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ABSTRACT 

 

The widespread adoption of Artificial Intelligence (AI) and Machine Learning (ML) models across various 

sectors, including career guidance, has introduced a critical need for transparency and interpretability. 

While these models offer unprecedented predictive power, their inherent "black box" nature can erode user 

trust, hinder accountability, and perpetuate biases. This paper examines the pivotal role of Explainable AI 

(XAI), specifically focusing on SHapley Additive exPlanations (SHAP), in addressing these challenges 

within Career Prediction Systems (CPS). The proposed SHAP-based framework integrates advanced ML 

models with a dedicated explainability layer, leveraging intuitive visualizations and natural language 

narratives to make complex predictions comprehensible to diverse stakeholders. Despite challenges related 

to computational efficiency and data privacy, advancements in XAI promise to transform career guidance 

into an empowering and equitable tool. 

 

Keywords: Explainable AI, SHAP, Career Prediction, Transparency, Interpretability, Machine Learning, 

Ethical AI 

 

1 INTRODUCTION 

 
Artificial Intelligence (AI) and Machine Learning (ML) have become deeply embedded in modern society, 

influencing diverse domains ranging from web search and speech recognition to medical diagnostics and national 

defense systems [1]. These technologies have demonstrated exceptional performance, often exceeding human 

capabilities in solving complex problems. However, as AI models become increasingly sophisticated, a significant 
concern has emerged—their inner workings are becoming less interpretable to humans. 

 

Modern AI systems, particularly deep neural networks and ensemble methods, are frequently characterized as 

“black boxes” [2]. While their input and output behavior can be observed, the internal decision-making process 
remains obscure [3]. This lack of transparency is especially problematic in safety-critical and ethically sensitive 

areas such as healthcare, finance, and autonomous systems, where comprehending the rationale behind AI 

decisions is not just beneficial—it is essential [4]. A loan rejection or a clinical diagnosis made by an AI model 

without an accompanying explanation can provoke confusion, mistrust, and a reluctance to accept or rely on the 
system [5]. This trust deficit, rooted in opacity, significantly impedes the broader adoption of AI technologies in 

critical human-centric applications [5]. 

 

The emergence of Explainable Artificial Intelligence (XAI) aims to address this pressing issue by enhancing the 
transparency and interpretability of AI systems. XAI seeks to answer fundamental questions such as, “Why did 

the AI system make this decision?” and “What factors influenced the outcome?” [6]. It enables stakeholders to 

understand, validate, and even challenge the behavior of complex models, going beyond technical debugging to 

support fairness, accountability, and trust [7]. By translating complex algorithmic logic into understandable 
narratives [12], XAI facilitates a shift from human-AI interaction to meaningful human-AI collaboration [10]. 

 

The objective of this study is to explore the critical role of explainability in AI decision-making systems, 

particularly in domains where transparency is vital for ethical outcomes. Special emphasis is placed on the 
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practical, social, and governance implications of opaque AI models and how XAI methodologies can mitigate 
these concerns. Furthermore, this work highlights the importance of transparency not only for individual 

comprehension and trust but also for enabling external audits, bias detection, and regulatory compliance [11]. 

Ultimately, explainability is presented not as an optional enhancement, but as a fundamental requirement for 

responsible and sustainable AI integration into real-world decision-making processes.  
 

2      LITERATURE REVIEW 

 

2.1      Foundations of Career Prediction Systems 

 

Career Prediction Systems (CPS) are rapidly gaining traction as intelligent platforms that assist students, 

educators, and employers in making well-informed, data-driven career decisions. Career prediction systems (CPS) 

combine techniques from artificial intelligence, machine learning, and statistical analysis to offer tailored insights 
into a student’s career readiness. These systems analyze a range of inputs—such as academic records, acquired 

skills, behavioral traits, and personal interests—to generate meaningful recommendations. By doing so, CPS strive 

to create a more intentional connection between educational experiences and real-world job opportunities. 

