A COMPREHENSIVE REVIEW OF RECYCLED CONCRETE AGGREGATE: PROPERTIES, CHALLENGES AND APPLICATIONS

Roshan H. Mohankar¹, Dr. Mohd. G. Pathan², Atharv D. Kukade³, Saniya R. Dawane⁴, Vedant

K. Parsudkar⁵, Neha S. Telghare⁶

¹Assistant Professor, Department of Civil Engineering, Priyadarshini Bhagwati College of Engineering,

Nagpur, India, ORCID- 0009000233309314

²Dr. Mohd. G. Pathan, Department of Civil Engineering, Priyadarshini Bhagwati College of

Engineering, Nagpur, India

3,4,5,6 Students, Department of Civil Engineering, Priyadarshini Bhagwati College of

Engineering, Nagpur, India.

ABSTRACT:

Recycled Concrete Aggregate (RCA) is made from old and broken concrete structures. Instead

of throwing this concrete waste into landfills, it is crushed and reused in making new concrete.

This helps reduce environmental pollution and saves natural resources like sand and gravel.

RCA is now getting popular in construction, especially for making pavements, roads, and non-

structural buildings.

In this review paper, we trying to explains the importance of reuse of RCA and to get know

about properties of RCA, such as its strength, durability, size, and water absorption. It also

discusses how RCA can be used in different types of construction work. it shows both the

advantages and limitations of using recycled concrete. In the end, it supports the idea that RCA

can be a good and eco-friendly material if used properly.

KEYWORDS: RCA, eco-friendly material, properties

INTRODUCTION:

Concrete is the most commonly used construction material in the world. It is strong, durable,

and easy to use. But with the increasing number of construction and demolition projects, a large

amount of Construction and Demolition (C&D) waste is being produced every year. Most of

this waste ends up in landfills, which causes serious environmental problems like land pollution

and unnecessary use of land for dumping.

PAGE NO: 77

At the same time, the production of concrete requires a huge amount of natural aggregates like gravel, sand, and crushed stone. These natural materials are being used at a very fast rate, and their overuse can lead to the shortage of natural resources in the future. Also, extracting and transporting these materials consumes a lot of energy and money and creates carbon emissions, which affect the environment. To solve both problems — reducing C&D waste and saving natural resources — researchers and engineers have started using Recycled Concrete Aggregate (RCA). RCA is made by crushing the old or damaged concrete from demolished buildings, roads, bridges, and other structures. The crushed concrete pieces are cleaned and reused as aggregates in making new concrete or other construction materials. The idea of recycling concrete is not new, but in the last few decades, it has received more attention because of the growing awareness about sustainable development and green construction. Using RCA helps in: Reducing environmental pollution caused by dumping waste, Saving natural materials and extending their life, Lowering construction costs, and Reducing energy use and CO₂ emissions. However, RCA also has some limitations.

It often contains leftover cement paste and impurities, which can increase water absorption, decrease workability and strength, and reduce durability in some cases. Despite these challenges, many studies have shown that RCA can still be safely used in many types of construction projects like: Road base and sub- base layers, Pavements and footpaths, Non-structural concrete, And even in some structural elements after proper treatment. This review paper is based on 25 research studies from different parts of the world. It aims to understand: The physical and mechanical properties of RCA, The performance of concrete made with RCA, The treatments and improvements that can enhance RCA quality, And the applications of RCA in real construction projects. By collecting and analyzing this information, the paper provides a clear understanding of the potential of RCA in sustainable construction and how we can use it more effectively in the future .

Literature Review:

1. Limbachiya M.C., Leelawat T. and Dhir R. K., This study investigated how using recycled concrete aggregate (RCA) instead of natural coarse aggregate affects concrete properties. The aim was to test strength, workability, and durability. Materials used were cement, water, natural and recycled aggregates, and fine aggregate. RCA was tested and found to have lower specific gravity, higher water absorption, and rough texture due to leftover mortar. Tests like slump (for workability), compressive strength (7, 28, 90 days), and density were performed. Slump was low, meaning poor workability, and compressive strength slightly reduced with more RCA. However, when up to 30% of natural aggregate was replaced with RCA, strength remained acceptable. The study concluded that RCA can be used in concrete without much negative impact on strength if used up to 30%, but due to reduced workability, chemical admixtures are recommended. This research supports sustainable construction by reusing old concrete and reducing the demand for natural aggregates.

- 2. Rao A., Jha K. N. and Misra, S., This review paper collected findings from different global studies on using recycled concrete aggregate (RCA) in concrete. The goal was to understand how RCA affects concrete's strength, durability, shrinkage, and other mechanical properties. RCA is made from crushed demolished concrete and contains old mortar, which leads to high water absorption and weak particle quality. Physical tests showed RCA has more angular particles, higher impact value, and reduced soundness compared to natural aggregates. Mechanical tests like compressive and tensile strength, shrinkage, and permeability showed RCA concrete has lower strength and higher shrinkage. However, the review found that using up to 25% RCA in concrete could give acceptable results for normal strength concrete. It also mentioned that RCA quality can be improved by removing old mortar or using proper treatment. Overall, the study concluded that RCA is not suitable for high-performance concrete unless treated, but it is useful in many practical applications when proper mix design and quality control are followed. The paper encourages partial replacement of natural aggregates to support environmental sustainability by reducing construction and demolition waste.
- **3. Poon C. S., Kou, S. C. and Lam, L.,** This study focused on how recycled concrete aggregate (RCA) affects the fresh and hardened properties of concrete. The main goal was to test the changes in workability, strength, and water absorption when RCA replaces natural aggregate. They used cement, RCA from crushed structural concrete, natural fine aggregate, and superplasticizers. Tests on RCA showed that it has an irregular shape, low density, and high water absorption, which makes mixing harder. In fresh concrete, the slump value was lower, meaning workability reduced. However, compressive strength stayed very close to normal concrete when RCA was used up to 20%. Also, strength improved when superplasticizer was added. Water absorption of the concrete increased as RCA content increased, which could affect durability. The study concluded that using RCA up to 15–20% is safe for structural concrete, especially if chemical admixtures are used to improve workability and strength. This research promotes the use of recycled materials in construction, which helps in reducing natural resource usage and managing demolition waste more sustainably. The results support the idea that RCA, when used in limited amounts with a good mix design, can be a reliable alternative in modern construction.
- **4. Tabsh S. W. and Abdelfatah, A. S.,** This study compared Recycled Aggregate Concrete (RAC) with normal concrete, focusing on how well RAC performs structurally. The researchers used materials like cement, natural and recycled aggregates, water, and fine sand. RCA was tested and found to have a rough surface texture, lower bulk density, and lower specific gravity than natural aggregate, mainly because of the old mortar attached to it. Due to this, RAC needed more water to maintain workability. The study performed several strength tests, including compressive strength, flexural strength, and modulus of rupture. Results showed that RAC had lower overall strength, but the results were consistent, which means it can still be used in real projects. The researchers suggested that RAC is suitable for non-critical structural elements such as sidewalks, low-load walls, and partitions. With the use of chemical admixtures and proper curing, the strength and performance of RAC can be improved and come close to normal concrete. The paper concluded that RAC offers a sustainable alternative to normal concrete by reusing demolished concrete. It helps reduce construction waste and the overuse of natural resources while still meeting the performance needs for certain types of structures.
- **5. Hansen T. C.,** This research paper presented a long-term review of how recycled aggregates (RCA) perform in concrete. It included data collected over many years and different conditions. RCA came from old buildings, roads, and demolished structures, and was tested for density, porosity, water absorption, shape, and crushing strength. The study found that older RCA had weaker properties because of high porosity and mortar attached to the particles. However, newer or cleaned RCA showed much better quality. Various tests were conducted, including compressive strength, tensile strength, and long-term durability tests like shrinkage, creep, and resistance to freezing and

