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Abstract: The q-calculus is a generalization of traditional calculus that introduces a parameter q
typically where 0 <q <1 and it generalizes concepts like differentiation and integration using a
parameter-dependent approach. It plays a significant role in various areas such as combinatorics,
special functions, quantum groups, and more. The target of this paper is to define the operator of
g- derivative based upon the Borel distribution and by using this operator, we obtain the
coefficient bounds, inclusion relations, extreme points and some more properties of defined

class.
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1. Inroduction.

Let A denote the class of functions of the form

f(z)=z+ianz” (1.1)
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which are analytic in the open unit disk U = {z : |z| < 1} and normalized by f(0)=0, f'(0)=1.
Let S be the subclass of A consisting of univalent functions f(z) of the form (1.1). Further

denote by T the subclass of A consisting of functions of the form
f(@)=z-3a,z"(a,>0) (1.2)
n=2
introduced and studied by Silverman [7].

For g(z)=z+ anz” , the Hadamard product (or convolutions) of f'and g is defined by

n=2

(f*g)z=z+abz",zeU (1.3)

The elementary distribution such as the Poisson, the Pascal, the Logarithmic, the Binomial have
been partially studied in the Geometric Function Theory from a theoretical point of view (see

[1,2,5,6].

A discrete random variable x is said to have a Borel distribution if it takes the values 1,2,3, -

e -2 2/16 —2A 912 -31
2t 7 3l

with the probablhtles -, respectively, where A is called the parameter. Very

recently, Wanas and Khuttar [10] introduced the Borel distribution (BD) whose probability mass

function is

A)e-1le—2e
P(x = Q) — (Q ) - ,0=123,

Wanas and Khuttar [10] introduced a series M(A; z) whose coefficients are probabilities of the

Borel Distribution (BD)

[ee)

_ o~ Ak=1)
M(Lz) = z ALk (1]3_12), Y (0<i<D)
=z+ ) o, DZK,(0<21<1), (1.4)
,Z :
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where

[ﬂ(k _ 1)]k—ze—/1(k—1)
(k—1)!

o (4) =

We define a linear operator B(4; z)f: A — A as follows:

BL2)f(z) =M42)*f(2)

[oe)

[l(k _ 1)]k—ze—/1(k—1)
=zt Z k=11

a.z®, (0<21<1).

Srivastava [9] made use of various operators of g- calculus and fractional g- calculus and
recalling the definition and notations. The g- shifted factorial is defined for 4,q € C and n €
Ny = N U 0 as follows:

gk =4 7 for k =0,
VE=Y 1-2)1-2g)-(1-Ag*1), forkeN.

By using the g-gamma function I3, (z), we get

(1- (A +k)

(a%a), = D) (k € Ny),
where (see [9])
m@=uﬂWﬂ%%?<MKn.

Also, we note that
% @e=] [a-2¢9 da1<D
k=0

and, the g- gamma function I3 (z) is known
I(z+ 1) = [z],01,(2),

where[k], denotes the basic - number defined as follows:
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for k£ € C,

[k]q — k=1 i
1+ > ¢, forkeN.
=" (1.5)

Using the definition formula (1.5) we have the next two products:

(1) For any non-negative integer k, the g-shifted factorial is given by

[k’]q' e 1, i f'or k=0,
Hn:l[n]q& for k € N.

(i1) For any positive number 7, the g- generalized Poccammer symbol is defined by

[r] 1., for k=10,
T e i
" % nl,, forkeN.

It is known in terms of the classical (Euler’s) gamma function I'(z), that
I4(z) > I'(z) asq—> 1"

Also, we observe that

((a%q),
s [W - (D

For 0 < q < 1, the g- derivative operator [9 ] (see also [10] ) for B(A; z)f is defined by

B(4; — B(4;
Dy(BU D)) 1= Z>f<21_ q() 2)f (42)

* Ak — 1) ]k—2—Alk-1)
= 1+Z[k]q[ ( (13]_ Di az"t, (0<2A<1,z€E),

where

1—qk k-1
[Klg:=———=1+ ) ¢/, [0,q]:=0.
q -
]=
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For¥ > —1and 0 < g < 1, we defined the linear operator %f’q f:A— Aby

BYUf(2) * Nygyq(2) = 2Dy (B 2)f (2)),

where the function N 941is given by

[0+ 1],
Nyo+1():=2 + Z—q'klzk, z€E.