 
2.1.1      Predictive Analytics in Career Guidance 

 

Predictive analytics plays a central role in modern Career Prediction Systems (CPS), using historical 

trends and statistical methods to anticipate future outcomes [14]. In the context of career guidance, this allows for 
more informed suggestions based on a student’s academic history, skillset, and personal interests. AI-integrated 

CPS can recognize subtle patterns in data—patterns that may not be evident through traditional counseling 

methods [15]. 

While conventional guidance often depends on a counselor’s judgment or a student’s self-reported preferences 
[16], predictive models are capable of analyzing complex, multi-layered datasets to reveal deeper insights [27]. 

These insights support more personalized strategies, such as tailored skill development plans or career roadmaps 

aligned with current job market needs [14]. 

This transition from reactive advice to data-driven planning reflects a broader shift in how educational support is 
being offered. Rather than relying entirely on subjective interpretation, CPS introduce a more structured, scalable 

approach that helps students anticipate and prepare for future opportunities with greater clarity. 

 

2.1.2      Applications and Stakeholders of CPS 

 

      Career Prediction Systems (CPS) are designed to serve more than just students—they support a wider 

community of stakeholders, each engaging with the system for different purposes and outcomes. 

1. Students: CPS help learners understand where they stand in terms of placement readiness by analyzing 
academic performance, skill gaps, and personal strengths. With this awareness, students can take more 

focused steps toward their career goals and align themselves with industry expectations [17]. These tools 

also offer grounded insights into possible job opportunities, helping students pursue career paths that 

genuinely fit their capabilities and aspirations. 
2. Human Resource Professionals: In the corporate world, HR teams use CPS to anticipate future talent 

needs, discover internal candidates for upskilling, and streamline hiring workflows. The predictive 

insights these systems provide contribute to better role alignment and can help reduce employee turnover 

by ensuring the right people are placed in the right roles [13]. 
3. Educators and Institutions: Academic departments benefit from CPS through a clearer understanding 

of student preparedness across batches. These insights support data-driven curriculum updates, more 

accurate placement forecasting, and even operational planning such as exam result analysis or tracking 

academic outcomes [18]. 
While the advantages of CPS are significant, they must also accommodate the differing priorities of each 

stakeholder. For example, institutions may emphasize improving placement rates, whereas some students may 

prefer to explore non-traditional or creative career paths. These potential conflicts point to the importance of 

keeping CPS transparent and explainable—ensuring that all users, regardless of their goals, can trust the system’s 
guidance. 

 

2.1.3      Data Modalities and Feature Engineering 

 
      Career Prediction Systems (CPS) draw on a diverse set of data sources to generate accurate and relevant 

predictions about student readiness and potential career paths. Among the most commonly used inputs are: 
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1. Academic Records: Performance indicators such as grades, GPA, and subject-specific results help 
highlight a student’s academic foundation and consistency over time [16]. These metrics often serve as 

a baseline for evaluating readiness in various professional domains. 

2. Co-Curricular and Certification Data: Activities beyond the classroom—like internships, hackathons, 

or relevant certifications—offer valuable insight into a student’s initiative and ability to apply knowledge 
in practical settings [18]. Such experiences often complement academic learning and reveal a candidate’s 

real-world engagement. 

3. Technical Skills and Project Work: Demonstrated experience with programming languages, tools, and 

domain-relevant projects reflects not just technical ability, but also problem-solving and collaboration 
skills [16]. These components are crucial in assessing employability, especially for roles requiring hands-

on expertise. 

4. Behavioral Attributes: Information on work ethic, stress handling, and team collaboration sheds light on 

the student’s workplace readiness [17]. 
5. Demographics and Interests: Personal preferences, career interests, socio-economic status, and 

geographical background help contextualize and personalize predictions [16]. 

The process of feature engineering—selecting, cleaning, and transforming raw data into model-friendly formats—

is critical to building effective CPS [14]. When done carefully, it ensures that the model captures the most relevant 
and predictive signals from a complex and multi-dimensional dataset. 

However, this data richness brings its own challenges. The diverse and often correlated features increase model 

complexity, often leading to the use of "black-box" models such as ensemble methods or deep learning [1]. These 

models, while powerful, lack transparency—making it difficult for users to understand why a particular career 
path was recommended. 

