GENERALIZED DIFFERENTIAL OPERATOR DEFINED BY q- BOREL DISTRIBUTION

Katterapalle Sridevi

Department of Mathematics, Dr.B.R.Ambedkar Open University, Hyderabad - 500 033, T.S, India.

N.Sri Lakshmi Sudha Rani

 Department of Mathematics, Dr.B.R.Ambedkar Open University, Hyderabad - 500 033, T.S, India.

Abstract: The q-calculus is a generalization of traditional calculus that introduces a parameter q typically where $0 \le q \le 1$ and it generalizes concepts like differentiation and integration using a parameter-dependent approach. It plays a significant role in various areas such as combinatorics, special functions, quantum groups, and more. The target of this paper is to define the operator of q- derivative based upon the Borel distribution and by using this operator, we obtain the coefficient bounds, inclusion relations, extreme points and some more properties of defined class.

Keywords: analytic , starlike, convex, Borel distributation, extreme points.

Subject classification: 30 C45, 30C50.

1. Inroduction.

Let A denote the class of functions of the form

$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
$$
 (1.1)

which are analytic in the open unit disk $U = \{z : |z| < 1\}$ and normalized by $f(0) = 0, f'(0) = 1$. Let S be the subclass of A consisting of univalent functions $f(z)$ of the form (1.1). Further denote by T the subclass of A consisting of functions of the form

$$
f(z) = z - \sum_{n=2}^{\infty} a_n z^n, (a_n \ge 0)
$$
 (1.2)

introduced and studied by Silverman [7].

For
$$
g(z) = z + \sum_{n=2}^{\infty} b_n z^n
$$
, the Hadamard product (or convolutions) of f and g is defined by

$$
(f * g) z = z + a_n b_n z^n, z \in U
$$
 (1.3)

The elementary distribution such as the Poisson, the Pascal, the Logarithmic, the Binomial have been partially studied in the Geometric Function Theory from a theoretical point of view (see [1,2,5,6].

A discrete random variable x is said to have a Borel distribution if it takes the values $1,2,3, \cdots$ with the probabilities $\frac{e^{-\lambda}}{1!}$, $\frac{2\lambda e^{-2\lambda}}{2!}$ $\frac{e^{-2\lambda}}{2!}$, $\frac{9\lambda^2e^{-3\lambda}}{3!}$ $\frac{e^{-3A}}{3!}$, ..., respectively, where λ is called the parameter. Very recently, Wanas and Khuttar [10] introduced the Borel distribution (BD) whose probability mass function is

$$
P(x = \varrho) = \frac{(\varrho \lambda)^{\varrho - 1} e^{-\lambda \varrho}}{\varrho!}, \varrho = 1, 2, 3, \cdots
$$

Wanas and Khuttar [10] introduced a series $M(\lambda; z)$ whose coefficients are probabilities of the Borel Distribution (BD)

$$
M(\lambda; z) = z + \sum_{k=2}^{\infty} \frac{[\lambda(k-1)]^{k-2} e^{-\lambda(k-1)}}{(k-1)!} z^k, \quad (0 < \lambda \le 1)
$$

= $z + \sum_{k=2}^{\infty} \sigma_k(\lambda) z^k, (0 < \lambda \le 1),$ (1.4)

where

$$
\sigma_k(\lambda) = \frac{[\lambda(k-1)]^{k-2}e^{-\lambda(k-1)}}{(k-1)!}.
$$

We define a linear operator $\mathfrak{B}(\lambda; z) f: A \to A$ as follows:

$$
\mathfrak{B}(\lambda; z) f(z) = M(\lambda; z) * f(z)
$$

= $z + \sum_{k=2}^{\infty} \frac{[\lambda(k-1)]^{k-2} e^{-\lambda(k-1)}}{(k-1)!} a_k z^k, \quad (0 < \lambda \le 1).$

Srivastava [9] made use of various operators of q - calculus and fractional q - calculus and recalling the definition and notations. The q -shifted factorial is defined for $\lambda, q \in \mathbb{C}$ and $n \in \mathbb{C}$ $\mathbb{N}_0 = \mathbb{N} \cup 0$ as follows:

$$
(\lambda;q)_k = \begin{cases} 1, & \text{for } k = 0, \\ (1 - \lambda)(1 - \lambda q) \cdot (1 - \lambda q^{k-1}), & \text{for } k \in \mathbb{N}. \end{cases}
$$

