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ABSTRACT

The widespread adoption of Artificial Intelligence (AI) and Machine Learning (ML) models across various
sectors, including career guidance, has introduced a critical need for transparency and interpretability.
While these models offer unprecedented predictive power, their inherent ""black box" nature can erode user
trust, hinder accountability, and perpetuate biases. This paper examines the pivotal role of Explainable Al
(XAI), specifically focusing on SHapley Additive exPlanations (SHAP), in addressing these challenges
within Career Prediction Systems (CPS). The proposed SHAP-based framework integrates advanced ML
models with a dedicated explainability layer, leveraging intuitive visualizations and natural language
narratives to make complex predictions comprehensible to diverse stakeholders. Despite challenges related
to computational efficiency and data privacy, advancements in XAI promise to transform career guidance
into an empowering and equitable tool.

Keywords: Explainable AI, SHAP, Career Prediction, Transparency, Interpretability, Machine Learning,
Ethical AI

1 INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML) have become deeply embedded in modern society,
influencing diverse domains ranging from web search and speech recognition to medical diagnostics and national
defense systems [1]. These technologies have demonstrated exceptional performance, often exceeding human
capabilities in solving complex problems. However, as Al models become increasingly sophisticated, a significant
concern has emerged—their inner workings are becoming less interpretable to humans.

Modern Al systems, particularly deep neural networks and ensemble methods, are frequently characterized as
“black boxes” [2]. While their input and output behavior can be observed, the internal decision-making process
remains obscure [3]. This lack of transparency is especially problematic in safety-critical and ethically sensitive
areas such as healthcare, finance, and autonomous systems, where comprehending the rationale behind Al
decisions is not just beneficial—it is essential [4]. A loan rejection or a clinical diagnosis made by an Al model
without an accompanying explanation can provoke confusion, mistrust, and a reluctance to accept or rely on the
system [5]. This trust deficit, rooted in opacity, significantly impedes the broader adoption of Al technologies in
critical human-centric applications [5].

The emergence of Explainable Artificial Intelligence (XAI) aims to address this pressing issue by enhancing the
transparency and interpretability of Al systems. XAl seeks to answer fundamental questions such as, “Why did
the Al system make this decision?” and “What factors influenced the outcome?” [6]. It enables stakeholders to
understand, validate, and even challenge the behavior of complex models, going beyond technical debugging to
support fairness, accountability, and trust [7]. By translating complex algorithmic logic into understandable
narratives [12], XAl facilitates a shift from human-Al interaction to meaningful human-Al collaboration [10].

The objective of this study is to explore the critical role of explainability in Al decision-making systems,
particularly in domains where transparency is vital for ethical outcomes. Special emphasis is placed on the
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practical, social, and governance implications of opaque Al models and how XAI methodologies can mitigate
these concerns. Furthermore, this work highlights the importance of transparency not only for individual
comprehension and trust but also for enabling external audits, bias detection, and regulatory compliance [11].
Ultimately, explainability is presented not as an optional enhancement, but as a fundamental requirement for
responsible and sustainable Al integration into real-world decision-making processes.

2 LITERATURE REVIEW
2.1 Foundations of Career Prediction Systems

Career Prediction Systems (CPS) are rapidly gaining traction as intelligent platforms that assist students,
educators, and employers in making well-informed, data-driven career decisions. Career prediction systems (CPS)
combine techniques from artificial intelligence, machine learning, and statistical analysis to offer tailored insights
into a student’s career readiness. These systems analyze a range of inputs—such as academic records, acquired
skills, behavioral traits, and personal interests—to generate meaningful recommendations. By doing so, CPS strive
to create a more intentional connection between educational experiences and real-world job opportunities.

2.1.1 Predictive Analytics in Career Guidance

Predictive analytics plays a central role in modern Career Prediction Systems (CPS), using historical
trends and statistical methods to anticipate future outcomes [14]. In the context of career guidance, this allows for
more informed suggestions based on a student’s academic history, skillset, and personal interests. Al-integrated
CPS can recognize subtle patterns in data—patterns that may not be evident through traditional counseling
methods [15].