thawing. The paper also discussed real-life field performance of RCA concrete. Results showed that when RCA is used with proper mix design, quality control, and cleaning methods, it performs well and can be used not only in non-structural but also in some structural applications. The key message was that performance depends on how the RCA is sourced and processed. Hansen's work was important in proving that RCA can work reliably when used correctly, and it encouraged the construction industry to adopt more eco-friendly practices by recycling and reusing materials instead of depending only on natural resources.

- 6. Evangelista L. and de Brito, J., This study focused on using fine recycled concrete aggregates (fine RCA) instead of only coarse RCA in concrete. Fine RCA was taken from crushed old concrete, and they used it with cement, coarse aggregate, and water. Tests showed that fine RCA had a lot of dust and old cement paste, and very high water absorption, which made bonding in concrete difficult. Concrete mixes were made with 0%, 25%, 50%, and 100% fine RCA. They tested compressive, tensile, and flexural strength, as well as workability and setting time. Results showed that strength decreased as more fine RCA was used, especially after 50%. But up to 30% fine RCA gave acceptable results with minor strength loss. Properly washing the RCA helped improve performance. This study shows that even fine RCA can be used safely in concrete if the mix is designed properly. It supports sustainable construction by allowing full use of recycled materials, not just coarse particles.
- 7. González-Fonteboa B. and Martínez-Abella F., This research evaluated whether recycled concrete aggregate (RCA) can be used in structural concrete, which requires high strength and long life. RCA was taken from old concrete structures with strength above 30 MPa. Materials used were RCA, cement, sand, and chemical admixtures. RCA was tested for Los Angeles abrasion, water absorption, and density. Results showed moderate quality RCA because it came from high-quality original concrete. Tests were done on compressive strength, modulus of elasticity, and carbonation depth (which measures durability). Mixes with 0%, 20%, and 50% RCA were prepared. The results showed that concrete with 20% RCA performed similarly to normal concrete. However, at 50% replacement, the modulus of elasticity decreased, which affects stiffness. The study concluded that RCA from strong old concrete can be reused in new structural concrete, especially when the replacement is kept low. This promotes recycling and reduces waste without compromising structural safety.
- **8.** Ajdukiewicz A. and Kliszczewicz A., This paper studied how recycled aggregates (RCA) affect the load-bearing ability and mechanical strength of concrete. They used crushed old concrete as RCA, along with cement, natural fine aggregate, and water. RCA was tested for flakiness, water absorption, crushing strength, and dust content. Some RCA batches had too much dust and needed cleaning. The concrete was tested for compressive strength, flexural strength, splitting tensile strength, drying shrinkage, and modulus of elasticity. Results showed that strength was lower than the control mix, especially in tensile and flexural strength. However, up to 30% RCA could be safely used in regular construction projects if the mix was properly designed. The study concluded that RCA can replace natural aggregate in moderate amounts, but extra care is needed during cleaning and design. It supports the idea of using RCA to reduce waste, but only under controlled conditions.
- 9. Butler L., West J. S. and Tighe S. L., This research focused on the durability of concrete made with recycled concrete aggregates (RCA). The aim was to see how RCA affects long-term performance in harsh environments like freeze-thaw cycles and chloride exposure. RCA came from old highway concrete and was used with cement, sand, coarse aggregate, and air-entraining agents. RCA was tested for durability index, abrasion resistance, and particle size. Some samples had leftover chlorides, which impacted performance. Durability tests included freeze-thaw resistance, chloride penetration (RCPT), and surface scaling. Results showed that concrete made with RCA had lower durability than normal concrete, especially in environments with chloride-rich exposure, like near roads or marine areas. The study suggested that if RCA is to be used in such conditions, coatings or surface sealants should be applied to protect the concrete. Overall, RCA can be used for

general construction, but not for environments requiring high durability unless extra protection is added.