By using the q-gamma function $\Gamma_q(z)$, we get

$$
(q^{\lambda};q)_{k} = \frac{(1-q)^{k} \Gamma_{q}(\lambda + k)}{\Gamma_{q}(\lambda)} \quad (k \in \mathbb{N}_{0}),
$$

where (see [9])

$$
\Gamma_q(z) = (1-q)^{1-z} \frac{(q;q)_{\infty}}{(q^z;q)_{\infty}} \quad (|q| < 1).
$$

Also, we note that

$$
(\lambda;q)_{\infty} = \prod_{k=0}^{\infty} (1 - \lambda q^k) \quad (|q| < 1)
$$

and, the q - gamma function $\Gamma_q(z)$ is known

$$
\Gamma_q(z+1) = [z]_q \Gamma_q(z),
$$

where $[k]_q$ denotes the basic q - number defined as follows:

$$
[k]_q = \begin{cases} \frac{1-q^k}{1-q}, & \text{for } k \in \mathbb{C}, \\ 1+\sum_{j=1}^{k-1} q^j, & \text{for } k \in \mathbb{N}. \end{cases} \tag{1.5}
$$

Using the definition formula (1.5) we have the next two products:

(i) For any non-negative integer k, the q -shifted factorial is given by

$$
[k]_q!:=\left\{\begin{array}{ll} 1, & \text{for } k=0,\\ \prod_{n=1}^k [n]_q, & \text{for } k\in\mathbb{N}. \end{array}\right.
$$

(ii) For any positive number r , the q -generalized Poccammer symbol is defined by

$$
[r]_{q,k} := \begin{cases} 1, & \text{for } k = 0, \\ \prod_{n=r}^{r+k-1} [n]_q, & \text{for } k \in \mathbb{N}. \end{cases}
$$

It is known in terms of the classical (Euler's) gamma function $\Gamma(z)$, that

$$
\Gamma_q(z) \to \Gamma(z) \quad \text{as} \quad q \to 1^-
$$

Also, we observe that

$$
\lim_{q \to 1^{-}} \left\{ \frac{\left(q^{\lambda}; q\right)_{k}}{\left(1-q\right)^{k}} \right\} = (\lambda)_{k}.
$$

For $0 < q < 1$, the q- derivative operator [9] (see also [10]) for $\mathcal{B}(\lambda; z)f$ is defined by

$$
D_q(\mathfrak{B}(\lambda; z)f(z)) := \frac{\mathfrak{B}(\lambda; z)f(z) - \mathfrak{B}(\lambda; z)f(qz)}{z(1-q)}
$$

= $1 + \sum_{k=2}^{\infty} [k]_q \frac{[\lambda(k-1)]^{k-2} e^{-\lambda(k-1)}}{(k-1)!} a_k z^{k-1}, \quad (0 < \lambda \le 1, z \in E),$

where

$$
[k]_q := \frac{1 - q^k}{1 - q} = 1 + \sum_{j=1}^{k-1} q^j, \quad [0, q] := 0.
$$

For $\vartheta > -1$ and $0 < q < 1$, we defined the linear operator $\mathfrak{B}_{\lambda}^{\vartheta,q} f: A \to A$ by

$$
\mathfrak{B}_{\lambda}^{\vartheta,q}f(z) * N_{q,\vartheta+1}(z) = z D_q(\mathfrak{B}(\lambda;z)f(z)), \quad z \in E,
$$

where the function $N_{q, \vartheta+1}$ is given by

$$
N_{q,\vartheta+1(z)}:=z+\sum_{k=2}^\infty\frac{[\vartheta+1]_{q,k-1}}{[k-1]_q!}z^k,\quad z\in E.
$$