While conventional guidance often depends on a counselor’s judgment or a student’s self-reported preferences
[16], predictive models are capable of analyzing complex, multi-layered datasets to reveal deeper insights [27].
These insights support more personalized strategies, such as tailored skill development plans or career roadmaps
aligned with current job market needs [14].

This transition from reactive advice to data-driven planning reflects a broader shift in how educational support is
being offered. Rather than relying entirely on subjective interpretation, CPS introduce a more structured, scalable
approach that helps students anticipate and prepare for future opportunities with greater clarity.

2.1.2  Applications and Stakeholders of CPS

Career Prediction Systems (CPS) are designed to serve more than just students—they support a wider
community of stakeholders, each engaging with the system for different purposes and outcomes.

1. Students: CPS help learners understand where they stand in terms of placement readiness by analyzing
academic performance, skill gaps, and personal strengths. With this awareness, students can take more
focused steps toward their career goals and align themselves with industry expectations [17]. These tools
also offer grounded insights into possible job opportunities, helping students pursue career paths that
genuinely fit their capabilities and aspirations.

2. Human Resource Professionals: In the corporate world, HR teams use CPS to anticipate future talent
needs, discover internal candidates for upskilling, and streamline hiring workflows. The predictive
insights these systems provide contribute to better role alignment and can help reduce employee turnover
by ensuring the right people are placed in the right roles [13].

3. Educators and Institutions: Academic departments benefit from CPS through a clearer understanding
of student preparedness across batches. These insights support data-driven curriculum updates, more
accurate placement forecasting, and even operational planning such as exam result analysis or tracking
academic outcomes [18].

While the advantages of CPS are significant, they must also accommodate the differing priorities of each
stakeholder. For example, institutions may emphasize improving placement rates, whereas some students may
prefer to explore non-traditional or creative career paths. These potential conflicts point to the importance of
keeping CPS transparent and explainable—ensuring that all users, regardless of their goals, can trust the system’s
guidance.

2.1.3 Data Modalities and Feature Engineering

Career Prediction Systems (CPS) draw on a diverse set of data sources to generate accurate and relevant
predictions about student readiness and potential career paths. Among the most commonly used inputs are:
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1. Academic Records: Performance indicators such as grades, GPA, and subject-specific results help
highlight a student’s academic foundation and consistency over time [16]. These metrics often serve as
a baseline for evaluating readiness in various professional domains.

2. Co-Curricular and Certification Data: Activities beyond the classroom—Ilike internships, hackathons,
or relevant certifications—offer valuable insight into a student’s initiative and ability to apply knowledge
in practical settings [18]. Such experiences often complement academic learning and reveal a candidate’s
real-world engagement.

3. Technical Skills and Project Work: Demonstrated experience with programming languages, tools, and
domain-relevant projects reflects not just technical ability, but also problem-solving and collaboration
skills [16]. These components are crucial in assessing employability, especially for roles requiring hands-
on expertise.

4. Behavioral Attributes: Information on work ethic, stress handling, and team collaboration sheds light on
the student’s workplace readiness [17].

5. Demographics and Interests: Personal preferences, career interests, socio-economic status, and
geographical background help contextualize and personalize predictions [16].

The process of feature engineering—selecting, cleaning, and transforming raw data into model-friendly formats—
is critical to building effective CPS [14]. When done carefully, it ensures that the model captures the most relevant
and predictive signals from a complex and multi-dimensional dataset.

However, this data richness brings its own challenges. The diverse and often correlated features increase model
complexity, often leading to the use of "black-box" models such as ensemble methods or deep learning [1]. These
models, while powerful, lack transparency—making it difficult for users to understand why a particular career
path was recommended.

To address this, the incorporation of Explainable Al (XAI) techniques such as SHAP has become increasingly
important. SHAP values help explain the contribution of each input feature to the model’s predictions, enhancing
both accountability and interpretability [20]. In high-stakes scenarios—such as those involving student futures—
this transparency builds trust and ensures that CPS remain both effective and ethically grounded.

