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Abstract 

 
Advancements in machine learning (ML) and deep learning (DL) are transforming Autism Spectrum Disorder 

(ASD) diagnostics by enabling a shift from traditional behavioral observations to objective, algorithmic 

approaches. These models effectively leverage diverse data modalities—such as neuroimaging, behavioral cues 

(e.g., facial expressions, eye movements), and electronic health records—to achieve high diagnostic precision. 

The integration of multimodal data sources and the rise of interpretable AI systems are fostering greater accuracy 

and clinician confidence. 

Despite promising research outcomes, significant barriers to clinical translation persist, including data 

heterogeneity, reproducibility challenges, a lack of standardization, and the crucial need for model 

interpretability. Furthermore, critical ethical considerations, particularly concerning algorithmic bias and data 

privacy, remain paramount. The field is actively progressing towards precision diagnosis, leveraging advanced 

multimodal data fusion techniques, sophisticated interpretable AI, and the potential of Generative AI for 

personalized insights. Overcoming existing barriers and realizing the full clinical utility of these technologies 

necessitates deep interdisciplinary collaboration among researchers, clinicians, and ethicists. 

 
Introduction 

 

1. Introduction: The Imperative for AI in ASD Diagnosis 

1.1. Understanding Autism Spectrum Disorder (ASD) 

Autism Spectrum Disorder (ASD) is a complex neuro developmental condition marked by persistent deficits in 

social interaction and communication, alongside restricted, repetitive behaviors. In India, the prevalence of 

Autism Spectrum Disorder (ASD) is estimated to be around 1 in 68 children, with boys being more commonly 

affected than girls. ASD presents with significant phenotypic and genotypic heterogeneity and often co-occurs 

with conditions like gastrointestinal or movement disorders.    

1.2. Limitations of Traditional Diagnostic Methods 

Traditional ASD diagnosis relies on subjective behavioral observations, making it time-intensive, inconsistently 

accessible, and prone to delays. Such delays can lead to more pronounced impairments, limit access to 

interventions, and increase healthcare costs.  

1.3. The Transformative Potential of Machine Learning (ML) in ASD 

Machine learning offers an objective, data-driven approach to ASD diagnosis by analyzing large, complex datasets 

and uncovering patterns beyond human capabilities. This can significantly enhance ASD understanding and 

improve screening. However, high accuracy in research settings does not guarantee real-world clinical feasibility. 

Factors like integration into workflows, cost-effectiveness, and ease of use are crucial for successful clinical 

translation. The primary goal of ML research in this area is early and accurate diagnosis, which is vital for better 

developmental outcomes and improved quality of life for individuals with ASD.    

 

2. Data Modalities and Key Datasets for ASD Prediction 

2.1. Diverse Data Modalities 

ML algorithms can analyze complex, high-dimensional data from various sources for ASD prediction, with 

multimodal integration being crucial for robust diagnostic models.    

Neuroimaging Data: Provides objective insights into brain structure and function. 

Structural MRI (sMRI) assesses structural brain changes, though its standalone success in ASD diagnosis is still 

evolving. 
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Resting-state functional MRI (rs-fMRI) captures functional connectivity (FC), with altered patterns being a key 

neurobiological correlate of ASD.    

Task-based fMRI amplifies differences by collecting data during specific tasks.    

Other modalities like PET, MEG, EEG, iEEG, and NIRS are also being explored.    

Behavioral Data: Observable behaviors offer accessible data. 

Eye-tracking data is a promising early indicator due to its ability to capture atypical visual attention patterns; it 

is fast, inexpensive, and applicable across ages.    

Facial images serve as a physiological identifier, especially for developing nations, with deep learning models 

showing high accuracy.    

Questionnaire data from standardized assessments like the Autism Quotient (AQ) provide a robust framework.    

Exploratory studies also investigate micro-expressions.    

Genetic Data: Over 200 risk regions and genes have been identified. Neuroimaging genetics integrates AI to link 

ASD-risk genes to brain variations.    

Clinical and Background Information: Minimal sets of medical and developmental information are important 

predictors.    

Novel Biomarkers: Research includes factors like intestinal microbial composition in risk prediction models.    

Fusing these diverse data types is crucial for robust and comprehensive ML models, addressing the 

multidimensional nature of ASD and leveraging complementary information for more accurate and generalizable 

predictions.    

2.2. Prominent Datasets 

Several large-scale datasets drive ML research for ASD prediction: 

Autism Brain Imaging Data Exchange (ABIDE): A widely used, freely available database of functional 

and structural brain imaging from over 24 international sites. ABIDE I (2012) includes 539 ASD and 573 

control subjects (ages 7-64). ABIDE II (2016-2017) comprises 1114 datasets (521 ASD, 593 control). Its 

multi-site nature introduces heterogeneity, impacting model reproducibility and generalizability. Gold 

standard diagnostic instruments like ADOS and ADI-R are used across most sites.    