To address this, the incorporation of Explainable AI (XAI) techniques such as SHAP has become increasingly 

important. SHAP values help explain the contribution of each input feature to the model’s predictions, enhancing 

both accountability and interpretability [20]. In high-stakes scenarios—such as those involving student futures—
this transparency builds trust and ensures that CPS remain both effective and ethically grounded. 

 

Data types Examples Role in CPS Ref. 

Academic 

Records 

10th, 12th, college mark 

sheets; GPA; subject-wise 

scores 

Core indicators of academic performance 

and learning ability. Often used to assess 

eligibility. 

[16] 

Certificates 
& Activities 

Internships, club 
participation, competitions, 

leadership roles 

Reflects real-world exposure, teamwork, 
and leadership—important for overall 

readiness. 

[17] 

Skill Sets Programming languages, 

certifications, technical tools 

Directly measures technical ability and 

suitability for industry-specific roles. 
[16] 

Behavioral 

Data 

Work habits, stress handling, 

personality traits, team 
compatibility 

 Assesses soft skills, adaptability, and 

workplace fit—key for long-term success. [17] 

Personal 

Interests 

Favorite subjects, interest 

surveys, psychometric tests 

Supports alignment with personal goals 

and enhances career satisfaction. 
[16] 

Demographic 

Data 

Age, gender, location, 

socioeconomic background 

Enables personalization and trend 
[17] 

 

Table 1: Key Data Types and Their Role in Career Prediction Systems (CPS) 
 

2.1.4      Common Machine Learning Models in Career Prediction 

 

Career Prediction Systems (CPS) employ various machine learning models, ranging from interpretable 
statistical methods to high-performing AI techniques [14]. Selecting the appropriate model in a Career Prediction 

System (CPS) involves balancing predictive performance, interpretability, and alignment with the nature of the 

input data. Several models are commonly employed, each offering distinct strengths depending on the use case: 

 
1. Random Forest: This ensemble method combines multiple decision trees to improve prediction accuracy 

and reduce the risk of overfitting. It has shown strong performance in CPS contexts, with reported 

accuracies reaching as high as 93% [16]. 

2. Support Vector Machines (SVM): Particularly effective in classification tasks involving high-
dimensional data, SVMs are known for their ability to find optimal decision boundaries in complex 

spaces [16]. 
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3. Neural Networks: Useful for identifying non-linear patterns in large and varied datasets, neural networks 
offer powerful modeling capabilities. However, their lack of transparency—often referred to as the 

"black-box" problem—remains a limitation [8]. 

4. Decision Trees: Favored for their simplicity and interpretability, decision trees split data into clear 

decision rules based on feature thresholds. This makes them ideal for applications where transparency is 
a priority [14]. 

5. XGBoost: A gradient boosting algorithm built on decision trees, XGBoost is known for its high speed 

and accuracy, especially when working with sparse or noisy data [16]. 

6. Logistic Regression: A foundational model in binary classification, logistic regression is appreciated for 
its straightforward interpretation and effectiveness when relationships between variables are linear. 

7. K-Nearest Neighbor (KNN) and Naïve Bayes: These models are also applied in CPS, particularly in 

tasks where simplicity and fast pattern recognition are sufficient for meaningful outcomes . 

Despite the range of options, a persistent challenge in model selection is finding the right balance between 
accuracy and explainability. While advanced models often outperform simpler ones in terms of prediction, their 

complexity can hinder transparency. Post-hoc interpretation tools such as SHAP have become increasingly 

valuable in addressing this gap, allowing stakeholders to understand how predictions are made without sacrificing 

model performance [22]. 
 

3. METHODOLOGY 

 

3.1       SHAP: A Unified Framework for Model Interpretability 

 

SHAP (Shapley Additive exPlanations) has emerged as a widely adopted approach for interpreting the 

outputs of complex machine learning models, particularly in sensitive areas such as career prediction. Grounded 

in solid game-theoretic principles, SHAP helps clarify the role each input feature plays in influencing a model’s 
decision, offering both mathematical soundness and actionable explanations. 