Data types Examples Role in CPS Ref.
Academic 10th, 12th, college mark | Core indicators of academic performance
Records sheets; GPA; subject-wise | and learning ability. Often used to assess [16]
scores eligibility.
Certificates Internships, club | Reflects real-world exposure, teamwork,
& Activities | participation, competitions, | and leadership—important for overall [17]
leadership roles readiness.
Skill Sets Programming languages, | Directly measures technical ability and [16]
certifications, technical tools | suitability for industry-specific roles.
Behavioral Work habits, stress handling, | Assesses soft skills, adaptability, and
Data personality  traits, team | workplace fit—key for long-term success. [17]
compatibility
Personal Favorite subjects, interest | Supports alignment with personal goals
. . . [16]
Interests surveys, psychometric tests and enhances career satisfaction.
Demographic | Age, gender, location, | Enables personalization and trend [17]
Data socioeconomic background

Table 1: Key Data Types and Their Role in Career Prediction Systems (CPS)

2.1.4 Common Machine Learning Models in Career Prediction

Career Prediction Systems (CPS) employ various machine learning models, ranging from interpretable
statistical methods to high-performing Al techniques [14]. Selecting the appropriate model in a Career Prediction
System (CPS) involves balancing predictive performance, interpretability, and alignment with the nature of the
input data. Several models are commonly employed, each offering distinct strengths depending on the use case:

1. Random Forest: This ensemble method combines multiple decision trees to improve prediction accuracy
and reduce the risk of overfitting. It has shown strong performance in CPS contexts, with reported
accuracies reaching as high as 93% [16].

2. Support Vector Machines (SVM): Particularly effective in classification tasks involving high-
dimensional data, SVMs are known for their ability to find optimal decision boundaries in complex
spaces [16].
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3. Neural Networks: Useful for identifying non-linear patterns in large and varied datasets, neural networks
offer powerful modeling capabilities. However, their lack of transparency—often referred to as the
"black-box" problem—remains a limitation [8].

4. Decision Trees: Favored for their simplicity and interpretability, decision trees split data into clear
decision rules based on feature thresholds. This makes them ideal for applications where transparency is
a priority [14].

5. XGBoost: A gradient boosting algorithm built on decision trees, XGBoost is known for its high speed
and accuracy, especially when working with sparse or noisy data [16].

6. Logistic Regression: A foundational model in binary classification, logistic regression is appreciated for
its straightforward interpretation and effectiveness when relationships between variables are linear.

7. K-Nearest Neighbor (KNN) and Naive Bayes: These models are also applied in CPS, particularly in
tasks where simplicity and fast pattern recognition are sufficient for meaningful outcomes .

Despite the range of options, a persistent challenge in model selection is finding the right balance between
accuracy and explainability. While advanced models often outperform simpler ones in terms of prediction, their
complexity can hinder transparency. Post-hoc interpretation tools such as SHAP have become increasingly
valuable in addressing this gap, allowing stakeholders to understand how predictions are made without sacrificing
model performance [22].

3. METHODOLOGY
3.1 SHAP: A Unified Framework for Model Interpretability

SHAP (Shapley Additive exPlanations) has emerged as a widely adopted approach for interpreting the
outputs of complex machine learning models, particularly in sensitive areas such as career prediction. Grounded
in solid game-theoretic principles, SHAP helps clarify the role each input feature plays in influencing a model’s
decision, offering both mathematical soundness and actionable explanations.

3.1.1.  Theoretical underpinnings

Shapley Values and Fair Attribution SHAP is grounded in cooperative game theory, leveraging Shapley
values introduced by Lloyd Shapley [22]. These values distribute a model’s prediction (the “payout”) fairly among
features (the “players”) based on their marginal contributions across all feature combinations [23]. By accounting
for feature interactions and adhering to properties such as efficiency, symmetry, and local accuracy, SHAP ensures
a fair and consistent distribution of contribution scores across features [25]. Its strong mathematical foundation
lends credibility to its interpretations, making it especially suitable for applications like career prediction, where
transparency and fairness are not just beneficial but necessary [26].

3.1.2 Mechanism

SHAP offers both local and global interpretability by analyzing how a model’s output changes when
specific features are included or excluded from the prediction process [24]. This comparison forms the basis for
two types of explanations:

1. Local explanations: These help clarify individual predictions—for instance, highlighting which specific
attributes influenced a student’s recommended career path [22].

2. Global explanations: These offer a broader view by identifying which features most commonly affect
outcomes across the entire dataset. Such insights are particularly valuable for educators and
administrators seeking to understand key factors that drive placement readiness or success [8].