— 1]
e [k —1],!
A simple computation shows that
® l(k _ 1)] -2 —/1(k—1)
9,q - k
B/ @) Z [0+ gk — DI

k=2
Z D(k) az*,
k=

where

[k],! [A(k — 1)]¥"2e=Ak-D

D(k) = [9 + 1gse—r(k — 1)!

and0<A<1,9>-10<qg<1,z€E.

Now using above differential operator, we define the following subclass of 7.

(1.6)

(1.7)

Definition 1.1. A function f € A given by (1.2) is in the class T;(4, 5,9,4,B), (0<

q<1),1ENy,B>09>-1, and —1<A<B<1,0<B < 1) if it satisfies

the following subordination condition:

19q , 1
1-p2t? f D p(807@) <
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Silverman[8]introduced and studied the univalent function with varying arguments of
coefficients as follows:

Definition 1.2. [8] A function f(z) of the form (1.1) is in the class V(0;) if f(2) € S (the class
of analytic and univalent function in ) and arg(a;) = 6, for all k(k = 2). Further, if there exists

a real number 7 such that

0, + (k — 1)n = m(mod2m), (1.9)

then f(z) is said to be in the class V(6y,n). The union of V (6, n) taken over all possible
sequence {6} and all possible real numbers 7 is denoted by V.
Let V,;(4, 8,9, A, B) denote the subclass of V consisting of functions f(z) € T;(4, 5,9, A, B).
In this paper, the authors obtain coefficient estimates, distortion theorem and extreme point for
the function f € A belongs to the class V;, (4, 5,9, 4, B).

2.1 Coefficient Estimates
Unless otherwise stated, we assume throughout the sequel that -1 < A< B <10<B <
1,AL,BEN,0<qg<1;z€E.
The sufficient condition for a function f(z) of the form (1.2) to be in the class T (4, 5,9, 4, B) is
given by the following theorem.

Theorem 2.1. Let the function f(z) be of the form (1.2). If

Yi=z [1+ Bk = D] + B)D(K)|ax| < (B — 4) 2.1.

Proof. A function f(z) of the form (1.2) belongs to the class T (4, 5,9, 4, B) if and only if there

exists an analytic function w(z), satisfying the condition of Schwarz lemma such that
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/‘1 f( ) 5 r 14 Aw(2)

1-p——- ,3( f(z )) 1+’ (2.2)
or equivalently,
Thus, it is sufficient to show that

19 .q , 19 q

1-p2 LD pwirr@) 1| |o|a-p 2L s peir)| -
Letting |z| = (0 < r < 1), we have
19 .q , 19 q
1-p= f B TO | p@r@) 1| -|Bla-p> f R AONTe

[1+ Bk ~ DID()ayz*?

s

_|(B=4)+B Z [1+ Bk — D]D(k)apz**

&
1l

2

[1+ Bk — DIDU) |aglr* — (B - A)+BZ [1+ Bk = DID(k)|a|r
k=2

P T

[1+ Bk — D]+ B)D(K)|ax| — (B — A).

x=
Il
N

In view of (2.1), the last inequality is less than zero. Hence f(z) € T;(4,8,9,4, B). This

completes the proof of Theorem.

Theorem 2.2. Let the function f(z) € A be of the form (1.2). Then f(z) € T;(4,B,9, 4, B) if

and only if

Z [1+ B(k — D](1 + BYD(K)|ag| < (B — A). (2.3)
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Proof.In view of Theorem 2.1, we need only to show that function f(z) € vq(4,5,9,4,B)

satisfies the coefficient inequalities (2.1). Let f(z) € v4(4,5,9, 4, B).

Then from (1.2) and (2.2), we have

Y=z [1+ Bk — D)]D(k)z"*
(B —A) + X, B[1+ Bk — D]D(k)axz !

<1 (2.4)

Sance f(2) € V, f(2) lies in the class V(0,,n) for soene secquence {6} and real number 1 such
that 6, + (k — 1)n = n(mod2n) for all k > 2.

