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Abstract 

Power quality (PQ) assessment is crucial in modern multi-source grids that accommodate 

thermal, solar, and wind power. The systems tend to exhibit nonlinear and intermittent 

characteristics and cause disturbances in the shape of voltage sags, swells, harmonics, and 

transients. Rule-based and traditional signal-processing systems are unable to categorize these 

disturbances due to high noise and variability present in actual data. In this paper, an efficient PQ 

analysis is proposed with a hybrid ensemble machine learning technique. A synthetic database of 

8000 signals for 16 single and composite PQ disturbances based on IEEE and IEC standards was 

established. Continuous Wavelet Transform (CWT) was employed to transform 1D signal into 

2D time–frequency images to provide better feature extraction. Three ensemble models, Ada-

Boost, Light-GBM, and XG-Boost, were trained and tested using clean and noisy (20 dB) data. 

Ada-Boost demonstrated the maximum accuracy of 99.92% with zero noise and 99.86% with 20 

dB noise. Light-GBM and XG-Boost were also satisfactory, indicating accuracies of 95.65%–

98.73% and 96.46%– 98.64%, respectively. The results authenticate that ensemble learning 

methods offer a reliable and scalable solution to real-time PQ monitoring in smart grid systems 

that work better than traditional approaches in noisy and complex situations. 

Keywords: Power quality assessment, Machine Learning, CWT, Light-GBM 

1. Introduction 

Power quality (PQ) evaluation is a key component in the stability, reliability, and efficiency of 

modern power systems. It entails the quantification of various electrical parameters such as 

voltage sags, swells, harmonics, flicker, and transients that can affect utility equipment as well as 

end-user devices [1, 2]. With the increasing demand for high-quality and uninterrupted power, 

especially in industrial and commercial use, maintaining the optimum quality of power is more 

important than ever before [3]. PQ assessment by a reliable method helps to detect the 

disturbances early on, thus it can be acted upon in a timely manner and losses or damages can be 

prevented [4]. Traditional methods for PQ assessment usually rely on rule-based or signal 

processing techniques, which while being useful, struggle to deal with dynamic and nonlinear 

characteristics present in contemporary power systems [5]. 
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Figure 1: Power quality evaluation system [6]. 

 

The PQ evaluation process is also rendered more complicated when multi-source grid systems 

are considered, e.g., those being power networks with the incorporation of multiple types of 

energy sources, such as traditional thermal plants, solar photovoltaic installations, wind turbines, 

and also other distributed energy resources (DERs) [7]. The randomness and intermittence of 

renewable sources of energy impose new complications in PQ maintenance, such as heightened 

harmonic distortion, voltage instability, and frequency fluctuation [8]. In these systems, 

interoperability of disparate sources, and the dynamic load conditions, lead to the incidence of 

more complex and higher quantities of PQ disturbances [9]. Traditional PQ monitoring 

equipment can be inadequate to manage these challenges because it lacks sufficient adaptability 

and is incapable of processing enormous amounts of real-time data efficiently. Therefore, there is 

increasing demand for more intelligent, data-driven approaches able to manage the uncertainties 

and variability present in multi-source grids. Artificial Intelligence (AI) and Machine Learning 

(ML) are gaining traction as prospective solutions in improving power quality monitoring and 

assessment over the last few years. AI models can learn from past data as well as real-time data 

and identify, classify, and forecast PQ disturbances more accurately and faster [10]. 
 

Figure 2: AI development and expansion [11]. 
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However, implementing AI in PQ assessment is not without challenges. The main issues include 

data quality and availability, model generalization across different grid configurations, 

computational complexity, and the risk of overfitting [12]. Moreover, a single machine learning 

model's capability in transforming its hidden features into useful representations of data may 

indeed be too narrow to realize the key aspects related to all the different parameters of power 

quality, which is especially true in the case of high-dimensional and imbalanced datasets 

typically found in power systems. 

The mentioned issue necessitates the development of a new class of complex, composite 

techniques that can handle/challenge difficult situations, e.g., the many-model technique, 

andmitigate measurement errors for stability due to the ongoing changes. The great efficiency of 

the hybrid ensemble method is its responsiveness to the new changes that emerge from different 

sources of a smart grid [13]. The research study displays how this model modifies the 

classification accuracy of different PQ disturbances in comparison with the ML algorithm. 