One of SHAP’s strengths lies in its model-agnostic nature, allowing it to be applied across a wide range of
algorithms, including decision trees, neural networks, and linear models [10].

By combining both individualized feedback and high-level insights, SHAP supports transparent decision-making
at multiple levels—helping users trust the system while enabling institutions to audit and refine their models more
effectively.

3.1.3 Why SHAP Matters for Model Understanding
SHAP is widely recognized for several key strengths that enhance model interpretability, particularly in
sensitive domains like career prediction:

1. Quantified feature importance: SHAP assigns each feature a precise score, indicating not just how much
it contributes to a prediction, but also in which direction it influences the outcome [10].
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2. Fair and consistent attributions: By ensuring a balanced distribution of influence among features, SHAP
promotes reliable and reproducible interpretations across different models.
3. Support for trust and bias detection: 1t can uncover instances where specific features may be exerting
undue influence, helping developers identify potential biases and make ethically sound adjustments [ 8].
4. Robust insights and stability: SHAP offers consistent results across multiple runs and brings to light
interactions between features as well as patterns of variation within the data [21].
In the context of career prediction systems, SHAP adds value by going beyond surface-level correlations. It
clarifies the reasoning behind model outputs, enabling more targeted actions—such as identifying individual skill
gaps or designing personalized interventions for both students and institutions.

4. IMPLEMENTATION
4.1 SHAP-Based Framework for Transparent Career Prediction

To improve trust and transparency in Career Prediction Systems (CPS), we integrate SHAP-based
explainability into the system architecture. This section outlines the implementation workflow and highlights how
SHAP explanations assist in real-world decision-making.

4.1.1  System Architecture and Workflow

The proposed framework combines a machine learning (ML) model with a dedicated SHAP explainer
layer.

Career

Machine
Learning Model

Predictions

Data
Collection

Data
Preprocessing

——)‘ SHAP %——————*

exPlanations

Fig. 1. SHAP-based architecture for interpretable career prediction.

The implementation of SHAP-based Career Prediction Systems (CPS) typically follows a structured
process consisting of four main stages:

1. Data Preparation: A range of student data—including academic performance, technical skills, and
behavioral attributes—is collected and preprocessed. Feature selection is guided by relevance to the
prediction task, ensuring that the input variables align with the system’s goals [18].

2. Model Training: The cleaned dataset is used to train an appropriate machine learning model, such as a
Random Forest or Neural Network. The choice of model depends on factors like the nature of the
prediction problem and the complexity of the data [16].

3. SHAP Explainability: Once the model is trained, SHAP techniques—such as TreeSHAP or
KernelSHAP—are applied to interpret both individual predictions and overall model behavior. These
explanations provide transparency by showing how each feature contributes to specific outcomes and
broader patterns across the dataset [22].

4. Visualization and User Interface: The insights generated by SHAP are displayed through visual tools
like force plots, summary plots, and waterfall charts. A well-designed dashboard enables users—
particularly students—to under

5. stand the rationale behind career recommendations. Where needed, natural language explanations
(possibly supported by large language models) can further simplify the output for easier interpretation
[12].
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This combination of technical interpretability and user-centered design allows CPS to move beyond
opaque predictions. By integrating SHAP at its core, the system not only recommends potential career paths but
also justifies those suggestions with clear, evidence-based reasoning—benefiting both students and educators [19].

Algorithm 1: SHAP-Based Career Prediction Workflow

Input: Student dataset D with academic, technical, behavioral, and demographic features
Output: Career placement prediction with SHAP- based explanations

1: BEGIN

# Data Preparation

Load dataset D

Handle missing values (imputation)

Encode categorical features

Normalize or standardize numerical features (If required)

Select relevant features based on domain knowledge and correlation analysis

N AN AW

8: # Model Training

9: Split D into training set (Train) and testing set (Test)
10: Choose ML model M (e.g., XGBoost, Random Forest)
11: Train M on Train dataset

12: # SHAP Explainability

13: Initialize SHAP explainer E «— SHAP_ Explainer(M)
14: For each instance x in Test:

15: Compute SHAP values S «— E(x)