Kaggle Dataset: Contains 2,940 facial images of autistic and non-autistic children, but has limitations in 

clinical history and demographic representation (10:1 white to non-white children).    

SPARK Database: A large diagnostic study (30,660 participants in v8, 14,790 in v10) with extensive medical 

and background information used for ML model development and validation.    

Open Neuro: A free platform for sharing BIDS-compliant neuroimaging data (MRI, PET, MEG, EEG, iEEG, 

NIRS), crucial for standardization and reproducibility.  

 

3. Machine Learning Approaches and Their Performance 

3.1. Traditional Machine Learning Algorithms 

Various traditional classifiers like Logistic Regression, Decision Tree, Random Forest (RF), Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes (NB), and ensemble methods (AdaBoost, XGBoost) 

have been applied. Reported accuracies vary widely; some studies show RF at 100%, Neural Networks at 99%, 

and Decision Tree at 100% with complete feature sets. Logistic Regression achieved 97.541% with feature 

selection , and XGBoost showed strong performance on the SPARK database with an AUROC of 0.895. The wide 

range of accuracies highlights that performance is context-dependent, influenced by dataset, feature engineering, 

preprocessing, and evaluation setup.    

3.2. Deep Learning (DL) Models 

Deep learning methods, popular since 2017, generally outperform traditional ML with large datasets. Common 

architectures include CNNs, RNNs, LSTMs, DNNs, Autoencoders, DBNs, and GCNs. DL models on facial 

images show high accuracy (e.g., VGG19 at 87.9% and 98% ; a proposed framework at 95.6% accuracy ). For 

eye-tracking data, FFNNs and ANNs achieved 99.8% accuracy , and CNNs 97.41%. A meta-analysis of DL for 

childhood ASD reported overall sensitivity of 0.95, specificity of 0.93, and AUC of 0.98.    

3.3. Hybrid and Ensemble Approaches 

Combining deep learning (e.g., GoogleNet, ResNet-18) with traditional ML (e.g., SVM) has shown superior 

diagnostic ability. Ensemble models, like GCN classifiers, achieved 72.2% accuracy and an AUC of 0.77 on 

ABIDE data, outperforming individual models. Multimodal fusion frameworks, integrating diverse data types, 

have achieved very high accuracies (e.g., 99.2%). This approach leverages complementary information from 

genetic, behavioral, and neurological aspects, which is crucial for capturing ASD's complexity.    

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 737



 

3.4. Performance Metrics and Interpretation 

ML models for ASD prediction are evaluated using metrics like accuracy, precision, recall (sensitivity), 

specificity, F1-score, and AUROC. While high accuracies are reported, dataset choice, feature engineering, and 

evaluation pipelines significantly influence these figures. Studies with heterogeneous datasets like ABIDE often 

show similar accuracies around 70% across different models. This suggests that data quality, meticulous 

preprocessing, effective feature engineering, and standardized evaluation are often more critical than the specific 

ML algorithm for real-world data.    

Model Reported 

Accuracy (%) 

Strengths Weaknesses 

Logistic Regression 85–95% Simple, interpretable Poor performance on non-

linear data 

Decision Tree (DT) 90–100% Easy to understand, quick 

training/testing 

Prone to overfitting 

Random Forest 

(RF) 

96–100% High accuracy, reduces overfitting 

via ensemble 

Less interpretable than single 

tree 

K-Nearest 

Neighbors 

80–95% No training phase, intuitive Sensitive to noise and 

irrelevant features 

Naïve Bayes (NB) 80–93% Fast, effective with small datasets Assumes feature 

independence 

Support Vector 

Machine (SVM) 

85–98% Effective in high-dimensional 

space 

Requires careful kernel and 

parameter tuning 

XGBoost / AdaBoost 94–99% Excellent for 

imbalanced/structured data 

Computationally intensive, 

harder to interpret 

 

 

4. Methodological Considerations in ML for ASD 

4.1. Data Preprocessing and Quality 

The effectiveness of ML models hinges on data quality and preparation. Raw data requires extensive 

preprocessing, including outlier removal, imputation of missing values, and resolving discrepancies. Data 

cleaning removes errors, duplicates, and structures the dataset. Class imbalance, common in ASD datasets, where 

ASD cases are fewer than controls, can hinder accurate positive class prediction. Techniques like Safe-Level 

SMOTE are used to balance data, improving generalization.    

4.2. Feature Engineering and Selection 

Feature engineering involves deriving new, valuable features from existing ones to boost model performance and 

provide insights. Examples include summing clinical scores or grouping ages. For high-dimensional data, feature 

selection methods like Chi-square, LASSO, and Boruta reduce dimensionality, enhance accuracy, and speed up 

classification. Deep learning models, like CNNs, can automatically extract features, reducing reliance on manual 

engineering.    