A simple computation shows that

$$
\mathfrak{B}_{\lambda}^{\vartheta,q} f(z) := z + \sum_{k=2}^{\infty} \frac{[k]_q! \, [\lambda(k-1)]^{k-2} e^{-\lambda(k-1)}}{[\vartheta + 1]_{q,k-1}(k-1)!} a_k z^k
$$
\n
$$
= z + \sum_{k=2}^{\infty} \mathcal{D}(k) \, a_k z^k, \tag{1.6}
$$

where

$$
\mathcal{D}(k) = \frac{[k]_q! \, [\lambda(k-1)]^{k-2} e^{-\lambda(k-1)}}{[\vartheta + 1]_{q,k-1}(k-1)!} \tag{1.7}
$$

and $0 < \lambda \leq 1, \vartheta > -1, 0 < q < 1, z \in E$.

Now using above differential operator, we define the following subclass of T.

Definition 1.1. A function $f \in \mathcal{A}$ given by (1.2) is in the class $\mathcal{T}_q(\lambda, \beta, \vartheta, A, B)$, (0 < $q < 1$, $\lambda \in \mathbb{N}_0$, $\beta \ge 0$, $\theta > -1$, and $-1 \le A < B \le 1$, $0 < B \le 1$) if it satisfies the following subordination condition:

$$
(1 - \beta) \frac{\mathfrak{B}_{\lambda}^{\vartheta, q} f(z)}{z} + \beta \left(\mathfrak{B}_{\lambda}^{\vartheta, q} f(z) \right)' < \frac{1 + Az}{1 + Bz} (z \in E). \tag{1.8}
$$

Silverman[8]introduced and studied the univalent function with varying arguments of coefficients as follows:

Definition 1.2. [8] A function $f(z)$ of the form (1.1) is in the class $V(\theta_k)$ if $f(z) \in S$ (the class of analytic and univalent function in) and $arg(a_k) = \theta_k$ for all $k(k \ge 2)$. Further, if there exists a real number η such that

$$
\theta_k + (k-1)\eta \equiv \pi \pmod{2\pi},\tag{1.9}
$$

then $f(z)$ is said to be in the class $V(\theta_k, \eta)$. The union of $V(\theta_k, \eta)$ taken over all possible sequence $\{\theta_k\}$ and all possible real numbers η is denoted by \mathcal{V} .

Let $V_q(\lambda, \beta, \vartheta, A, B)$ denote the subclass of ϑ consisting of functions $f(z) \in \mathcal{T}_q(\lambda, \beta, \vartheta, A, B)$. In this paper, the authors obtain coefficient estimates, distortion theorem and extreme point for the function $f \in \mathcal{A}$ belongs to the class $\mathcal{V}_q(\lambda, \beta, \vartheta, A, B)$.

2.1 Coefficient Estimates

Unless otherwise stated, we assume throughout the sequel that $-1 \le A < B \le 1, 0 < B \le$ $1, \lambda, \beta \in \mathbb{N}_0, 0 < q < 1; z \in E.$

The sufficient condition for a function $f(z)$ of the form (1.2) to be in the class $\mathcal{T}_q(\lambda, \beta, \vartheta, A, B)$ is given by the following theorem.

Theorem 2.1. Let the function $f(z)$ be of the form (1.2). If

$$
\sum_{k=2}^{\infty} [1 + \beta(k-1)](1+\beta)\mathcal{D}(k)|a_k| \le (B-A)
$$
 (2.1).

Proof. A function $f(z)$ of the form (1.2) belongs to the class $T_q(\lambda, \beta, \vartheta, A, B)$ if and only if there exists an analytic function $w(z)$, satisfying the condition of Schwarz lemma such that

$$
(1 - \beta) \frac{\mathfrak{B}_{\lambda}^{\vartheta, q} f(z)}{z} + \beta \left(\mathfrak{B}_{\lambda}^{\vartheta, q} f(z) \right)' = \frac{1 + Aw(z)}{1 + Bw(z)}.
$$
 (2.2)

or equivalently,

Thus, it is sufficient to show that

$$
\left|(1-\beta)\frac{\mathfrak{B}_{\lambda}^{\vartheta,q}f(z)}{z}+\beta\big(\mathfrak{B}_{\lambda}^{\vartheta,q}f(z)\big)'-1\right|-\left|\beta\left[(1-\beta)\frac{\mathfrak{B}_{\lambda}^{\vartheta,q}f(z)}{z}+\beta\big(\mathfrak{B}_{\lambda}^{\vartheta,q}f(z)\big)\right]-A\right|\leq 0.
$$