16: Store local explanation for x

17: # Global Explanation

18: Compute SHAP values for entire Test dataset

19: Aggregate feature importance scores

20: Rank features based on mean absolute SHAP value

21: # Visualization & Output

22:  Generate plots: Force Plot, Summary Plot, Waterfall Plot
23: Display results via interactive dashboard

24: Provide natural language narrative for non-technical users

25: END

Algorithm 1: SHAP-Based Career Prediction Workflow

4.1.2 SHAP Implementation and Visualization Techniques

SHAP is practically implemented through accessible Python libraries, most notably the SHAP package, which
provides tools to interpret machine learning predictions and assess feature influence [8]. These resources allow
data scientists to embed explainability directly into their workflows, supporting greater transparency,
accountability, and trust in Al-driven systems.

To communicate SHAP insights effectively, several visual techniques are commonly used:

1. Force Plots: These visualize how each feature contributes to a single prediction, highlighting both
positive and negative influences relative to a baseline value [22]. They are especially helpful for
understanding individual-level decisions.

2. Summary (Beeswarm) Plots: By displaying SHAP values across the full dataset, these plots reveal global
feature importance. Features are ranked by their overall impact, with color gradients indicating the
direction and strength of each effect [8].
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3. Partial Dependence Plots (PDPs): While not unique to SHAP, PDPs augmented with SHAP values can
illustrate how changes in a feature influence predictions across different cases—shedding light on non-
linear relationships or interactions [9].
4. Waterfall Plots: These decompose a single prediction step-by-step from the model’s base value, showing
how each feature nudges the outcome. This structure provides a clear, traceable explanation of how a
result was reached [29].
When applying SHAP in practice, it's important to follow best practices: documenting how Shapley values are
computed, clearly interpreting what positive or negative contributions mean, and cross-validating these insights
with model behavior [28]. Moreover, ethical considerations should be taken into account—especially when
presenting sensitive explanations to non-technical users.
By turning complex algorithmic decisions into visual and interpretable narratives, SHAP bridges the gap between
machine learning systems and human understanding. This interpretability is particularly crucial in career guidance
contexts, where students and educators alike need clear, trustworthy insights into how recommendations are
generated [30].

4.2 Tools and Environment

The implementation of the SHAP-based Career Prediction System was carried out using Python 3.10 due
to its extensive support for machine learning and data science libraries. All model development, preprocessing,
and explainability integration were performed within the Anaconda environment, leveraging Jupyter Notebook
and VS Code as the primary development interfaces.

The system utilized the following key libraries and frameworks:

1. Scikit-learn: Employed for model building, preprocessing, and evaluation, offering robust support for
algorithms such as Random Forest and logistic regression.

2. Pandas and NumPy: Used extensively for data manipulation and numerical computations during
preprocessing and feature engineering.

3. SHAP Library: Central to this study, the shap Python package was integrated for calculating local and
global feature attributions. TreeSHAP was used for tree-based models due to its efficiency and
consistency.

4. Matplotlib and Seaborn: Utilized for generating custom plots and visualizations during the analysis
phase.

5. Streamlit: Integrated to build an interactive user interface that allows students to input data and receive
interpretable career guidance in real time.

Model training and SHAP value computation were performed on a system with an Intel® Core™ 17 processor, 16
GB RAM, and Windows 10 OS. This configuration was sufficient for processing student datasets of moderate size
and generating SHAP visualizations in near real-time.

The system was tested and deployed in a controlled environment, ensuring reproducibility and performance
stability. All source code and dependencies were managed using environment configuration files to support future
scaling and collaboration.

4.3 SHAP-Based Interpretability in Career Prediction Scenarios

The SHAP framework enables transparent and actionable insights in Career Prediction Systems (CPS).
Consider the following applications:

4.3.1 Personalized Career Recommendations:
A student recommended for a data science role can view a SHAP force plot highlighting key positive
contributors such as strong academic performance in mathematics and computer science, programming
proficiency (e.g., Python), and high scores in stress-handling assessments. At the same time, minor
negative contributions, such as limited co-curricular involvement, are also visible, providing a holistic
explanation [18]

4.3.2  Skill Gap Identification: SHAP dependence plots can pinpoint specific weaknesses affecting a student’s
placement potential. For example, low certification scores in Java may reduce eligibility for product-
based roles, despite strengths in problem-solving skills. This clarity helps learners target precise areas
for improvement.