Moreover, the model’s scalability and suitability for real-time applications are highlighted, 

which makes it an adaptable tool for modern smart grid systems. Here are the objectives of the 

research study are: 

 To integrate ensemble ML techniques (such as Ada-Boost, Light-GBM and XG-Boost) to 

enhance the prediction and classification capabilities of power quality metrics and to evaluate 

the performance of these models in detecting power quality issues. 

 To analyze the performance of various ensemble ML models in terms of precision, recall, 

and F1-score for detecting power quality disturbances in multi-source grid systems under 

real-world operational conditions. 

 To develop a real-time monitoring system for power quality in multi-source grid systems, 

using the proposed ensemble approach to facilitate quick detection and mitigation of 

disturbances such as voltage sags, spikes, and harmonic contamination. 

 To compare the ensemble ML model with traditional power quality assessment methods in 

term of accuracy to noise and data uncertainty 

2. Literature Review 

In this section, the authors provide previous study based on a hybrid approach for power quality 

assessment in multi-source grid systems using ensemble ML. 

Jiang et al., (2025) [14] enhanced the accuracy of diagnosing power quality issues in micro grids 

by using a “Multi-level Global Convolutional Neural Network (MGCNN)” paired with a 

Simplified double-layer Transformer model. The model employs the “Multi-head Self Attention 

(MSA)” and MLP parts of the improved S Simplified double-layer Transformer to delve deeper 

into the signals' periodic global and transient local features; a fully-connected layer and a 

Softmax classifier are then used to ascertain the classification results. While exploring more 

complicated aspects, the model successfully preserves the signal's original one-dimensional 

temporal qualities. 

Anwar et al., (2025) [15] presented a new method for identifying and categorizing faults by 

studying patterns of voltage and current across different phases of a transmission line. Machine  
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learning methods such as “Random Forest (RF)”, “K-Nearest Neighbors (KNN)”, and “Long 

Short-Term Memory (LSTM)” networks are tested using a large dataset that contains a variety of 

defect scenarios. For better detection accuracy and resilience, an ensemble approach called RF- 

LSTM Tuned KNN is employed. On a multi-label dataset, RF-LSTM Tuned KNN outperforms 

both RF (97.50%) and KNN (96.55%), according to the results. The accuracy rate is 99.96%. 

With an accuracy of 99.85%, KNN outperforms RF, which comes in second with 99.72% in 

binary classification. 

Liu et al., (2025) [16] provided a solid ensemble architecture for DN-based PQD investigation 

and event categorization. In order to accurately detect events, these attributes are categorized 

using Light-GBM. Compared to other benchmark approaches, event identification achieves an 

average accuracy of 99.33% under different noise levels. In addition, a 98.33% success rate in 

event detection was achieved using real-time hardware-in-the-loop simulation, proving the 

method's efficacy. 

Mishra et al., (2025) [17] created a novel system for the categorization of PQ disruptions using 

the Hilbert transform separation method and “Improved Eigenvalue Decomposition of Hankel 

Matrix (IEVDHM)”. The collected features are categorized into 19 distinct types of disturbances 

using the bagged decision tree, optimizable neural network, and linear support vector machine. 

Accuracy levels of 92.48%, 91.07%, 88.18%, and 88.01% for clean PQ signals, noisy PQ signals 

(additive white Gaussian noise) with a signal-to-noise ratio of 60 dB, 40 dB, and 20 dB, 

respectively, were attained by the bagged decision tree-based classifier. 

R. Singh et al., (2024) [18] intended implementing state-of-the-art ML algorithms, particularly 

“Support Vector Regression (SVR)”, to improve the effectiveness and dependability of such 

systems. Specifically, it achieved an MSE of 2.002 for solar data and 3.059 for wind data, as well 

as an RMSE of 1.415 for solar data and 1.749 for wind data. Operating expenses were cut by 

8.4% as a result of better energy scheduling made possible by this increased precision. As a 

result, renewable energy utilization increased by 12%, peak load decreased by 15%, and the 

supply-demand balance improved by 10%. 

Sipai et al., (2024) [19] assessed the efficacy of 6 distinct ML algorithms in the classification of 

PQDs, with statistical information derived from discrete wavelet transform serving as component 

input. 11 distinct PQDs, each having its own unique set of 5,500 synthetic signals produced in 

compliance with IEEE 1159-2019, were used for the performance analysis. The “Extra Tree 

(ET)” classifier demonstrated greater accuracy and resilience when tested on unseen noisy, 

hardware-generated, and genuine PQD signals, outperforming other classifiers (KNN, RF, DT, 

LRM, GNB) that used 'haar' wavelet-extracted features. 

