𝑟 𝑆𝑐 𝑟𝑛𝑃𝑒 (𝑄𝑚 + 𝜃𝑚), 𝐵17 = 𝑟𝑛 , 𝐵18 = 𝑟𝑛 + 𝑆𝑐 𝐾𝑐  𝑅𝑒
2,  

𝐵19 = 𝑅eSc , B20 = B17 − B17α + Pe, B21 = B19 + B18 − B18α, B22 = B17α 

B23 = B18α, B24 =
B16

B20. B21
, B25 = 2α(1 − α), B26 = (1 − α)2, B27 =

B22

B20
 

B28 =
B23

B21
, B29 =

B24(α2)

B27B28
, B30 =

B24(α2+B25(−B27)+B26(B27)2)

(−B27)(B28−B27)
,   

B31 =
B24(α2+B25(−B28)+B26(B28)2)

(−B28)(B27−B28)
 , B32 =  

1−α

G−α+1
 ,     B33 =  

α

G−α+1
 

f ∗ g − convolution of f & g , f ∗ g =  ∫ f(z)g(t − z)dz
t

0
   

   

References:  

 

[1] Kollin, A. "Electromagnetic flowmeter: Principle of method and its application to blood flow     

measurement." Proc. Soc. Exp. Biol. Med 35 (1936): 53. 

[2] Korchevskii, E. M., and L. S. Marochnik. "Magnetohydrodynamic version of movement of 

blood." Biophysics 10, no. 2 (1965): 411-414. 

[3] Vardanyan, V. A. "Effect of magnetic field on blood flow." Biofizika 18 (1973): 491-496. 

[4] Abdullah, Ilyani, Norsarahaida Amin, and Tasawar Hayat. "Magnetohydrodynamic effects on blood flow 

through an irregular stenosis." International Journal for Numerical Methods in Fluids 67, no. 11 (2011): 

1624-1636. https://doi.org/10.1002/fld.2436 

[5] Bose, Sayan, and Moloy Banerjee. "Magnetic particle capture for biomagnetic fluid flow in stenosed aortic 

bifurcation considering particle–fluid coupling." Journal of Magnetism and Magnetic Materials 385 (2015): 

32-46. https://doi.org/10.1016/j.jmmm.2015.02.060 

[6] Ali, Farhad, Nadeem Ahmad Sheikh, Ilyas Khan, and Muhammad Saqib. "Magnetic field effect on blood 

flow of Casson fluid in axisymmetric cylindrical tube: A fractional model." Journal of Magnetism and 

Magnetic Materials 423 (2017): 327-336. https://doi.org/10.1016/j.jmmm.2016.09.125 

[7] Pennes, Harry H. "Analysis of tissue and arterial blood temperatures in the resting human forearm." Journal 

of applied physiology 1, no. 2 (1948): 93-122. 

[8] Barnothy, Madeleine F., and I. Sümegi. "Effects of the magnetic field on internal organs and the endocrine 

system of mice." In Biological effects of magnetic fields, pp. 103-126. Springer, Boston, MA, 1969. 

https://doi.org/10.1007/978-1-4684-8352-9_7 

[9] El-Sayed, M. F., N. T. M. Eldabe, A. Y. Ghaly, and H. M. Sayed. "Effects of chemical reaction, heat, and 

mass transfer on non-Newtonian fluid flow through porous medium in a vertical peristaltic tube." Transport 

in porous media 89, no. 2 (2011): 185-212. https://doi.org/10.1007/s11242-011-9764-3 

[10] Hayat, T., M. Ijaz Khan, M. Waqas, A. Alsaedi, and Muhammad Imran Khan. "Radiative flow of micropolar 

nanofluid accounting thermophoresis and Brownian moment." International Journal of Hydrogen Energy 42, 

no. 26 (2017): 16821-16833. https://doi.org/10.1016/j.ijhydene.2017.05.006 

[11] Ganesan, P., and G. Palani. "Finite difference analysis of unsteady natural convection MHD flow past an 

inclined plate with variable surface heat and mass flux." International journal of heat and mass transfer 47, 

no. 19-20 (2004): 4449-4457. https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.034 

[12] Takhar, Harmindar S., Ali J. Chamkha, and Girishwar Nath. "Unsteady laminar MHD flow and heat transfer 

in the stagnation region of an impulsively spinning and translating sphere in the presence of buoyancy 

forces." Heat and Mass Transfer 37, no. 4 (2001): 397-402. https://doi.org/10.1007/s002310100227 

Journal of Engineering and Technology Management 72 (2024)

PAGE NO: 1105

https://doi.org/10.1002/fld.2436
https://doi.org/10.1016/j.jmmm.2015.02.060
https://doi.org/10.1016/j.jmmm.2016.09.125
https://doi.org/10.1016/j.ijhydene.2017.05.006
https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.034
https://doi.org/10.1007/s002310100227


[13] Abbas, Zaheer, Jafar Hasnain, and Muhammad Sajid. "MHD two-phase fluid flow and heat transfer with 

partial slip in an inclined channel." Thermal Science 20, no. 5 (2016): 1435-1446. 

https://doi.org/10.2298/TSCI130327049A 

[14] Khaled, A-RA, and Kambiz Vafai. "The role of porous media in modeling flow and heat transfer in 

biological tissues." International Journal of Heat and Mass Transfer 46, no. 26 (2003): 4989-5003. 

https://doi.org/10.1016/S0017-9310(03)00301-6 

[15] Shah, Nehad Ali, Dumitru Vieru, and Constantin Fetecau. "Effects of the fractional order and magnetic field 

on the blood flow in cylindrical domains." Journal of Magnetism and Magnetic Materials 409 (2016): 10-19.  

https://doi.org/10.1016/j.jmmm.2016.02.013 

[16] Mondal, M., Biswas, R., Hasan, M., Kazi Shanchia, M., Ahmmed, S. F., International journal of heat and 

technology, 37 (1) (2019) 59-70. DOI: https://doi.org/10.18280/ijht.370107 

[17] Biswas, R., Mondal, M.,  Hossain, S.,  Kazi Farhin Urmi, U. K. Suma, M. Katun, Advanced Science, 

Engineering and Medicine, 11 (2019) 687-696. https://doi.org/10.1063/1.5115852 

[18] Kataria, H. R.,  Patel, H. R.,  Heat and mass transfer in MHD Casson fluid flow past over an oscillating 

vertical plate embedded in porous medium with ramped wall temperature, Propulsion and Power 

Research, 7 (3) (2018) 257-267. https://doi.org/10.1016/j.jppr.2018.07.003 

[19] Maiti, S., S. Shaw, and G. C. Shit. "Caputo–Fabrizio fractional order model on MHD blood flow with heat 

and mass transfer through a porous vessel in the presence of thermal radiation." Physica A: Statistical 

Mechanics and its Applications 540 (2020): 123149. https://doi.org/10.1016/j.physa.2019.123149 

Journal of Engineering and Technology Management 72 (2024)

PAGE NO: 1106

https://doi.org/10.2298/TSCI130327049A
https://doi.org/10.1016/S0017-9310(03)00301-6
https://doi.org/10.1016/j.jmmm.2016.02.013
https://doi.org/10.18280/ijht.370107
https://doi.org/10.1063/1.5115852
https://www.sciencedirect.com/science/journal/2212540X
https://www.sciencedirect.com/science/journal/2212540X
https://doi.org/10.1016/j.jppr.2018.07.003
https://doi.org/10.1016/j.physa.2019.123149