- 10. Kou S. C. and Poon C. S., This study tested whether adding fly ash, a by-product from power plants, can improve the performance of RCA concrete. Materials included RCA, fly ash, cement, natural sand, and water. RCA was tested for surface roughness, water absorption, and residual cement content. Fly ash was tested for pozzolanic activity, which helps make concrete stronger over time. The team conducted compressive strength, shrinkage, and water absorption tests on different mixes. Results showed that fly ash improved bonding between RCA and cement, reduced shrinkage, and increased strength over time. The pozzolanic reaction helped fill pores and densify the concrete structure. The study concluded that combining RCA with fly ash makes concrete more durable and sustainable. It also reduces the environmental impact by recycling two waste materials. This combination is especially useful for projects aiming for eco-friendly construction without reducing performance.
- 11. Tabsh S. W. and Abdelfatah A. S., This study looked at how using recycled concrete aggregate (RCA) in different percentages affects the strength and workability of concrete. Materials used were RCA (from demolition waste), Portland cement, sand, and water. RCA was tested for bulk density, impurities, and water absorption, and it was found to absorb more water and have lower density than natural aggregates. Concrete mixes with 0%, 25%, 50%, and 100% RCA were prepared and tested. The tests included compressive strength, flexural strength, and slump test for workability. Results showed that as RCA percentage increased, the strength decreased, especially at higher replacement levels. The 25% RCA mix performed well and could be used in practical applications. Workability also dropped due to RCA's high absorption, but better mixing techniques improved performance. This research proves that using RCA up to 25% is acceptable for general construction. It helps in reducing waste and supports sustainable development by reusing demolition materials.
- 12. Poon C. S., Shui, Z. H. and Lam, L., This study focused on how the Interfacial Transition Zone (ITZ) in recycled aggregate concrete (RAC) affects strength and durability. The ITZ is the thin layer between RCA particles and the surrounding cement paste. Materials used were RCA, ordinary Portland cement (OPC), natural sand, and water. The RCA was examined under a microscope to check surface texture, cracks, and water absorption. It was found that RCA particles contain old mortar, which creates micro-cracks and weakens the ITZ. Tests included Scanning Electron Microscopy (SEM), compressive strength, porosity, and permeability measurements. The study showed that RCA concrete had weaker ITZ, which led to lower strength and higher permeability. However, adding mineral admixtures such as silica fume helped improve the ITZ by refining the microstructure and reducing micro-cracks. This improved overall concrete strength and reduced water penetration. The conclusion was that improving the ITZ is key to making strong recycled concrete, and mineral additives are an effective solution. The paper highlights the importance of microstructure in determining concrete quality, especially when using recycled aggregates.
- 13. Silva R. V., de Brito, J. and Dhir R. K., This paper studied the composition and quality of recycled concrete aggregate (RCA) collected from different construction and demolition sources like old concrete, tiles, and bricks. The aim was to find out how these different types of RCA affect the strength and durability of concrete. The materials used were RCA, cement, sand, and water. RCA samples were tested for the percentage of brick, ceramic, and concrete particles, along with water absorption and density. Then, concrete mixes were tested for compressive strength, water permeability, and freeze-thaw resistance. The results showed that RCA containing more ceramic and brick gave weaker concrete, while RCA made mostly from old concrete gave stronger, more durable results. The study highlighted the need for proper separation of materials at the demolition site. If different materials are mixed carelessly, the quality of RCA becomes poor. The paper concluded that source segregation is very important to ensure RCA quality. High-quality RCA can be safely used in concrete, but low-quality RCA should be avoided in structural work.
- 14. Rao A., Jha K. N. and Misra S., This was a review paper, not a lab experiment. The authors

studied and summarized many international research papers on the use of recycled aggregates (RCA) in concrete. The goal was to understand how RCA affects workability, strength, and durability, and to give suggestions for future research. Materials reviewed included different types of RCA, cement, and admixtures. The review found that RCA has high water absorption, low specific gravity, and may contain dust and impurities. Most papers showed that concrete made with RCA has lower strength and durability than normal concrete. However, using up to 30% RCA was acceptable for structural uses, and more than 30% could be used for non-structural applications. The review also suggested that treatment methods like removing old mortar, washing, and using additives can improve RCA quality. This paper is helpful for engineers and researchers who want to work on sustainable construction. It shows that RCA can be used safely if proper quality control is done.

- 15. Olorunsogo F. T. and Padayachee N., This study looked at how recycled aggregate concrete (RAC) performs in harsh environments, especially under sulfate attack. Sulfates are chemicals that can damage concrete over time. The materials used were RCA (from old structural concrete), OPC, sand, water, and sulfate solution. RCA was tested for mineral content and whether it had been exposed to sulfates before. Concrete samples were made using RCA and natural aggregates, and they were immersed in sulfate solution for 90 days. Tests were done to measure strength loss, weight change, and expansion. The results showed that concrete with RCA lost more strength in sulfate environments than natural concrete. The damage was more in RCA that already had sulfate residues. However, when RCA was pre-washed and sulfate-resistant cement was used, the performance improved significantly. The study concluded that RAC can be used in sulfate-rich environments only after proper treatment, like washing and using special cement. This research is important for areas where groundwater or soil has high sulfate content.
- 16. Ajdukiewicz A. and Kliszczewicz A., This study examined how recycled concrete aggregates (RCA) affect the strength of high-performance concrete (HPC). The materials used were RCA, silica fume, superplasticizer, cement, sand, and water. RCA was tested and found to be more porous and weaker than natural aggregate due to old attached mortar. Three mixes were made using 0%, 50%, and 100% RCA. Tests like compressive strength, tensile strength, and modulus of elasticity were done. Results showed that strength dropped by about 10–20% when RCA was used. However, when RCA was pre-treated or partially replaced with natural aggregate, better strength and performance were seen. The study concluded that HPC can still be made with RCA, but the mix needs proper care. Pre-treatment and the right admixtures can help reduce the negative effects. This supports using RCA even in strong concrete if designed smartly.
- 17. Katz A., This research looked at how concrete made with RCA from partially hydrated cement paste performs. The materials used were RCA, sand, OPC, and water. The focus was on how leftover cement in RCA still reacts with water, increasing water absorption and shrinkage. RCA was tested for water absorption, strength of old paste, and hydration ability. Concrete mixes with different amounts of RCA were tested for strength, shrinkage, and absorption. The results showed that water demand and shrinkage increased, while strength decreased due to the leftover hydration in RCA. However, strength improved when the RCA content was limited and admixtures were added. The study concluded that using RCA with partially hydrated paste needs careful mix design to avoid shrinkage and loss of strength. It also suggested using a low percentage of RCA or treating it to improve concrete quality.
- 18. Butler L., West, J. S. and Tighe, S. L., This study tested if using RCA affects the bond between concrete and steel reinforcement bars. The materials used were RCA, cement, water, steel rebars, and natural sand. RCA was checked for angularity, moisture, and old mortar. The main test was the pull-out test, which measures how well steel sticks to concrete. Slump tests were also done to see workability. The study found that bond strength was slightly reduced due to the weak and porous RCA. However, using bonding agents or ensuring proper compaction helped fix the issue. The research concluded that RCA can be used in reinforced concrete, but attention is needed to maintain strong bonding between concrete and steel.