Baig et al., (2024) [20] showed a voting ensemble method for the classification of 16 PQDs 

utilizing the DCNN architecture via transfer learning. Using images from four different 

datasets—one with no noise, one with 20 dB noise, one with 30 dB noise, and one with random 

noise—MATLAB is used to train and execute four pre-trained DCNN architectures: “ResNet-50, 

VGG-16, AlexNet, and SqeezeNet”. Results show that ResNet-50 with the SE mechanism works 

well on its own as a classification model, and that using an ensemble method improves its 

generalized performance even more for PQD classification. 
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Almasoudi et al., (2023) [21] concentrated on the integration of AI into contemporary power 

generation networks, especially within the framework of the “Fourth Industrial Revolution 

4IR)”. More efficient and dependable power systems are in high demand, and AI has emerged 

as a potential solution to meet this demand. This is accomplished by collecting real-time data 

from the user's end and looking at the occurrence of internal and external grid faults over a three- 

year period. The research presented here details the creation of CNN-RNN, CNN-GRU, and 

CNN-LSTM hybrid models. 

 

3. Problem Statement 

In modern power systems, especially multi-source heterogeneous grid systems consisting of 

thermal, solar, and wind energy systems, power quality (PQ) maintenance has emerged as a 

daunting task because of the nonlinear, intermittent, and noisy characteristics of these systems. 

Conventional power quality assessment methods that consist of rule-based methods and signal- 

processing methods, however, would fail to detect and identify various PQDs like voltage sags, 

swells, harmonics, and transients with high accuracy under noisy environments. This 

ineffectiveness undermines real-time monitoring and mitigation methods under smart grids. 

Thus, the necessity for having a more efficient, reliable and scalable process that can identify a 

large variety of PQDs under variability and noise is the pressing requirement in this research 

scenario. The solution problem under consideration in this work is the development of a hybrid 

method that leverages ensemble machine learning methods to improve the accuracy, reliability, 

and scalability of PQ assessment in multi-source heterogeneous grid systems. 

 

4. Research Methodology 

Figure 3 provides an overview of the methodology that has been suggested for PQD 

classification. It has to have these four main components: the creation of PQD datasets; the 

modification of time and frequency; the use of ML ensemble learning; and lastly, evaluation. The 

initial stage involves creating a number of PQD signals using the free and open-source PQD 

signal generator. The signals are first converted into a time-frequency spectrum of signals using 

CWT once the data has been formulated. The third phase involves classifying PQDs using a 

variety of ML ensemble models, such as Ada-Boost, Light-GBM, and XG-Boost. Lastly, several 

performance assessment matrices are considered in order to assess the model's performance. 

Following this main part, it will find subsections that elaborate on each component of the 

suggested structure. 
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Figure 3: Framework of proposed study 

 

4.1 PQDs Dataset Generation 

In this study, researchers build a dataset of sixteen distinct PQD types, encompassing both single 

and multiple disturbances, in accordance with the requirements of “IEEE-1159, EN 50160, and 

IEC 61000” [22]. For the purpose of evaluating classifier performance, it has been extensively 

utilized in earlier research. An open-source PQD dataset generator was used to configure the 

parameters, the details of which are shown in Table 1. 

Table 1: Generating a PQD dataset: parameters 
 

Parameters 

Number of PQD classes ������� ������� + ��������� 
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������ ����ℎ 

 
����������� ��������� ��� 

 
��� + ��������� ����� 

 
����� ����� + ��������� 

Each class Samples 500 

Frequency Reference 60 �� 

Frequency Sampling 3.6 ��� 

Number of cycles 10 

Signal Magnitude 2 �. �. 

Noise levels 20 �� ��� ������ ����� 

The dataset with dimensions of 8000 × 1600 is the outcome of this method. The produced data is 

supplemented with random noise ranging from 20 dB in order to mimic realistic settings and 

allow for comparison analysis. There are sixteen PQDs, and Figure 4 displays an example of 

them with 20 dB noise and their corresponding class information. 
 

Figure 4: An example of PQDs with 20 dB noise 

 

4.2 Time–Frequency Transformation 

A time-frequency demonstration of a time domain signal can be achieved using any number of 

signal processing techniques. One of these methods, CWT, stands out from the crowd because of 
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the way it represents transitory signals in terms of time and frequency. Studies using PQDs 

benefit greatly from CWT because most PQDs are temporary. 

They can produce a collection of wavelet basis functions using Equation (1), assuming that ɸ(�) 

is the mother wavelet. 