 

3.1.1.      Theoretical underpinnings 

 

 Shapley Values     and Fair Attribution SHAP is grounded in cooperative game theory, leveraging Shapley 

values introduced by Lloyd Shapley [22]. These values distribute a model’s prediction (the “payout”) fairly among 

features (the “players”) based on their marginal contributions across all feature combinations [23]. By accounting 

for feature interactions and adhering to properties such as efficiency, symmetry, and local accuracy, SHAP ensures 
a fair and consistent distribution of contribution scores across features [25]. Its strong mathematical foundation 

lends credibility to its interpretations, making it especially suitable for applications like career prediction, where 

transparency and fairness are not just beneficial but necessary [26]. 

 
3.1.2 Mechanism 

 

  SHAP offers both local and global interpretability by analyzing how a model’s output changes when 

specific features are included or excluded from the prediction process [24]. This comparison forms the basis for 
two types of explanations: 

1. Local explanations: These help clarify individual predictions—for instance, highlighting which specific 

attributes influenced a student’s recommended career path [22]. 

2. Global explanations: These offer a broader view by identifying which features most commonly affect 
outcomes across the entire dataset. Such insights are particularly valuable for educators and 

administrators seeking to understand key factors that drive placement readiness or success [8]. 

One of SHAP’s strengths lies in its model-agnostic nature, allowing it to be applied across a wide range of 

algorithms, including decision trees, neural networks, and linear models [10]. 
By combining both individualized feedback and high-level insights, SHAP supports transparent decision-making 

at multiple levels—helping users trust the system while enabling institutions to audit and refine their models more 

effectively. 

. 
 

3.1.3 Why SHAP Matters for Model Understanding 

 

SHAP is widely recognized for several key strengths that enhance model interpretability, particularly in 
sensitive domains like career prediction: 

1. Quantified feature importance: SHAP assigns each feature a precise score, indicating not just how much 

it contributes to a prediction, but also in which direction it influences the outcome [10]. 
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2. Fair and consistent attributions: By ensuring a balanced distribution of influence among features, SHAP 
promotes reliable and reproducible interpretations across different models. 

3. Support for trust and bias detection: It can uncover instances where specific features may be exerting 

undue influence, helping developers identify potential biases and make ethically sound adjustments [8]. 

4. Robust insights and stability: SHAP offers consistent results across multiple runs and brings to light 
interactions between features as well as patterns of variation within the data [21]. 

In the context of career prediction systems, SHAP adds value by going beyond surface-level correlations. It 

clarifies the reasoning behind model outputs, enabling more targeted actions—such as identifying individual skill 

gaps or designing personalized interventions for both students and institutions. 
 

4. IMPLEMENTATION 

  

4.1  SHAP-Based Framework for Transparent Career Prediction 

 

To improve trust and transparency in Career Prediction Systems (CPS), we integrate SHAP-based 

explainability into the system architecture. This section outlines the implementation workflow and highlights how 

SHAP explanations assist in real-world decision-making. 
 

4.1.1 System Architecture and Workflow 

 

The proposed framework combines a machine learning (ML) model with a dedicated SHAP explainer 
layer.  

 

 
              Fig. 1. SHAP-based architecture for interpretable career prediction. 

 

The implementation of SHAP-based Career Prediction Systems (CPS) typically follows a structured 
process consisting of four main stages: 

 

1. Data Preparation: A range of student data—including academic performance, technical skills, and 

behavioral attributes—is collected and preprocessed. Feature selection is guided by relevance to the 
prediction task, ensuring that the input variables align with the system’s goals [18]. 

2. Model Training: The cleaned dataset is used to train an appropriate machine learning model, such as a 

Random Forest or Neural Network. The choice of model depends on factors like the nature of the 

prediction problem and the complexity of the data [16]. 
3. SHAP Explainability: Once the model is trained, SHAP techniques—such as TreeSHAP or 

KernelSHAP—are applied to interpret both individual predictions and overall model behavior. These 

explanations provide transparency by showing how each feature contributes to specific outcomes and 

broader patterns across the dataset [22]. 
4. Visualization and User Interface: The insights generated by SHAP are displayed through visual tools 

like force plots, summary plots, and waterfall charts. A well-designed dashboard enables users—

particularly students—to under 

5. stand the rationale behind career recommendations. Where needed, natural language explanations 
(possibly supported by large language models) can further simplify the output for easier interpretation 

[12]. 
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This combination of technical interpretability and user-centered design allows CPS to move beyond 
opaque predictions. By integrating SHAP at its core, the system not only recommends potential career paths but 

also justifies those suggestions with clear, evidence-based reasoning—benefiting both students and educators [19]. 