4.3.3  Bias Detection: SHAP summary plots applied across the dataset can help detect potential biases. If
demographic factors like gender or region consistently influence predictions, even indirectly, it may
signal embedded bias in the model or training data [8], [26]. These insights inform fairness-aware model
retraining and policy adjustments.
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By offering interpretable predictions at both individual and institutional levels, SHAP facilitates self-improvement
and enables educators to design targeted interventions—transforming CPS into a transparent and equitable career
guidance tool.

4.4 Enhancing User Comprehension via SHAP Visualizations and Narratives

While SHAP values offer mathematically grounded insights into model behavior, their raw outputs can be
difficult to interpret for non-technical users such as students, parents, or counselors [36]. Therefore, the practical
impact of SHAP in Career Prediction Systems (CPS) relies on how effectively these values are communicated.
Visualizations serve as a bridge between technical detail and user understanding. SHAP plots—such as force plots
for individual predictions, summary plots for global feature importance, and dependence or waterfall plots—offer
varied interpretive views suited to different users and contexts [28]. These visual tools help users see not just what
the model predicted, but why.

To further improve accessibility, integrating natural language explanations is crucial. Recent advances in Large
Language Models (LLMs) enable conversion of SHAP outputs into human-readable narratives, offering clear,
relatable explanations without requiring ML expertise [7]

Ultimately, the effectiveness of SHAP in CPS depends on how well technical insights are translated into formats
users can trust and understand. This underscores the need for intuitive interfaces and user-centered design,
ensuring explanations resonate with diverse audiences and promote informed, confident decision-making [31].

S. RESULTS AND EVALUATION

This section presents the experimental outcomes of the proposed SHAP-based Career Prediction System.
The evaluation is structured around five core components: feature selection, model prediction, performance
metrics, comparative analysis, and explainability through SHAP.

5.1 Feature Importance Analysis

To identify the most influential factors contributing to a student's career outcome, we conducted a

comprehensive feature importance analysis using SHAP (SHapley Additive exPlanations). This step not only
quantified the impact of each input variable on the model’s output but also enhanced the interpretability of our
career prediction framework.
The dataset comprised diverse features, ranging from academic indicators like CGPA and internship experience,
to behavioral competencies such as communication, teamwork, and adaptability. It also included demographic
and aspirational variables like area of residence, branch, higher education plans, and desired job role, enabling a
holistic evaluation of student readiness.
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Fig. 2. Correlation Heatmap highlighting key feature relationships
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The correlation heatmap (Fig. 1) reveals notable interdependencies between features. For example:

1.

2.

3.

CGPA exhibits mild negative correlations with subjective assessments like teamwork and leadership,
indicating potential independence between academic scores and perceived soft skills.

Strong positive correlations exist between soft skill ratings such as communication, teamwork, and
leadership potential, suggesting that students demonstrating one are likely to be rated high in others.
Certain branches (like Electronics & Communication or Mechanical Engineering) show mild negative
correlations with placement salary, hinting at discipline-specific outcome trends.

The SHAP summary analysis revealed that:

1.

2.

CGPA was the most dominant predictor of placement likelihood, reinforcing the value of consistent

academic performance.
Internship experience and the number of technical skills demonstrated strong influence, highlighting the

significance of real-world exposure and hands-on learning.
Certifications, along with technical competencies, played a key supporting role in improving placement

predictions.
Behavioral attributes such as communication skills, teamwork, and leadership qualities also showed

considerable predictive power, aligning with the industry's increasing emphasis on soft skills.
Variables like branch of study and desired job role captured domain-specific trends in placement
outcomes, especially in fields like Data Science and Electronics.

Student_ID CGPA

Student_ 1D

CGPA

]
'|||l||u' il

—0.2 0.0 0.2 —0.2 .0 0.2
SHAP interaction value

Fig. 3. SHAP interaction plot illustrating how CGPA, in combination with
Student_ID, influences placement predictions..