Set z = re®” in (2.4), we have

which implies

—Xiz2 [1+4 Bk = DID(K) | |r*

B—4) - By, [1+ Btk — DID@Olagr1| = -

Since R(w(2)) < |w(z)| < 1 implies

Yi=2 [1+ Bk — DIDU) |a|r*?

MNGB—D - By, 1+ A% = DID@®

<1. (2.5)

It has been observed that the denominator of the left hand side of (2.5) cannot vanish for [0,1).

Furthermore, it is positive for r = 0 and therefore for r € [0, 1). Thus, we have

z [1+B(k— D]+ B)D(k)|aglr* ! < (B — 4)
k=2
which, upon letting r — 17 gives the require assertion of Theorem .

Corollary 2.1. Let the function f(z) € A defined by (1.2) be in the class 75 (4, 8,9, A, B). Then
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e (-4
[1+B(k—1)](1+ B)D(Kk)

(k> 2)

The result is sharp for the function

(B—-4)

1+ B8k - D](1 + B)DK) e (k 2 2).

fz)=z+

3 Distortion Theorem

Theorem 3.1. Let the function f(z) defined by (1.1) be in the class v4(4, 8,9, A4, B). Then

Dl <ip @) < tad + )
arpa+eoe | V@l =+armaieno

|| z|? (3.1)

The result is sharp.

Proof: Corollary 2.1 and elementary inequality

1+p)A+B)DR2)<[1+pk—-1]A+B)lag|D(k) < (B—=A4).(k = 2)

yield

i o < (B —A)
LT 1+pHA+B)DR)

Thus,
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<1zl + 12 ) lal
k=2
(B—-A4) 2
< 7+ T pamne ¥ (3-2)
Similarly, we have
f@l =2+ )
k=2

(o]
> |zl = ) layllzl*
k=2

[00]
> 2l = 12 ) lal
k=2

(B-4)

2 |z| = (1+8)(1+B)D(2)

|z|? (3.3)

Combining (3.2) and (3.3) we obtain the desire result. The result is sharp for the function

(B—A4)
1+ +B)D(2)

f2)=z+ el022 (3.4)

at z = +|z|e™'%2, This completes the proof.

Theorem 3.2. Let the function f(z) defined by (1.1) belong to the class V;; (4, 5,9, 4, B). Then
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2(B — A) 2(B—A4)

I -aspa+epe? = F@l=1+ (1+B8)(1+B)D(2)

|z.

-i6,

The result is sharp for the function f(z) given by (3.4) at z = *|z|e

Proof. In view of the inequality

[o e}

Z la| < (8- 4)
1+p8)(1+B)D(2)

k=2

It follows that

i kla,| < 2 B-4)
LT T+ pHA+BDER)

Thus, we have

If'@l =

<l taipa+smoe @

Similarly, we obtain

If'@l =

1+ Z kaka_l
k=2

>1- |Z|Z k||
k=2

2(B — A)
1+ B+ B)D(2)

>1

|z.
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The result is sharp.

4. Extreme Points
Theorem 4.1. Let the function f(z) defined by (1.1) be in the class v4 (4, 8,9, 4, B) with
arg(ay) = 6, where [0, + (k — 1)n] = m(mod2m). Define f;(z) = z and

(B—-4)

A+ p- DA+ Bp0 ¢ 2 K =22 E)

fu(z) =z +
Then f(z) is in the class V, (4, 8,9, A, B) if and only if it can be expresesed in the form
f(2) = Xi=1 tefi(2),
where y, =0 (k> 0)and Y-,y = 1.
Proof: If f(2) = Y1721 Ui fi(z) with Y7, 4 = 1and p = 0, then

N B - A)
kz [ ple= DIA+ BP0 g —Dia + myoo M

=Z (B— A= (B - A1 - ) < (B-A).
k=2

So, by Theorem 4.1.15 , we have f(z) € V,(4, B, A, B). Conversely, let the function f(z)

defined by (1.1) be in the class V; (4, §, A, B). Define

_ [1+ p(k—1)](1+ B)D(k)
U = (B —4)

|laxl, (k = 2)

and iy =1 — X3y Mie

We have, Y%, tx < 1 which implies u; = 0. Since py fi(2) = iz + aiz*, we have
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D mh@ =2+ ) azk=f@).
k=1 k=2

This completes the proof.
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