Φ = 
1 �−�

) (1) 
�,�  Φ ( 

√� � 

Here, Φ is the mother wavelet, while � ��� � are the scaling factor and translation time, 

respectively. They could discover the CWT for a certain continuous signal (�) by plugging it into 

Equation (2). 

�(�, �) = 
1 

√� 

∞ 
[∫

−∞ 

�−� 
(�)Φ ( ) ��] 

� 

To get the amplitude scale of the wavelet coefficients after the transformation, use Equation (3). 

(�, �) = |�(�, �)| (3) 

Following the application of CWT, Figure 5 displays the time-frequency representations of the 

signals. 
 

Figure 5: A sample of PQDs with 20 dB noise is shown in time-frequency form 

 

4.3 Ensemble ML models 

In this section, the authors define the three ensemble ML methods such as Ada-Boost, Light- 

GBM, and XG-Boost. 

a) Ada-Boost 

Ada-Boost (Adaptive Boosting) is well-known not only for its effectiveness in ensemble learning 

but it is also one of the most popular techniques for classification tasks. The method is about 

aggregating a series of weak learners that are mostly decision stumps (i.e., trees of shallow depth 

that have one split) into a single strong classifier [23]. The main concept of Ada-Boost is to train 

(2) 
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the weak learners one by one in such a way that every new learner pays bigger attention to those 

samples that were wrongly classified by the earlier ones. First, each training sample is assigned 

an equal weight, but the weights of misclassified samples are increased in each iteration so that 

the subsequent learner focuses more on these "hard" instances [24]. The final model is a 

weighted aggregate of all the weak models, with those which perform better given greater 

importance. Ada-Boost is noisy data and outlier sensitive because it attempts to overcorrect 

misclassifications, but it works well with clean and balanced data sets [25]. It's commonly used 

in face detection, text classification, and medical diagnosis applications because it's simple and 

efficient. 

b) Light Gradient Boosting Machine (Light-GBM) 

Light Gradient Boosting Machine (LightGBM) is a fast and memory efficient gradient boosting 

framework developed by Microsoft. It has been created with the focus on speed and 

performance. By using a leaf-wise approach when constructing decision trees (in contrast to 

level-wise in common gradient boosting methods), it is able to find the best splits for further loss 

reduction and increase accuracy more efficiently [26]. One of the nice features of Light-GBM is 

that it employs the histogram-based algorithm for all features. It helps to improve speed and 

reduce memory consumption by discretizing continuous feature variables into discrete bins. One 

more thing, it also lets authors perform parallel and GPU learning so that if authors have large 

datasets with high dimensionality, they can easily deal with them [28]. The Light-GBM 

framework has the following powerful properties: categorical feature handling, early stopping, 

and regularization which makes it a very robust and flexible tool for classification, ranking and 

regression tasks [29]. However, the leaf-wise tree growth that it uses would make overfitting 

more likely particularly in the case of small datasets. 

c) XG-Boost 

XG-Boost is a majorly adopted machine learning algorithm that is based on the gradient boosting 

technique. It follows the approach of building a number of decision trees in a sequence, where 

each new tree corrects the errors related to the previous ones by decreasing a certain loss 

function [30]. XG-Boost apart is its efficiency, scalability, and regularization capabilities. It uses 

both L1 and L2 regularizations for the problem of over fitting, and it can handle natively both 

sparse data and missing values [31]. XG-Boost employs cutting-edge optimization techniques, 

namely, parallel computation, tree pruning, and cache awareness, which enable it to be 

dramatically faster and more precise than traditional gradient boosting implementations [32]. 

Outwardly, XG-Boost is a complicated algorithm; however, it manages to serve the user with 

great ease and is well-suited to the classification, regression, and ranking tasks. 
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Figure 6: Architecture of suggested models [27] 

 

4.4 Performance Metrics 

The evaluation of machine learning algorithms' classification performance relies heavily on 

accuracy assessment. Some performance indicators were chosen to evaluate the suggested 

ensemble classification model's efficacy [33]. 

                                                     

                                                                    A Accuracy  =
�����

�����������
                                         (4) 

R Recall  = Senstivity=
��

�����
                                       (5) 

P precision  =
��

�����
                                                        (6) 

F1-score  =
������������������

���������������
                                     (7) 

 

  
5. Result and Discussion 

The experimental setup that was constructed to implement the suggested approach is discussed in 

this portion. The findings that were achieved are then presented and discussed. Finally, they 

compare the performance of the proposed model to that of the previous work. 