Internsh__. CGPA
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"
Ii
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Internship_Experience
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i
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SHAP interaction value

Fig. 4. SHAP interaction plot showing the joint impact of CGPA and Internship
Experience on placement prediction.
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In addition to individual feature importance, we analyzed interaction effects between key variables. The
interaction between CGPA and Student ID showed minimal influence, confirming that personal identifiers did not
bias the model. However, the interaction between CGPA and Internship Experience revealed overlapping impact
patterns, suggesting a meaningful synergy between academic excellence and practical experience in enhancing
placement readiness.

This analysis enables transparent, data-driven insights into the placement process and equips
stakeholders to prioritize interventions where they matter most. By integrating SHAP explanations, our framework
bridges the gap between complex machine learning predictions and stakeholder understanding—making career
prediction systems more interpretable, fair, and actionable.

5.2 Performance Metrics of Career Outcome Models

To evaluate the effectiveness of our proposed framework, we developed and tested multiple supervised
machine learning models for predicting the likelihood of student placement. The target variable was binary,
indicating whether a student was placed or not.

We trained the models on preprocessed and feature-selected data using an 80:20 train-test split. The following
models were benchmarked:

e Logistic Regression
Random Forest Classifier
XGBoost Classifier
Support Vector Machine (SVM)
k-Nearest Neighbors (k-NN)
Each model's performance was evaluated using standard classification metrics including Accuracy, Precision,
Recall, F1-Score, and ROC-AUC. These metrics provided a comprehensive view of model effectiveness in
handling both positive and negative placement cases.

Model Accuracy Precision Recall F1-Score ROC-AUC
Logistic Regression 0.81 0.79 0.83 0.81 0.88
Random Forest Classifier 0.87 0.85 0.89 0.87 0.91
XGBoost Classifier 0.89 0.88 0.90 0.89 0.94
Support Vector Machine 0.83 0.81 0.85 0.83 0.86
k-Nearest Neighbors 0.75 0.72 0.76 0.74 0.79

Table 2. Performance Metrics of Classification Models for Placement Prediction

53 Analytical Comparison and Model Selection

To identify the most suitable algorithm for our career prediction framework, we conducted a detailed
comparative evaluation of five supervised learning models: Logistic Regression, Random Forest, XGBoost,
Support Vector Machine (SVM), and k-Nearest Neighbors (k-NN).

The comparison was based on a comprehensive set of evaluation metrics—Accuracy, Precision, Recall, F1-Score,
and ROC-AUC—which are crucial for assessing classification tasks with potential class imbalance. Each model
was trained on the same preprocessed dataset, ensuring consistency in evaluation.

The XGBoost classifier outperformed all other models across every metric. It provided a balanced trade-
off between precision and recall, while also achieving the highest Area Under the Curve (AUC), indicating strong
discriminative power. Although Random Forest also performed well, XGBoost offered enhanced performance and
seamless integration with SHAP for post-hoc interpretability, which was essential for this study's explainability
objective. In contrast, simpler models like Logistic Regression and k-NN, while interpretable, underperformed in
recall and F1-score—making them less reliable for use cases where false negatives (i.e., missed placement
opportunities) must be minimized.

These findings reaffirm the value of ensemble learning techniques, especially gradient-boosted decision trees, in
predictive modeling for career readiness assessments. The superior accuracy, robustness, and explainability of
XGBoost ultimately led to its selection for deployment in our final system.
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5.4 SHAP-Based Global and Local Explanations

To ensure transparency and interpretability in career outcome predictions, we integrated SHAP (SHapley
Additive exPlanations) into our XGBoost-based model. SHAP provides both global feature importance and local
instance-level explanations, making it an ideal tool for explaining model predictions to students, faculty, and
placement officers.

5.4.1 Global Interpretability

Global SHAP analysis highlights the most impactful features influencing predictions across the dataset. (As

shown in Fig. 2 and Fig. 3) Results show:

1. CGPA emerges as the most influential factor in predicting placement outcomes, indicating its continued
relevance as a key academic metric.

2. Internship experience, along with demonstrated technical skills and professional certifications,
substantially improves placement probability—highlighting the industry's preference for candidates with
hands-on exposure and applied learning.

3. Soft skills, including communication, leadership, and teamwork, also play a critical role, reflecting their
increasing value in modem workplaces.

4. Variables such as academic branch, preferred job role, and salary expectations contribute to predictions
in more nuanced, context-dependent ways.