 

 
Algorithm 1: SHAP-Based Career Prediction Workflow 

                       

 

Input: Student dataset D with academic, technical, behavioral, and demographic features 
Output: Career placement prediction with SHAP- based explanations 

                

1:   BEGIN 

 
2:   # Data Preparation 

3:   Load dataset D 

4:   Handle missing values (imputation) 

5:   Encode categorical features 
6:   Normalize or standardize numerical features (If required) 

7:   Select relevant features based on domain knowledge and correlation analysis 

 

8:    # Model Training 

9:    Split D into training set (Train) and testing set (Test)                                               

10:  Choose ML model M (e.g., XGBoost, Random Forest) 

11:  Train M on Train dataset 

 
12:   # SHAP Explainability 

13:    Initialize SHAP explainer E ← SHAP_Explainer(M)   

14:    For each instance x in Test: 

15:    Compute SHAP values S ← E(x) 
16:    Store local explanation for x 

 

17:     # Global Explanation 

18:     Compute SHAP values for entire Test dataset 
19:     Aggregate feature importance scores 

20:     Rank features based on mean absolute SHAP value 

 

21:     # Visualization & Output 

22:     Generate plots: Force Plot, Summary Plot, Waterfall Plot 

23:     Display results via interactive dashboard 

24:     Provide natural language narrative for non-technical users 

 
25:     END 

 

Algorithm 1: SHAP-Based Career Prediction Workflow 

 
 

4.1.2  SHAP Implementation and Visualization Techniques 

 

SHAP is practically implemented through accessible Python libraries, most notably the SHAP package, which 
provides tools to interpret machine learning predictions and assess feature influence [8]. These resources allow 

data scientists to embed explainability directly into their workflows, supporting greater transparency, 

accountability, and trust in AI-driven systems. 

To communicate SHAP insights effectively, several visual techniques are commonly used: 
 

1. Force Plots: These visualize how each feature contributes to a single prediction, highlighting both 

positive and negative influences relative to a baseline value [22]. They are especially helpful for 

understanding individual-level decisions. 
2. Summary (Beeswarm) Plots: By displaying SHAP values across the full dataset, these plots reveal global 

feature importance. Features are ranked by their overall impact, with color gradients indicating the 

direction and strength of each effect [8]. 
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3. Partial Dependence Plots (PDPs): While not unique to SHAP, PDPs augmented with SHAP values can 
illustrate how changes in a feature influence predictions across different cases—shedding light on non-

linear relationships or interactions [9]. 

4. Waterfall Plots: These decompose a single prediction step-by-step from the model’s base value, showing 

how each feature nudges the outcome. This structure provides a clear, traceable explanation of how a 
result was reached [29]. 

When applying SHAP in practice, it's important to follow best practices: documenting how Shapley values are 

computed, clearly interpreting what positive or negative contributions mean, and cross-validating these insights 

with model behavior [28]. Moreover, ethical considerations should be taken into account—especially when 
presenting sensitive explanations to non-technical users. 

By turning complex algorithmic decisions into visual and interpretable narratives, SHAP bridges the gap between 

machine learning systems and human understanding. This interpretability is particularly crucial in career guidance 

contexts, where students and educators alike need clear, trustworthy insights into how recommendations are 
generated [30]. 

 

4.2 Tools and Environment 

 

The implementation of the SHAP-based Career Prediction System was carried out using Python 3.10 due 

to its extensive support for machine learning and data science libraries. All model development, preprocessing, 

and explainability integration were performed within the Anaconda environment, leveraging Jupyter Notebook 

and VS Code as the primary development interfaces. 
The system utilized the following key libraries and frameworks: 

1. Scikit-learn: Employed for model building, preprocessing, and evaluation, offering robust support for 

algorithms such as Random Forest and logistic regression. 