Letting $|z| = r(0 \le r < 1)$, we have

$$
\left| (1 - \beta) \frac{\mathfrak{B}_{\lambda}^{\vartheta, q} f(z)}{z} + \beta \big(\mathfrak{B}_{\lambda}^{\vartheta, q} f(z) \big)' - 1 \right| - \left| \beta \left[(1 - \beta) \frac{\mathfrak{B}_{\lambda}^{\vartheta, q} f(z)}{z} + \beta \big(\mathfrak{B}_{\lambda}^{\vartheta, q} f(z) \big)' \right] - A \right|
$$

\n
$$
= \left| \sum_{k=2}^{\infty} [1 + \beta(k-1)] \mathcal{D}(k) a_k z^{k-1} \right| - \left| (B - A) + B \sum_{k=2}^{\infty} [1 + \beta(k-1)] \mathcal{D}(k) a_k z^{k-1} \right|
$$

\n
$$
\leq \sum_{k=2}^{\infty} [1 + \beta(k-1)] \mathcal{D}(k) |a_k| r^{k-1} - (B - A) + B \sum_{k=2}^{\infty} [1 + \beta(k-1)] \mathcal{D}(k) |a_k| r^{k-1}
$$

\n
$$
\leq \sum_{k=2}^{\infty} [1 + \beta(k-1)] (1 + B) \mathcal{D}(k) |a_k| - (B - A).
$$

In view of (2.1), the last inequality is less than zero. Hence $f(z) \in T_q(\lambda, \beta, \vartheta, A, B)$. This completes the proof of Theorem.

Theorem 2.2. Let the function $f(z) \in \mathcal{A}$ be of the form (1.2). Then $f(z) \in \mathcal{T}_q(\lambda, \beta, \vartheta, A, B)$ if and only if

$$
\sum_{k=2}^{\infty} [1 + \beta(k-1)](1+B)\mathcal{D}(k)|a_k| \le (B-A). \tag{2.3}
$$

Proof.In view of Theorem 2.1, we need only to show that function $f(z) \in v_q(\lambda, \beta, \vartheta, A, B)$ satisfies the coefficient inequalities (2.1). Let $f(z) \in v_4(\lambda, \beta, \vartheta, A, B)$.

Then from (1.2) and (2.2) , we have

$$
\left| \frac{\sum_{k=2}^{\infty} [1 + \beta(k-1)] \mathcal{D}(k) z^{k-1}}{(B-A) + \sum_{k=2}^{\infty} B[1 + \beta(k-1)] \mathcal{D}(k) a_k z^{k-1}} \right| < 1.
$$
 (2.4)

Sance $f(z) \in V$, $f(z)$ lies in the class $V(\theta_k, \eta)$ for soene secquence $\{\theta_k\}$ and real number η such that $\theta_k + (k-1)\eta \equiv \pi \pmod{2\pi}$ for all $k \ge 2$.

Set $z = re^{iv}$ in (2.4), we have

which implies

$$
\left| \frac{-\sum_{k=2}^{\infty} [1 + \beta(k-1)] \mathcal{D}(k) |a_k| r^{k-1}}{(B-A) - B \sum_{k=2}^{\infty} [1 + \beta(k-1)] \mathcal{D}(k) |a_k| r^{k-1}} \right| < 1.
$$

Since $\Re(w(z)) < |w(z)| < 1$ implies

$$
\Re\left[\frac{\sum_{k=2}^{\infty} [1 + \beta(k-1)] \mathcal{D}(k) |a_k| r^{k-1}}{(B-A) - B \sum_{k=2}^{\infty} [1 + \beta(k-1)] \mathcal{D}(k) |a_k| r^{k-1}}\right] < 1. \tag{2.5}
$$

It has been observed that the denominator of the left hand side of (2.5) cannot vanish for [0,1). Furthermore, it is positive for $r = 0$ and therefore for $r \in [0, 1)$. Thus, we have

$$
\sum_{k=2}^{\infty} [1 + \beta(k-1)](1+B)\mathcal{D}(k)|a_k|r^{k-1} < (B-A)
$$

which, upon letting $r \rightarrow 1$ ⁻gives the require assertion of Theorem.