These findings offer institutions a clearer picture of the factors shaping placement readiness and can inform the
design of targeted training programs, career counselling strategies, or curriculum enhancements.

5.4.2  Local Interpretability

SHAP enhances interpretability at the individual level through visual tools like force and waterfall plots:

1. In one instance, a student with a moderate CGPA but notable achievements in certification courses and
strong communication abilities was predicted to succeed, owing to the combined effect of
complementary features.

2. Conversely, another student, despite a high CGPA, was assigned a lower placement probability due to
limited hands-on experience and weaker soft skills.

Such individualized feedback helps learners recognize which factors are working in their favor and where
improvement is needed. It also equips career counselors with meaningful insights to tailor guidance and
interventions effectively.

543 Interpretability in Practice

Incorporating SHAP into the system enhances transparency and fairness in decision-making by ensuring
that predictions are accompanied by clear, interpretable justifications. The resulting visual explanations can be
effectively integrated into institutional dashboards and individual student reports, making complex model outputs
more accessible to all stakeholders.

5.5 SHAP Summary Plot Interpretation

To understand the model's decision-making process, a SHAP summary plot was generated, illustrating
the influence of input features on placement predictions.
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Fig. 5. SHAP summary plot showing feature influence on placement
predictions, with color indicating feature value.

This plot arranges features according to their influence on the model’s output, highlighting both the
strength and direction of each feature’s contribution. Along the Y-axis, variables such as CGPA, internship
experience, and technical skills are ordered by their overall importance. Each point on the X-axis corresponds to
a SHAP value for an individual case, reflecting the extent to which that feature shifted the prediction upward or
downward.

The color scale—ranging from blue (low feature value) to red (high feature value)—illustrates how feature
magnitude relates to impact. For example, higher CGPA values (red) typically nudge the prediction toward a more
favorable placement outcome, whereas lower values (blue) tend to pull it in the opposite direction. Similar effects
are noted for internships and both technical and soft skills. In contrast, attributes like Area and Gender demonstrate
more variable effects, possibly due to categorical representation. Interpretation of such features requires careful
consideration to ensure fairness and avoid reinforcing unintended bias.

Overall, the plot enhances interpretability by highlighting key predictors and their individual-level contributions,
reinforcing the transparency and fairness of the proposed explainable framework.

6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This study presents a framework built around SHAP (SHapley Additive exPlanations) to bring greater

clarity to Al-driven Career Prediction Systems (CPS). Drawing on principles from cooperative game theory, the
approach offers both overarching insights and case-specific explanations. This allows students to understand the
rationale behind individual recommendations, while also enabling educators and institutions to identify patterns,
biases, and influential decision-making factors. Such interpretability is especially important in fields like career
guidance, where trust and transparency are essential.
However, the practical adoption of SHAP-based CPS at scale is not without its challenges. These include high
computational demands, limitations in dealing with multicollinearity among features, and the complexity of
conveying results in a format that is intuitive for non-technical users. Additionally, concerns around fairness and
the risk of embedding bias within datasets and models continue to be areas requiring careful attention. Overcoming
these hurdles is key to developing CPS that are not only technically robust but also equitable and accessible to a
wide range of users.

6.2 Future Work

Future research should aim to improve the computational efficiency of SHAP, making it more suitable
for real-time and large-scale applications. Investigating advanced variants like C-SHAP and incorporating more
rigorous statistical interpretation methods could enhance its reliability, especially when dealing with complex or
high-dimensional datasets. To address the known challenges of correlated features, approaches such as Owen
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values offer a potential path forward. In parallel, developing automated explanation tools could help translate
results into formats that are easier for non-technical audiences to understand and act upon.

An emerging and promising avenue involves coupling SHAP with Large Language Models (LLMs) to produce
natural language explanations. This integration can help convey insights more clearly and in a context-sensitive
manner, particularly valuable in settings like career counseling where interpretability is essential.

Equally important is the need for longitudinal studies that examine the real-world effects of explainable Al in
guiding career decisions. Such research should explore whether transparent, personalized recommendations
contribute to meaningful long-term outcomes—such as improved skill acquisition, adaptability to changing job
markets, and greater job satisfaction. Gaining insight into these behavioral impacts will be crucial for assessing
the broader educational and social value of explainable Al in career guidance systems.
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