2. Pandas and NumPy: Used extensively for data manipulation and numerical computations during 
preprocessing and feature engineering. 

3. SHAP Library: Central to this study, the shap Python package was integrated for calculating local and 

global feature attributions. TreeSHAP was used for tree-based models due to its efficiency and 

consistency. 
4. Matplotlib and Seaborn: Utilized for generating custom plots and visualizations during the analysis 

phase. 

5. Streamlit: Integrated to build an interactive user interface that allows students to input data and receive 

interpretable career guidance in real time. 
Model training and SHAP value computation were performed on a system with an Intel® Core™ i7 processor, 16 

GB RAM, and Windows 10 OS. This configuration was sufficient for processing student datasets of moderate size 

and generating SHAP visualizations in near real-time. 

The system was tested and deployed in a controlled environment, ensuring reproducibility and performance 
stability. All source code and dependencies were managed using environment configuration files to support future 

scaling and collaboration. 

 

4.3 SHAP-Based Interpretability in Career     Prediction Scenarios  

 

The SHAP framework enables transparent and actionable insights in Career Prediction Systems (CPS). 

Consider the following applications: 

 
4.3.1 Personalized Career Recommendations:  

A student recommended for a data science role can view a SHAP force plot highlighting key positive 

contributors such as strong academic performance in mathematics and computer science, programming 

proficiency (e.g., Python), and high scores in stress-handling assessments. At the same time, minor 
negative contributions, such as limited co-curricular involvement, are also visible, providing a holistic 

explanation [18] 

. 

4.3.2 Skill Gap Identification: SHAP dependence plots can pinpoint specific weaknesses affecting a student’s 
placement potential. For example, low certification scores in Java may reduce eligibility for product-

based roles, despite strengths in problem-solving skills. This clarity helps learners target precise areas 

for improvement. 

4.3.3 Bias Detection: SHAP summary plots applied across the dataset can help detect potential biases. If 
demographic factors like gender or region consistently influence predictions, even indirectly, it may 

signal embedded bias in the model or training data [8], [26]. These insights inform fairness-aware model 

retraining and policy adjustments. 
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By offering interpretable predictions at both individual and institutional levels, SHAP facilitates self-improvement 
and enables educators to design targeted interventions—transforming CPS into a transparent and equitable career 

guidance tool. 

 

4.4 Enhancing User Comprehension via SHAP Visualizations and Narratives 

 

While SHAP values offer mathematically grounded insights into model behavior, their raw outputs can be 

difficult to interpret for non-technical users such as students, parents, or counselors [36]. Therefore, the practical 

impact of SHAP in Career Prediction Systems (CPS) relies on how effectively these values are communicated. 
Visualizations serve as a bridge between technical detail and user understanding. SHAP plots—such as force plots 

for individual predictions, summary plots for global feature importance, and dependence or waterfall plots—offer 

varied interpretive views suited to different users and contexts [28]. These visual tools help users see not just what 

the model predicted, but why. 
To further improve accessibility, integrating natural language explanations is crucial. Recent advances in Large 

Language Models (LLMs) enable conversion of SHAP outputs into human-readable narratives, offering clear, 

relatable explanations without requiring ML expertise [7] 

Ultimately, the effectiveness of SHAP in CPS depends on how well technical insights are translated into formats 
users can trust and understand. This underscores the need for intuitive interfaces and user-centered design, 

ensuring explanations resonate with diverse audiences and promote informed, confident decision-making [31]. 

 

5. RESULTS AND EVALUATION 

 

This section presents the experimental outcomes of the proposed SHAP-based Career Prediction System. 

The evaluation is structured around five core components: feature selection, model prediction, performance 

metrics, comparative analysis, and explainability through SHAP. 
 

5.1 Feature Importance Analysis 

 

To identify the most influential factors contributing to a student's career outcome, we conducted a 
comprehensive feature importance analysis using SHAP (SHapley Additive exPlanations). This step not only 

quantified the impact of each input variable on the model’s output but also enhanced the interpretability of our 

career prediction framework. 

The dataset comprised diverse features, ranging from academic indicators like CGPA and internship experience, 
to behavioral competencies such as communication, teamwork, and adaptability. It also included demographic 

and aspirational variables like area of residence, branch, higher education plans, and desired job role, enabling a 

holistic evaluation of student readiness. 