4.3. Cross-Validation and Model Validation 

Rigorous validation ensures model robustness and generalizability. K-fold cross-validation (e.g., 10-fold) assesses 

performance across data subsets, providing a more reliable estimate than a single split. Validating models on 

independent datasets confirms generalizability to new data.    

4.4. Impact of Dataset Properties 

Dataset properties significantly influence ML model performance. Large, multi-site datasets like ABIDE 

introduce heterogeneity from varying scanners, protocols, and populations, often leading to lower accuracies than 

homogeneous, single-site datasets. However, selecting specific subsets can mitigate heterogeneity and improve 

accuracy. Larger, well-curated datasets can also improve performance. 

 

5. Challenges in Clinical Translation of ML/DL Models for ASD 

1. One of the major barriers is the lack of standardized datasets and consistent methodologies, which makes 

it difficult to compare results across studies. Additionally, models often fail to generalize well due to  
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demographic imbalances and the inherent heterogeneity of ASD. While they may perform well on small, 

curated datasets, their accuracy often drops significantly on more diverse, real-world datasets. 

2. Many ML and DL models operate as "black boxes," providing little insight into how decisions are made. 

Clinicians require transparency and explainability to trust these systems in practice. Without clear 

rationale behind predictions, integration into clinical workflows becomes difficult. Tools like SHAP and 

Monte Carlo Dropout are helping address this by making model decisions more understandable. 

3. High research accuracy doesn’t guarantee clinical readiness. Models that excel in controlled environments 

may struggle with practical challenges such as variability in patient populations, data quality, and the need 

to address the full range of ASD subtypes and comorbidities. These limitations hinder real-world 

deployment and impact. 

 

6. Future Directions and Research Opportunities 

Advancing Autism Spectrum Disorder (ASD) diagnostics will rely heavily on multimodal data fusion, integrating 

neuroimaging, genetic, and behavioral data to capture the disorder’s full complexity and improve diagnostic 

accuracy. Equally important is the development of interpretable and explainable AI models, using techniques like 

SHAP and Monte Carlo Dropout to clarify predictions and build clinical trust. Generative AI, including large 

language models and multimodal systems, offers new opportunities for personalized diagnostics by synthesizing 

clinical, textual, and visual data to generate tailored assessments and recommendations. Additionally, future 

research should focus on precision diagnosis by identifying biologically distinct ASD subtypes, moving beyond 

the traditional monolithic view and enabling individualized monitoring and targeted treatment strategies. 

Future ML models should aim to identify specific ASD subtypes, leading to more targeted developmental 

monitoring, precise treatment strategies, and tailored support based on an individual's unique biological and 

clinical profile. This approach explains why past genetic studies often fell short, as they were mixing different 

puzzles together. 

 

8. Conclusions 

The application of machine learning and deep learning in Autism Spectrum Disorder prediction holds immense 

promise for transforming diagnostic processes from subjective behavioral observations to objective, data-driven 

methodologies. Current models demonstrate high accuracy across diverse data modalities, including 

neuroimaging, behavioral cues, and clinical records. The trend towards multimodal data fusion, integrating 

genetic, behavioral, and imaging data, is particularly compelling, as it aligns with the multidimensional nature of 

ASD and shows superior predictive performance. The development of interpretable AI frameworks and the 

exploration of Generative AI for personalized diagnostics represent critical advancements aimed at enhancing 

clinical trust and utility. 

However, significant challenges persist that impede the full clinical translation of these technologies. These 

include pervasive issues of data heterogeneity, the difficulty in reproducing research findings across different 

settings, and a fundamental lack of standardization in data collection and methodologies. The generalizability of 

models across diverse populations, especially given historical biases in datasets, remains a concern, as models 

performing exceptionally well in controlled environments may not translate effectively to real-world clinical 

variability. Furthermore, the "black box" nature of many advanced ML models necessitates a strong emphasis on 

interpretability to foster clinician trust and facilitate evidence-based decision-making. 

Ethical considerations are paramount, particularly concerning algorithmic bias that could exacerbate existing 

disparities in patient care, as well as stringent requirements for data privacy, security, transparency, and 

accountability. The critical importance of interdisciplinary collaboration between computational scientists, 

clinicians, and behavioral experts cannot be overstated. Ignoring the clinical context can lead to misinformed 

conclusions and hinder the development of truly effective and equitable diagnostic tools. Ultimately, realizing the 

full potential of machine learning for ASD prediction requires not only continued technical innovation but also a 

concerted effort to address these methodological and ethical challenges through collaborative, standardized, and 

transparent research practices, paving the way for more precise, accessible, and equitable diagnostic pathways. 
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