- 19. Gunasekara C., Law D. W. and Setunge, S., This research focused on improving RCA concrete using mineral admixtures like fly ash and silica fume. Materials included RCA, OPC, fly ash, silica fume, sand, and water. RCA was tested for physical and chemical properties. Fly ash and silica fume were studied for their fineness and pozzolanic activity. Different concrete mixes were tested for compressive strength, tensile strength, shrinkage, and durability. Results showed that silica fume improved strength and durability greatly, while fly ash gave better long-term strength. When both admixtures were used with RCA, the concrete had the best overall performance. The study concluded that combining RCA with mineral admixtures can make strong and durable concrete, supporting eco-friendly construction.
- **20. Kou S. C. and Poon C. S.,** This study looked at making self-compacting concrete (SCC) using both coarse and fine RCA. SCC needs to flow easily without vibrating. Materials used were coarse and fine RCA, cement, fly ash, superplasticizer, and water. RCA was tested for fines content, particle shape, and water demand. Tests for slump flow, V-funnel, and L-box checked the concrete's workability. Compressive and tensile strength were also tested. SCC with RCA showed good flow when the mix design was proper. Fine RCA made the mix a bit less flowable but didn't reduce strength much. Using admixtures balanced out the negative effects. The study concluded that RCA can be used in SCC, but it needs the right mix design and good quality control.
- 21. Abbas A., Fathifazl G and Razaqpur A. G., This research focused on making recycled aggregate concrete (RAC) more durable by using a special mix design called Equivalent Mortar Volume (EMV). The idea was to balance the amount of old mortar in RCA with the new mortar added during mixing. They used RCA, natural aggregates, cement, and water. Tests showed that RCA had high water absorption and lower density because of the old mortar stuck on it. Tests like compressive strength, water permeability, chloride ion penetration, and drying shrinkage were performed. The EMV method improved results by reducing excess water demand and controlling shrinkage. Compared to traditional mix methods, concrete made using EMV had better durability, lower permeability, and acceptable strength. The study proved that the EMV method is a smart and simple way to enhance the life and quality of RCA concrete, especially for long-term use in construction.
- 22. Tam V. W. Y., Gao, X. F. and Tam C. M., This study looked at how a double mixing method affects the microstructure and strength of RCA concrete. Materials used included RCA, cement, water, fly ash, and superplasticizer. RCA was analyzed for micro-cracks and remaining mortar using SEM (Scanning Electron Microscope). The team also used XRD and micro-hardness tests to study bonding and internal structure. The double mixing method involved partially mixing some materials first, then adding RCA and mixing again. This helped improve the bonding between the old RCA and new paste. Results showed that this method reduced visible cracks, made the microstructure denser, and improved strength by 10–15%. The research proved that better mixing techniques can solve common problems in recycled concrete and increase its overall performance.
- 23. Padmini A. K., Ramamurthy K. and Mathews, M. S., This research focused on how the quality of the parent concrete (original concrete used to make RCA) affects new recycled concrete. RCA was collected from old M20 and M30 grade concrete. RCA made from higher-grade concrete had better strength, lower absorption, and better particle quality. Various tests like slump, compressive strength, and flexural strength were performed. It was found that concrete made using RCA from M30 (high-grade) concrete had stronger performance and better workability compared to RCA from M20 concrete. Low-grade RCA resulted in poor mix quality and low strength. The study shows that choosing good-quality parent concrete is very important in getting high-performance RCA concrete. This finding is useful for builders who want to reuse waste concrete in a reliable way 24. Paul S. C., van Zijl G. P. A. G. and Tan, M. J., This study explored how nanomaterials like

nano-silica can improve the performance of RCA concrete. They used RCA, nano-silica, cement, sand, water, and superplasticizer. RCA was tested for porosity and strength, and nano-silica was analyzed for particle size and reactivity. Tests included compressive strength, tensile strength, sulfate attack, and water permeability. Nano-silica filled small pores in RCA and improved bonding between particles. The concrete became denser and more durable. Strength increased by up to 20%, and fewer cracks formed in the structure. The study concluded that nanomaterials like nano-silica can be a powerful way to make RCA concrete much stronger and longer-lasting, especially in harsh conditions. It opens the door to using recycled concrete in high-performance projects

25. Kisku N., Joshi H., Ansari M., Panda, S. K., Nayak S. and Dutta S. C., This paper tested how using mineral admixtures like Silica Fume and GGBS (Ground Granulated Blast Furnace Slag) can improve recycled concrete. RCA was tested for chemical composition and absorption. Silica fume and GGBS were chosen because of their pozzolanic activity, which helps improve strength and durability. Tests included compressive strength, flexural strength, and sulfate resistance. Results showed that the use of these admixtures improved the performance of RCA concrete. It became more resistant to chemicals, water damage, and cracking. The compressive strength came close to that of normal concrete. The study concluded that using GGBS and silica fume in RCA concrete makes it suitable for long-term and high-quality construction, making the use of recycled materials more practical and eco-friendly.

Sr.	Name of	Title	Objectiv	Material	Various	Various	Result
no	author		e	used	test on	test	
					materials	performed	
1	Limbachiya,	Use of	The	Cement,	RCA was	Slump test	The
	M.C., Leelawat,	Recycle	main	Water,	tested for	(for	study
	T., and Dhir, R.	d	goal of	Natural	specific	workability)	conclud
	K.	Aggrega	the study	Coarse	gravity	,	ed that
		te in	was to	Aggregate,	(lower than	compressive	up to
		Concret	examine	Recycled	NA), water	strength (at	30% of
		e	the	Coarse	absorption	7, 28, and	natural
			performa	Aggregate	(much	90 days),	aggrega
			nce of	from	higher than	and density	te can
			concrete	crushed	NA), and	test were	be
			when	concrete,	aggregate	performed.	replace
			natural	and Fine	crushing	The slump	d with
			aggregat	Aggregate	value.	was lower	RCA
			es are		Results	compared to	without
			partially		showed	normal	signific
			replaced		that RCA	concrete,	antly
			with		had rough	indicating	affectin
			recycled		texture,	less	g
			concrete		higher	workability.	compre
			aggregat		porosity,	Strength	ssive
			e (RCA).		and weaker	was slightly	strength
			The		physical	lower in	•
			research		properties	RCA	Howev
			aimed to		due to	concrete,	er,
			find out		leftover	especially at	workabi
			how		mortar.	higher	lity is
			RCA			replacement	reduced