Corollary 2.1. Let the function $f(z) \in \mathcal{A}$ defined by (1.2) be in the class $\mathcal{T}_q(\lambda, \beta, \vartheta, A, B)$. Then

Journal of Engineering and Technology Management 74 (2024)

$$
|a_k| \le \frac{(B-A)}{[1+\beta(k-1)](1+B)\mathcal{D}(k)}(k \ge 2)
$$

The result is sharp for the function

$$
f(z) = z + \frac{(B-A)}{[1+\beta(k-1)](1+B)\mathcal{D}(k)} e^{i\theta_k z^k} (k \ge 2).
$$

3 Distortion Theorem

Theorem 3.1. Let the function $f(z)$ defined by (1.1) be in the class $v_q(\lambda, \beta, \vartheta, A, B)$. Then

$$
|z| - \frac{(B-A)}{(1+\beta)(1+B)\mathcal{D}(2)} |z|^2 \le |f(z)| \le |z| + \frac{(B-A)}{(1+\beta)(1+B)\mathcal{D}(2)} |z|^2 \quad (3.1)
$$

The result is sharp.

Proof: Corollary 2.1 and elementary inequality

$$
(1 + \beta)(1 + B)\mathcal{D}(2) \le [1 + \beta(k - 1)](1 + B)|a_k|\mathcal{D}(k) \le (B - A).(k \ge 2)
$$

yield

$$
\sum_{k=2}^{\infty} |a_k| \le \frac{(B-A)}{(1+\beta)(1+B)\mathcal{D}(2)}
$$

Thus,

$$
|f(z)| = \left| z + \sum_{k=2}^{\infty} a_k z^k \right|
$$

$$
\leq |z| + \sum_{k=2}^{\infty} |a_k| |z|^k
$$

$$
\leq |z| + |z|^2 \sum_{k=2}^{\infty} |a_k|
$$

$$
\leq |z| + \frac{(B-A)}{(1+\beta)(1+B)\mathcal{D}(2)} |z|^2
$$
 (3.2)

Similarly, we have

$$
|f(z)| = \left| z + \sum_{k=2}^{\infty} a_k z^k \right|
$$

\n
$$
\geq |z| - \sum_{k=2}^{\infty} |a_k||z|^k
$$

\n
$$
\geq |z| - |z|^2 \sum_{k=2}^{\infty} |a_k|
$$

\n
$$
\geq |z| - \frac{(B-A)}{(1+\beta)(1+B)D(2)} |z|^2
$$
 (3.3)

Combining (3.2) and (3.3) we obtain the desire result. The result is sharp for the function

$$
f(z) = z + \frac{(B - A)}{(1 + \beta)(1 + B)\mathcal{D}(2)} e^{i\theta_2 z^2}
$$
 (3.4)

at $z = \pm |z| e^{-i\theta_2}$, This completes the proof.

Theorem 3.2. Let the function $f(z)$ defined by (1.1) belong to the class $V_q(\lambda, \beta, \vartheta, A, B)$. Then

$$
1 - \frac{2(B-A)}{(1+\beta)(1+B)\mathcal{D}(2)}|z| \le |f'(z)| \le 1 + \frac{2(B-A)}{(1+\beta)(1+B)\mathcal{D}(2)}|z|.
$$

The result is sharp for the function $f(z)$ given by (3.4) at $z = \pm |z| e^{-i\theta_2}$.