5.1 Investigational Setup 

This section presents the PQD dataset with varying degrees of noise. And here researchers can 

get the ML ensemble model parameter values as well. The synthetic database that includes 

sixteen distinct PQD signals, including both single and composite disturbances, is used to 

evaluate the model's performance. Utilizing MATLAB, the suggested method is applied on a PC 

model with an “Intel Core i9-9820X CPU (3.3.0 GHz), 32 GB of DDR4 RAM, and an NVIDIA 

GeForce RTX 2080 8G GPU”. 

5.2 Training and Estimation of ML Ensemble Models 

The subsequent sub-sections provide the training and assessment of each model across various 

noise levels. 
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5.2.1 Ada-Boost Classification Results 

The training performance of the Ada-Boost model after 100 epochs, with and without noise, is 

illustrated in Figure 7. The figure graphs the training performance of the Ada-Boost algorithm 

for 100 epochs under two scenarios: (a) without noise and (b) with 20 dB noise. Under the noise- 

free scenario (a), the training accuracy takes off in the early epochs and levels off at about 0.97, 

whereas the validation accuracy lags behind at about 0.94. At the same time, the training loss 

reduces steadily from an initial value of about 0.65 to below 0.15, reflecting successful model 

learning. 
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Training Loss Validation Loss 
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5.2.1.1 Without noise b) 20 dB noise 

Figure 7: Ada-Boost training performance 

However, when 20 dB noise is added (b), the training accuracy levels off at 0.89, which is 

marginally lower than in the noiseless case, while the validation accuracy is 0.91, showing the 

robustness of the model against noise. The training loss begins at approximately 0.75 and slowly 

falls to approximately 0.20, while the validation loss falls precipitously in the initial 20 epochs 

from 0.75 to almost 0.05 and remains low throughout training. This shows that while the addition 

of noise marginally affects training accuracy, Ada-Boost has good validation performance and 

generalization ability. The noisy and noiseless data Confusion Matrices (CM) are shown in 

Figure 8. 

 

Figure 8: CM of Ada-Boost a) Without Noise b) 20 dB noise
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5.2.2 Light-GBM Classification Results 

Figure 9 depicts the effectiveness of the Light-GBM model for 100 epochs compared to when 

noise is present and absent. The figure demonstrates the training performance of the Light-GBM 

model under the two conditions of (a) no noise and (b) 20 dB noise through 100 epochs. In the 

first part, where noise is not applied (a), the accuracy of the training set quickly went up to 0.88, 

while the validation set became steady at a mean level lower than 0.85. The loss of the training 

set was reduced tremendously from over 1.5 at the start of the process to about 0.15, while the 

loss of the validation set fluctuated first and then stabilized in the range of 0.2 and 0.4, which 

could be interpreted as the model's generalization has a certain level of uncertainty. 
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Figure 9: Light-GBM training performance 

On the other hand, with less than 20 dB noise (b), both training and validation accuracies trace a 

more stable trend, approaching 0.87. Training loss decreases steeply from about 1.2 to nearly 0.1, 

and validation loss traces a steady decrease from 1.6 to less than 0.1 after about 20 epochs, 

remaining low thereafter. This is an indication that Light-GBM demonstrates excellent learning 

stability and generalization in both clean and noisy environments, with slightly better validation 

loss in the 20 dB noise case. CM for noisy and noiseless data are provided in Figure 10. 
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Figure 10: CM of Light-GBM a) Without Noise b) 20 dB noise 

 

5.2.3 XG-Boost Classification Results 

Learning of the XG-Boost model has been explored for 100 epochs both in the absence and 

presence of noise; the findings, in this instance, are shown in Figure 11. The graph is a plot of the 

learning of the XG-Boost algorithm over 100 epochs in two conditions: (a) the noise-free 

condition and (b) with 20 dB of noise. In the latter condition (a) where no noise was present, the 

training and validation accuracies showed similar trend patterns of improvement, with the former 

reaching nearly perfect 0.95 and the latter leveling off at around 0.90. The training loss, which 

starts higher than 2.2, decreases significantly to around 0.2, while the validation loss also 

decreases from 1.0 to around 0.1, thereby indicating effective model learning and generalization. 
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Figure 11: XG-Boost training performance 

In contrast, with noise of less than 20dB (b), the model correctly classifies both the training and 

the validation data. However, the model has an ideal of around 78% accuracy for training and 

68% for validation. The gap between the training and validation losses is huge, i.e. the training 

loss is about 1.2 in the beginning and then falls smoothly to 0.3 while the validation loss, though 

remaining steady at a high level, stays around 0.85–0.9, thus showing that the model still is not 

performing well on the noisy data. These results propose that the performance of XG-Boost is 

A
cc

u
ra

cy
 a

n
d

 L
os

s 

A
cc

u
ra

cy
 a

n
d

 L
os

s 

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 65



great on the clean data, but its accuracy has dramatically cut down in the presence of the noise. 