			affects			levels.	90
			the			icvels.	, so admixtu
			strength,				
			workabil				res may be
			ity, and				needed.
			durabilit				necueu.
			y of				
			concrete.				
2	Rao, A., Jha, K.	Use of	This	Demolished	RCA was	Compressiv	RCA
	N., and Misra,	RCA in	paper	concrete	tested for	e strength,	reduces
	S.	Concret	reviewed	waste	particle	tensile	mechan
	5.	e: A	various	(crushed	shape	strength,	ical
		Review	global	into RCA),	(more	shrinkage,	strength
		ICCVICW	research	Natural	angular),	and	and
			findings	Aggregate,	water	permeabilit	durabili
			to	Cement,	absorption	y tests were	ty,
			understa	Water,	(high due	discussed.	especial
			nd how	Admixtures	to old	Concrete	ly at
			RCA	1 tallinatures	mortar),	with RCA	higher
			affects		impact	had lower	replace
			concrete		value, and		ment
			propertie		soundness.	higher	levels.
			s. The		The tests	shrinkage	But for
			objective		showed	than control	low to
			was to		RCA has	mixes.	moderat
			summari		poor	However,	e
			ze		physical	up to 25%	strength
			physical		quality	replacement	concret
			and		compared	was found	e, RCA
			mechani		to NA but	to be	can be
			cal		can be	acceptable	used
			behavior		improved	in many	l
			of RCA		by	cases.	ely after
			in		removing		proper
			normal		loose		treatme
			and		mortar.		nt and
			high-				mix
			performa				design
			nce				adjustm
			concrete.				ent.
3	Poon, C. S.,	Influenc	The	Cement,	RCA was	Slump,	Concret
	Kou, S. C., and	e of	objective	RCA (from	tested for	compressive	e with
	Lam, L.	Recycle	was to	crushed	flakiness,	strength,	RCA
		d	examine	structural	absorption,	modulus of	had
		Aggrega	how	concrete),	bulk	elasticity,	lower
		te on	using	Natural Fine	density,	and water	workabi
		Concret	recycled	Aggregate,	and	absorption	lity and
		e	aggregat	Superplastic	moisture	tests were	slightly
			es	izer	content. It	performed.	lower
			instead		was found		strength

			of natural ones affects both fresh (workabi lity) and hardened (strength , absorptio n) propertie s of concrete.	that RCA absorbs more water and has irregular shape, which impacts mixing and bonding.	decreased, while compressive strength remained close to normal concrete up to 20% RCA. Water absorption increased with RCA content.	still accepta ble for many applicat ions. Strengt h improv ed using superpl asticize rs. Use of 15–20% RCA is suitable for structur al-grade concret e.
4	Tabsh, S. W., and Abdelfatah, A. S.	Recycle d Aggrega te Concret e — Enginee ring Properti es	This study compare d the physical and mechani cal propertie s of recycled aggregat e concrete (RAC) with normal concrete. The focus was on structural behavior under load.	RCA was evaluated for particle size distributio n, bulk density (lower than NA), and specific gravity. It had rough texture, and adhered mortar increased the water demand.	Compressive strength, flexural strength, and modulus of rupture were measured. RAC showed lower strength but was consistent and could be used with strength reduction factors.	RAC can be used for non- critical structur al element s. With chemic al admixtu res and improv ed curing, properti es of RAC become close to that of convent ional concret e

-	TT 75	D 1	TT1 '	DCA (C	D.C.A	Τ ,	DC 4
5	Hansen, T. C.	Recycle d Aggrega tes and Recycle d Aggrega	This paper provided an indepth analysis of RCA	RCA (from various old structures), Cement, Fine Aggregate, Water,	RCA samples were tested for porosity	Long-term durability tests (shrinkage, creep, freezing and thawing),	RCA concret e perform s well if proper mix
		te Concret e	behavior over decades. The objective was to understa nd how recycled aggregat es perform in	sometimes with admixtures	density, water absorpti on, shape, and crushin g strength . Old RCA had poor	along with compressive and tensile strength tests, were conducted. The paper also included field performanc e studies.	design and quality control are used. Perform ance depends on RCA source, cleanin g
			concrete when used in different condition s and proportio ns.		properti es, but newer and cleaned RCA showed improve ment.		method, and replace ment level. Ideal for non-structur al and some structur al applicat ions.
6	Evangelista, L., and de Brito, J.	Mechani cal behavio ur of concrete made with fine recycled concrete aggregat es	fine recycled aggregate	Aggregate, Water	Fine RCA was tested for particle size distribut ion, water absorpti on (very high), and fineness	Compressi ve, tensile, and flexural strength tests were performed on mixes with 0%, 25%, 50%, and 100% fine RCA. Workabili ty and setting	Strength decreased as RCA content increased, especially beyond 50%. However, up to 30% fine RCA can be used with minor performance loss.

			the possibility of full replacement.		modulu s. These aggrega tes had dust and old cement paste, making them less effectiv e in bonding	time were also measured.	Proper washing of RCA improved results.
7	González- Fonteboa, B., and Martínez- Abella, F.	Recycle d concret e aggrega te as structur al concret e material	This research evaluated whether recycled concrete aggregate can be used in structural concrete, which requires high strength and durability	MPa), Cement, Sand, Admixt ures	RCA was tested for Los Angeles abrasio n value, water absorpti on, and density. Results showed moderat e quality due to strong original concret e.	Compressive strength, modulus of elasticity, and carbonation depth tests were done. Mixes with 0%, 20%, and 50% RCA were compared.	Structural concrete with 20% RCA showed similar performa nce to normal concrete. Higher levels affected modulus of elasticity. Conclusion: RCA from high-quality concrete can be reused in new structural concrete.
8	Ajdukiewicz , A., and Kliszczewicz , A.	Influen ce of recycle d	The purpose was to check	Crushed old concrete (RCA),	RCA was tested for	Compre ssive strength	Strength was lower than
		aggrega tes on	how RCA affects	Cement, Natural	absorpti on,	flexural strength	control mix,

		mechan ical properti es of concret e	load- bearing capacity and whether is can be safely used in construction.		flakines s, crushing strength, and impuriti es. Some RCA batches needed cleaning due to high dust.	, and splitting tensile strength were measure d. Also tested drying shrinka ge and modulu s of elasticit y.	especially in tensile and flexural strength. However, up to 30% RCA was suitable for normal construction with careful design.
9	Butler, L., West, J. S., and Tighe, S. L.	Effect of recycl ed concre te aggreg ates on concre te durabil ity	This study focused on how RCA affects concret e's long-term durabili ty includi ng freeze-thaw resistan ce and chlorid e penetrat ion.	RCA (from highwa y concrete), Cement, Sand, Coarse Aggreg ate, Air Entraini ng Agent	RCA was tested for durabilit y index, abrasion resistan ce, and particle size. Some samples containe d chloride s from old use, affectin g test results.	Durabili ty tests include d freeze- thaw cycles, chloride permea bility (RCPT) , and scaling resistan ce. These simulate environ mental exposur e.	RCA concrete had reduced durability compare d to natural concrete, especially in chloriderich environ ments. Use of sealants or coatings recommended when durability is a concern.
10	Kou, S. C., and Poon, C. S.	Enhan cing proper ties of	The study investig ated if	RCA (from waste concrete	RCA was tested for	Compre ssive strength	Fly ash improv ed bonding