Proof. In view of the inequality

$$
\sum_{k=2}^{\infty} |a_k| \le \frac{(B-A)}{(1+\beta)(1+B)\mathcal{D}(2)}
$$

It follows that

$$
\sum_{k=2}^{\infty} k |a_k| \le 2 \frac{(B-A)}{(1+\beta)(1+B)\mathcal{D}(2)}
$$

Thus, we have

$$
|f'(z)| = \left| 1 + \sum_{k=2}^{\infty} ka_k z^{k-1} \right|
$$

\n
$$
\leq 1 + |z| \sum_{k=2}^{\infty} k|a_k|
$$

\n
$$
\leq 1 + \frac{2(B-A)}{(1+\beta)(1+B)D(2)}|z|.
$$

Similarly, we obtain

$$
|f'(z)| = \left| 1 + \sum_{k=2}^{\infty} ka_k z^{k-1} \right|
$$

\n
$$
\geq 1 - |z| \sum_{k=2}^{\infty} k |a_k|
$$

\n
$$
\geq 1 - \frac{2(B-A)}{(1+\beta)(1+B)\mathcal{D}(2)} |z|.
$$

The result is sharp.

4. Extreme Points

Theorem 4.1. Let the function $f(z)$ defined by (1.1) be in the class $v_q(\lambda, \beta, \vartheta, A, B)$ with $arg(a_k) = \theta_k$ where $[\theta_k + (k-1)\eta] \equiv \pi (mod 2\pi)$. Define $f_1(z) = z$ and

$$
f_k(z) = z + \frac{(B-A)}{[1 + \beta(k-1)](1+B)\mathcal{D}(k)} e^{i\theta_k} z^k (k \ge 2; z \in E).
$$

Then $f(z)$ is in the class $V_q(\lambda, \beta, \vartheta, A, B)$ if and only if it can be expressed in the form

 $f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z),$

where $\mu_k \ge 0$ (k ≥ 0) and $\sum_{k=1}^{\infty} \mu_k = 1$.

Proof: If $f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z)$ with $\sum_{k=1}^{\infty} \mu_k = 1$ and $\mu_k \ge 0$, then

$$
\sum_{k=2}^{\infty} [1 + \beta(k-1)](1+B)\mathcal{D}(k)\frac{(B-A)}{[1+\beta(k-1)](1+B)\mathcal{D}(k)}\mu_k
$$

=
$$
\sum_{k=2}^{\infty} (B-A)\mu_k = (B-A)(1-\mu_1) \le (B-A).
$$

So, by Theorem 4.1.15, we have $f(z) \in V_q(\lambda, \beta, A, B)$. Conversely, let the function $f(z)$ defined by (1.1) be in the class $\mathcal{V}_q(\lambda, \beta, A, B)$. Define

$$
\mu_k = \frac{[1 + \beta(k-1)](1+B)\mathcal{D}(k)}{(B-A)}|a_k|, (k \ge 2)
$$

and $\mu_1 = 1 - \sum_{k=2}^{\infty} \mu_k$.

We have, $\sum_{k=2}^{\infty} \mu_k \le 1$ which implies $\mu_1 \ge 0$. Since $\mu_k f_k(z) = \mu_k z + a_k z^k$, we have

$$
\sum_{k=1}^{\infty} \mu_k f_k(z) = z + \sum_{k=2}^{\infty} a_k z^k = f(z).
$$

This completes the proof.

References

[1] S. Altinkaya and S. Yalcin, Poisson distribution series for certain subclasses of starlike functions with negative coefficients, An. Univ. Oradea Fasc. Mat. 24(2) (2017), 5-8.

[2] S. M. El-Deeb, T. Bulboaca and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J. 59(2) (2019), 301-314.

[3] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.

[4] S. Kanas and T. Yaguchi, Subclasses of k-uniformly convex and starlike functions defined by generalized derivative, Publ. Inst. Math. (Beograd) (N.S.) 69(83) (2001), 91-100.

[5] W. Nazeer, Q. Mehmood, S. M. Kang and A. Ul Haq, An application of binomial distribution series on certain analytic functions, J. Comput. Anal. Appl. 26 (2019), 11-17.

[6] S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat. 27 (2016), 10-21.

[7] H. Silverman, Univalent functions with negative coefficients, *Proc. Amer.*

Math. Soc., 51, (1975), 109-116.

[8].H. Silverman, Univalent function with varying arguments, Hostan J.Math., 2, (1981),

283-287.

[9] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327-344.

[10] A. K. Wanas and J. A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., 4(1) (2020), 71-82.