CM for both noisy and non-noisy datasets can be seen in Figure 12. 
 

Figure 12: CM of Light-GBM a) Without Noise b) 20 dB noise 

 

5.3 Comparison Analysis 

In this sub-section, comparisons of the current approach with each other and compared to the old 

approach are described in Tables 2 and 3 to reveal the position of the developed model. A 

comparative assessment of the proposed model is described in ���������, ����������, �������, and 

�1�����. The comparison shows that Ada-Boost performs best in terms of accuracy in both 

noise-free (99.92%) and noisy (99.86%) scenarios, with consistently high precision and recall. 

Light-GBM, while beginning with lower accuracy (95.65%), improves significantly under 20 dB 

noise (98.73%), which suggests good noise robustness. XG-Boost also improves with noise, 

from 96.46% to 98.64%. In general, Ada-Boost has the best accuracy and stability, and Light- 

GBM and XG-Boost have excellent robustness in noisy environments. Figure 13 illustrates the 

comparison graph of suggested models. 

Table 2: Comparison of proposed three models 
 

Models 
 

��������� ���������� ������� ������� 

Ada-Boost Without Noise 99.92 99.17 99.44 95.89 

20 dB Noise 99.86 99.30 99.46 97.46 

Light-GBM Without Noise 95.65 98.49 98.30 95.37 

20 dB Noise 98.73 97.84 98.31 96.64 

XG-Boost Without Noise 96.46 94.18 96.26 94.77 

20 dB Noise 98.64 96.27 97.61 95.37 
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Figure 13: Comparison graph of proposed methods 

 

Comparison of the proposed method with the literature is given in Table 3 to identify the position 

of the developed model. Fu et al. (2023) used a combination of Spatio-Temporal (ST) features 

and Convolutional Neural Networks (CNN) and achieved 99.12% accuracy without noise and a 

remarkable 99.80% with 20 dB noise, reflecting excellent performance in noisy conditions. For 

comparison, the suggested work based on the Ada-Boost algorithm performed better than all 

other algorithms in noise-free scenarios with 99.92% accuracy and performed strongly even with 

noise at 99.86%, proving both high accuracy and resilience. Figure 14 depicts the comparison 

graph of the proposed models with earlier models. 

Table 3: Comparison of the proposed approach with the previous approach 
 

Authors [Reference] Methodology Used Without Noise 20 dB Noise 

��������� 

Fu et al., (2023) [34] ST+CNN 99.12 99.80 

Panigrahi et al., (2022) 

[35] 

FDST+MFA_LGBM 99.71 96.85 

Radhakrishnan et al., 

(2021) [36] 

SE with (LR+NB+J48 DT) 91 95.60 

Our Work Ada-Boost 99.92 99.86 
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Figure 14: Comparison graph of proposed approach with the previous approach 

 

6 Conclusion 

PQ in modern power systems has become increasingly complex due to the integration of multiple 

energy sources, including conventional power plants and renewable resources like solar and 

wind. The aim of the research was to create an advanced model integrating different ML 

ensemble techniques, like “Ada-Boost, Light-GBM, and XG-Boost”, for more accuracy in the 

power quality assessment in multi-source grid environments. Also, in the combined approach, 

the purpose was to solve the deficiencies in the old-fashioned techniques and individual ML 

models by achieving greater detection accuracy and the ability to work on noisy and complex 

signal data. 

A synthetic PQD dataset was generated using an open-source tool in compliance with IEEE- 

1159, EN 50160, and IEC 61000 standards. The dataset included 16 types of PQDs with 500 

samples per class, totaling 8000 signals. Noise levels of 20 dB and random variations were added 

to simulate real-world conditions. The Ada-Boost model performed better with a classification 

accuracy of 99.92% in noise-free conditions and 99.86% in 20 dB noise. Light-GBM was robust, 

particularly in noisy conditions, from 95.65% (noise-free) to 98.73% (noisy). XG-Boost 

performed fairly well, from 96.46% to 98.64% under noise. 
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