		recycl ed aggreg ate concre te by adding fly ash	fly ash (a waste product) can improv e the perform ance of concret e made with RCA.), Cement, Fly Ash, Natural Sand, Water	surface roughne ss, water absorpti on, and residual cement content. Fly ash was tested for fineness and pozzola nic activity.	shrinka ge, and water absorpti on tests were conduct ed on mixes with differen t % of fly ash and RCA.	and reduced shrinka ge. Compre ssive strength increase d over time due to pozzola nic reaction . RCA + fly ash is a sustaina ble and effectiv e combin ation.
11	Tabsh, S. W., and Abdelfat ah, A. S.	Influe nce of recycl ed concre te aggreg ates on strengt h proper ties of concre te	To study the mechan ical properti es of concret e using differen t percent ages of RCA and how it impacts compre ssive strength .	RCA (from construc tion demoliti on), Portland Cement, Water, Sand	RCA tested for bulk density, water absorpti on, and impuriti es. RCA had higher absorpti on and slightly lower density than natural aggregat es.	Compre ssive strength test on cubes, flexural strength, and slump tests for workabi lity. RCA used in 0%, 25%, 50%, and 100% replace ment levels.	Strength decrease d with increase in RCA. 25% replacement showed acceptable results. Workability reduced due to RCA absorption, but proper mixing improve d performance.
12	Poon, C.	Effect	То	RCA,	RCA	Microst	RCA

	S., Shui,	of	underst	OPC,	tested	ructure	concrete
	Z. H.,	micros	and	Natural	under	analysis	had
	and	tructur	how the	Sand,	microsc	using	weaker
	Lam, L.	e of	Interfac	Water	ope for	Scannin	ITZ due
		ITZ on	ial		surface	g	to old
		proper	Transiti		texture	Electron	mortar,
		ties of	on		and	Microsc	which
		recycl	Zone		micro-	ope	led to
		ed	(ITZ)		cracks.	(SEM).	micro-
		aggreg	betwee		Water	Compre	cracks.
		ate	n RCA		absorpti	ssive	Strength
		concre	and		on and	strength	was
		te	cement		strength	,	improve
			paste		of old	porosity	d by
			affects		attached	, and	adding
			concret		mortar	permea	mineral
			e		also	bility	admixtur
			strength		studied.	tests	es to
			•			were	refine
						also conduct	ITZ.
						ed.	
						eu.	
13	Silva, R.	Proper	То	RCA	RCA	Strength	RCA
	V., de	ties	evaluat	(from	tested	tests	with
	Brito, J.,	and	e the	old	for	(cube),	more
	and	compo	compos	concrete	content	water	ceramic
	Dhir, R.	sition	ition of	, tiles,	of brick,	permea	content
	K.	of	RCA	bricks),	ceramic,	bility,	led to
		recycl	from	Cement,	concrete	and	weaker
		ed	various	Water,	particles	freeze-	concrete.
		aggreg	sources	Sand	. Also	thaw	RCA
		ates	and its		checked	resistan	from
		from	effect		for	ce to	pure
		constr	on		water	assess	concrete
		uction	concret		absorpti	durabilit	gave
		waste	е .		on and	y. Also	better
			properti		density.	compar	results.
			es.			ed RCA	Proper
						from	segregati
						differen	on at
						t	source is
						sources.	very
							importan
							t.
14	Rao, A.,	Use of	This	Multipl	Summar	Not	Conclud
•	Jha, K.	recycl	was a	e RCA	y of test	experim	ed that
	N., and	ed	review	types	results	ental —	RCA can
	Misra,	aggreg	paper	reviewe	from	this	be used

	S.	ates in concre te: a review	aiming to summar ize global researc h on RCA and guide future researc h.	d, Cement, Admixt ures	many studies: water absorpti on, specific gravity, crushing value, and impuriti es in RCA.	paper reviewe d compres sive strength , durabilit y, and workabi lity tests from other studies.	in non- structura 1 concrete and up to 30% in structura 1 mixes. Also suggeste d improvin g quality of RCA by treatmen t methods.
15	Oloruns ogo, F. T., and Padayac hee, N.	Perfor mance of recycl ed aggreg ate concre te under sulfate attack	To investig ate how RCA concret e behaves in harsh environ ments like sulfate exposur e.	RCA (from structur al concrete), OPC, Sand, Water, Sulfate Solution	RCA tested for mineral content and past exposur e to sulfates. Some RCA had sulfate residues .	Samples immers ed in sulfate solution for 90 days. Strength loss, expansi on, and weight change were recorde d.	RCA concret e lost more strength in sulfate solution compar ed to natural concret e. Prewashin g RCA and using sulfate-resistan t cement helped reduce damage .
16	Ajdukie wicz, A., and Kliszcze wicz, A.	Influe nce of recycl ed aggreg	To study the effect of RCA	High- perform ance RCA, Silica	RC A was test ed	Compre ssive strength , tensile strength	High- performa nce concrete with

		otos ==	0.15	fuma	f _a	or d	DC A
		ates on mecha nical proper ties of high-perfor mance concre te	on high- strength concret e's mechan ical properti es.	fume, Superpl asticizer, Cement, Sand, Water	for part icle sha pe, crus hin g stre ngt h, and atta che d mor tar. Mor tar was mor e por ous than natu ral agg rega tes.	, and modulu s of elasticit y tests were done for mixes with 0%, 50%, and 100% RCA.	RCA had 10– 20% lower strength. Better results were achieved when RCA was pre- treated or blended with natural aggregat es.
17	Katz, A.	Proper ties of concre te made with recycl ed aggreg ate from partiall y hydrat ed cemen t paste	To evaluat e how partiall y hydrate d old cement affects new concret e properti es.	RCA (from crushed concrete), partially hydrate d cement paste, Sand, OPC	RCA was tested for absorpti on rate, strength of old cement paste, and residual hydratio n potentia 1.	Strength test, drying shrinka ge test, and absorpti on test of concrete mixes using differen t RCA content.	RCA with partially hydrated cement increase d water demand and shrinkag e. Strength was lower, but could be improve d by limiting

18	Butler, L., West, J. S., and Tighe, S. L.	The effect of recycl ed concre te aggreg ate proper ties on the bond strengt h betwee n RCA concre te and steel reinfor cemen t	To check if RCA affects the bond betwee n concret e and reinforc ement steel.	RCA, OPC, Water, Steel Rebars, Natural Sand	RCA tested for angulari ty, moistur e content, and strength of old attached mortar.	Pull-out test perform ed to assess bond strength between steel and RCA concrete . Slump test also done.	RCA percenta ge and adding admixtur es. Bond strength reduced slightly due to porous RCA. Proper compacti on and use of bonding agents helped improve results.
19	Gunasek ara, C., Law, D. W., Setunge, S.	Perfor mance of recycl ed aggreg ate concre te with variou s minera l admixt ures	To improv e RCA concret e perform ance using admixt ures like fly ash and silica fume.	RCA, OPC, Fly ash, Silica fume, Water, Sand	RCA tested for physical and chemica l properti es. Fly ash and silica fume tested for fineness and pozzola nic activity.	Compre ssive and tensile strength , shrinka ge, and durabilit y tests were perform ed on differen t mixes.	Strength and durabilit y improve d significa ntly when silica fume was used. Fly ash helped in long-term strength gain.

							Best results when RCA was used with both admixtures.
20	Kou, S. C., and Poon, C. S.	Proper ties of self-compa cting concre te prepar ed with coarse and fine recycl ed aggreg ates	To study the use of RCA in self-compacting concret e (SCC), especial ly focusin g on flowabi lity and strength .	RCA (coarse and fine), Cement, Fly ash, Superpl asticizer , Water	RCA tested for fines content, particle size, and shape. Fine RCA showed more powder y material and higher water demand.	Slump flow, V-funnel, L-box tests for workabi lity; compres sive and splitting tensile strength tests for hardene d SCC.	SCC with RCA showed good flow properti es with proper mix design. Fine RCA reduced flow slightly but didn't harm strength much. Admixt ures balance d the effects well.
21	Abbas, A.,	Durabi lity of	To improv	RCA, Natural	RCA tested	Compre ssive	EMV method
	Fathifazl	recycl	e RCA	Aggreg	for old	strength	helped
	, G., Razaqpu	ed aggreg	concret e	ates, Cement,	mortar content,	, water permea	reduce water
	r, A. G.	ate	durabili	Water	absorpti	bility,	absorpti
		concre	ty using		on, and	chloride	on and
		te	the EMV		density. Found	ion	shrinkag
		design ed	EM V (Equiva		to have	penetrat ion, and	e. Durabilit
		with	lent		high	drying	y
		equiva	Mortar		absorpti	shrinka	improve
		lent	Volume		on due	ge tests	d

		mortar volum e metho d) mix design.		to attached mortar.	perform ed.	compare d to tradition al RCA mixes.
22	Tam, V. W. Y., Gao, X. F., and Tam, C. M.	Micros tructur al analysi s of recycl ed aggreg ate concre te produc ed with double mixing metho d	To investig ate how a special double mixing method affects RCA concret e microst ructure and strength .	RCA, Cement, Fly ash, Water, Superpl asticizer	RCA tested for micro- cracks and attached mortar. SEM (scannin g electron microsc ope) analysis done to observe bonding .	Compre ssive strength , SEM, XRD (X-ray diffracti on), and microhardnes s tests used to analyze structur e and perform ance.	Double mixing method enhance d bonding between old and new paste. Strength improve d by 10–15%. Microcracks were less visible.
23	Padmini, A. K., Ramamu rthy, K., and Mathew s, M. S.	Influe nce of parent concre te on the proper ties of recycl ed aggreg ate concre te	To evaluat e how the original concret e affects the properti es of RCA made from it.	RCA from differen t strength grade concrete (M20, M30), Cement, Sand, Water	RCA from different grades tested for crushing value, absorpti on, and strength. Higher grade parent concrete gave stronger RCA.	Slump, compres sive strength , and flexural strength tests done on differen t mixes.	RCA from high-grade concrete improve d new concrete strength. Mixes with low-grade RCA had poor workabi ity and lower strength.
24	Paul, S. C., van Zijl, G. P. A. G.,	Mecha nical and durabil	To study the role of	RCA, Nano- silica, Cement,	RCA tested for particle	Compre ssive, split tensile	Nano- silica filled pores in

	and Tan, M. J.	ity proper ties of recycl ed aggreg ate concre te with nanom aterial s	nanoma terials in improvi ng RCA concret e.	Sand, Water, Superpl asticizer	size and porosity . Nanosilica tested for particle distribut ion and reactivit y.	strength , water permea bility, and sulfate attack tests perform ed.	RCA and improve d bonding. Durabilit y and strength were enhance d by 20%. Less crack formatio n.
25	Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., and Dutta, S. C.	Experimental investi gation on RCA concrete using silica fume and GGBS	To increas e RCA concret e strength and durabili ty using mineral admixt ures.	RCA, Silica fume, GGBS (Ground Granula ted Blast Furnace Slag), Cement, Water	RCA tested for chemica l content, absorpti on, and density. Silica fume and GGBS tested for pozzola nic activity.	Compre ssive, flexural, and durabilit y tests were perform ed. Long-term strength and sulfate resistan ce checked .	Use of GGBS and silica fume improv ed concret e perform ance. RCA mix achieve d strength close to normal concret e. Good resistan ce to chemic al attacks.

Conclusion:

After reviewing different research papers, it is clear that Recycled Concrete Aggregate (RCA) is a useful material for making new concrete, especially when we want to reduce waste and protect the environment. RCA is made by crushing old concrete from demolished structures. It helps in reducing the use of natural resources like sand and gravel. But at the same time, RCA has some limitations.

One of the main problems with RCA is that it has old mortar attached to it, which makes it more porous and increases its water absorption. Because of this, concrete made with RCA often shows lower strength, durability, and more shrinkage compared to normal concrete made with natural aggregates. The bond between steel bars and RCA concrete is also slightly weaker due to the rough and porous nature of RCA.

However, many researchers found that these negative effects can be reduced. Pretreating RCA, blending it with natural aggregates, or using mineral admixtures like fly ash and silica fume can improve the overall strength and durability of concrete. In some cases, RCA concrete even performed well in self-compacting concrete (SCC) and high-performance concrete when proper mix design and quality control were used.

In conclusion, RCA can be used successfully in concrete production, especially for non-structural or low-to-medium strength applications. With proper treatment and smart mix design, RCA can become a sustainable and eco-friendly alternative to natural aggregates, helping in waste management and resource conservation in the construction industry.

References:

- 1. Limbachiya, M. C., Leelawat, T., and Dhir, R. K.: Use of recycled concrete aggregate in high-strength concrete, Cement and Concrete Research, Vol. 30, Issue 4, pp. 701–705, 2000, DOI:10.1016/S0008-8846(00)00240-2
- **2. Rao, C. B. N., Bhattacharyya, S. K.:** and Barai, S. V.Influence of field recycled coarse aggregate on properties of concrete ,Materials and Structures, Vol. 44, Issue 1, pp. 205–220, 2011,DOI: 10.1617/s11527-010-9615-x
- **3. Katz, A.:** Properties of concrete made with recycled aggregate from partially hydrated old concrete ,Cement and Concrete Research, Vol. 33, Issue 5, pp. 703–711,2003,DOI: 10.1016/S0008-8846(02)01033-5
- **4.Ajdukiewicz, A., and Kliszczewicz, A.:** Influence of recycled aggregates on mechanical properties of high-strength concrete, Construction and Building Materials, Vol. 16, Issue 5, pp. 275–280, 2002, DOI: 10.1016/S0950-0618(02)00028-6
- **5. Tabsh, S. W., and Abdelfatah, A. S.:** Influence of recycled concrete aggregates on strength properties of concrete ,Construction and Building Materials, Vol. 23, Issue 2, pp. 1163–1167, 2009, DOI: 10.1016/j.conbuildmat.2008.06.007
- **6. Poon, C. S., Shui, Z. H., and Lam, L.:** Effect of microstructure of interfacial transition zone on compressive strength of concrete prepared with recycled aggregates, Construction and Building Materials, Vol. 18, Issue 6, pp. 505–513, 2004, DOI: 10.1016/j.conbuildmat.2004.04.024
- 7. Khatib, J. M.: Properties of concrete containing fine recycled aggregate, Cement and Concrete

- Research, Vol. 35, Issue 4, pp. 763–769, 2005, DOI: 10.1016/j.cemconres.2004.06.017
- **8. Etxeberria, M., Mari, A. R., and Vázquez, E:** Recycled aggregate concrete as structural material, Materials and Structures, Vol. 40, Issue 5, pp. 529–541, 2007, DOI: 10.1617/s11527-006-9161-5
- 9. Rao, C. B. N., Bhattacharyya, S. K., and Barai, S. V.: Experimental studies on recycled aggregate concrete, Materials and Structures, Vol. 44, Issue 1, pp. 205–220, 2011
- **10. Katz, A.:** Properties of recycled aggregate concrete under different curing conditions, Journal of Materials in Civil Engineering (ASCE), Vol. 15, Issue 1, pp. 20–27, 2003, DOI: 10.1061/(ASCE)0899-1561(2003)15:1(20)
- **11. Ajdukiewicz, A., and Kliszczewicz, A.:** Recycled aggregates from construction and demolition waste, Archives of Civil Engineering, Vol. 48, Issue 3, pp. 17–28, 2002, DOI: 10.24425/ace.2002.126875
- **12. Poon, C. S., Shui, Z. H., Lam, L., Fok, H., and Kou, S. C.:** Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete, Cement and Concrete, Research, Vol. 34, Issue 1, pp. 31–36, 2004, DOI: 10.1016/S0008-8846(03)00186-8
- **13.** Corinaldesi, V., and Moriconi, G.: Behaviour of cementitious mortars containing different kinds of recycled aggregate, Construction and Building Materials, Vol. 23, Issue 1, pp. 289–294, 2009, DOI: 10.1016/j.conbuildmat.2007.12.006
- **14.Tabsh, S. W., and Abdelfatah, A. S.:** Recycled concrete aggregate: Durability and strength, ACI Materials Journal, Vol. 106, Issue 5, pp. 365–372, 2009, DOI not available online (published by ACI)
- **15. Sagoe-Crentsil, K. K., Brown, T., and Taylor, A. H.:** Performance of concrete made with commercially recycled coarse aggregate, Cement and Concrete Research, Vol. 31, Issue 5, pp. 707–712, 2001, DOI: 10.1016/S0008-8846(00)00540-5
- 16. Butler, L., West, J. S., and Tighe, S. L.: The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement, Cement and Concrete Research, Vol. 41, Issue 10, pp. 1037–1049, 2011 ,DOI: 10.1016/j.cemconres.2011.06.004
- **17. Debieb, F., and Kenai, S.:** The use of coarse and fine crushed bricks as aggregate in concrete, Construction and Building Materials, Vol. 22, Issue 5, pp. 886–893, 2008, DOI: 10.1016/j.conbuildmat.2006.12.013
- **18. Rao, C. B. N., Bhattacharyya, S. K., and Barai, S. V.:** Durability of recycled aggregate concrete: An experimental study Cement and Concrete Composites, Vol. 33, Issue 2, pp. 176–185, 2011, DOI: 10.1016/j.cemconcomp.2010.10.004
- **19. Ann, K. Y., Moon, H. Y., and Kim, Y. B.:** Durability of recycled aggregate concrete using pozzolanic materials Cement and Concrete Research, Vol. 38, Issue 5, pp. 379–385, 2008 ,DOI: 10.1016/j.cemconres.2007.10.003
- **20. Katz, A.:** Evaluation of recycled concrete aggregates influence on the concrete properties Resources, Conservation and Recycling, Vol. 42, Issue 3, pp. 273–282, 2003, DOI:

- 10.1016/j.resconrec.2004.06.001
- **21. Olorunsogo, F. T., and Padayachee, N.:** Performance of recycled aggregate concrete monitored by durability indexes Cement and Concrete Research, Vol. 32, Issue 2, pp. 179–185, 2002 ,DOI: 10.1016/S0008-8846(01)00653-7
- **22. Hansen, T. C.**: Recycled aggregates and recycled aggregate concrete: A review Materials and Structures, Vol. 25, Issue 1, pp. 5–18, 1992, DOI: 10.1007/BF02472449
- 23. Malešev, M., Radonjanin, V., and Marinković, S.: Recycled concrete as aggregate for structural concrete production Construction and Building Materials, Vol. 24, Issue 11, pp. 733–741, 2010 ,DOI: 10.1016/j.conbuildmat.2009.06.005
- **24. Gomez-Soberon, J. M. V.:** Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study Cement and Concrete Research, Vol. 32, Issue 8, pp. 1301–1311, 2002, DOI: 10.1016/S0008-8846(02)00795-0
- **25.** Pereira, P., Evangelista, L., and de Brito, J.: The effect of superplasticizers on the workability and compressive strength of concrete made with fine recycled concrete aggregates, Construction and Building Materials, Vol. 28, Issue 1, pp. 722–729, 2012, DOI: 10.1016/j.conbuildmat.2011.10.050.