 

 
 

Fig. 2. Correlation Heatmap highlighting key feature relationships 
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The correlation heatmap (Fig. 1) reveals notable interdependencies between features. For example: 
1. CGPA exhibits mild negative correlations with subjective assessments like teamwork and leadership, 

indicating potential independence between academic scores and perceived soft skills. 

2. Strong positive correlations exist between soft skill ratings such as communication, teamwork, and 

leadership potential, suggesting that students demonstrating one are likely to be rated high in others. 
3. Certain branches (like Electronics & Communication or Mechanical Engineering) show mild negative 

correlations with placement salary, hinting at discipline-specific outcome trends. 

 

The SHAP summary analysis revealed that: 
 

1. CGPA was the most dominant predictor of placement likelihood, reinforcing the value of consistent 

academic performance. 

2. Internship experience and the number of technical skills demonstrated strong influence, highlighting the 
significance of real-world exposure and hands-on learning. 

3. Certifications, along with technical competencies, played a key supporting role in improving placement 

predictions. 

4. Behavioral attributes such as communication skills, teamwork, and leadership qualities also showed 
considerable predictive power, aligning with the industry's increasing emphasis on soft skills. 

5. Variables like branch of study and desired job role captured domain-specific trends in placement 

outcomes, especially in fields like Data Science and Electronics. 

 
 

 
   

Fig. 3. SHAP interaction plot illustrating how CGPA, in combination with 

 Student_ID, influences placement predictions.. 

 

 
 

               Fig. 4. SHAP interaction plot showing the joint impact of CGPA and Internship 

 Experience on placement prediction. 
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In addition to individual feature importance, we analyzed interaction effects between key variables. The 
interaction between CGPA and Student ID showed minimal influence, confirming that personal identifiers did not 

bias the model. However, the interaction between CGPA and Internship Experience revealed overlapping impact 

patterns, suggesting a meaningful synergy between academic excellence and practical experience in enhancing 

placement readiness. 
This analysis enables transparent, data-driven insights into the placement process and equips 

stakeholders to prioritize interventions where they matter most. By integrating SHAP explanations, our framework 

bridges the gap between complex machine learning predictions and stakeholder understanding—making career 

prediction systems more interpretable, fair, and actionable. 
 

5.2  Performance Metrics of Career Outcome Models 

 

 To evaluate the effectiveness of our proposed framework, we developed and tested multiple supervised 
machine learning models for predicting the likelihood of student placement. The target variable was binary, 

indicating whether a student was placed or not. 

We trained the models on preprocessed and feature-selected data using an 80:20 train-test split. The following 

models were benchmarked: 

• Logistic Regression 

• Random Forest Classifier 

• XGBoost Classifier 

• Support Vector Machine (SVM) 

• k-Nearest Neighbors (k-NN) 

Each model's performance was evaluated using standard classification metrics including Accuracy, Precision, 

Recall, F1-Score, and ROC-AUC. These metrics provided a comprehensive view of model effectiveness in 

handling both positive and negative placement cases. 
 

Model Accuracy Precision Recall F1-Score ROC-AUC 

Logistic Regression 
 

0.81 0.79 0.83 0.81 0.88 

Random Forest Classifier 
 

0.87 0.85 0.89 0.87 0.91 

 XGBoost Classifier 
 

0.89 0.88 0.90 0.89 0.94 

Support Vector Machine 
 

0.83 0.81 0.85 0.83 0.86 

k-Nearest Neighbors 
 

0.75 0.72 0.76 0.74 0.79 

 

Table 2. Performance Metrics of Classification Models for Placement Prediction 

 
 

5.3 Analytical Comparison and Model Selection 
 
 

To identify the most suitable algorithm for our career prediction framework, we conducted a detailed 

comparative evaluation of five supervised learning models: Logistic Regression, Random Forest, XGBoost, 

Support Vector Machine (SVM), and k-Nearest Neighbors (k-NN). 

The comparison was based on a comprehensive set of evaluation metrics—Accuracy, Precision, Recall, F1-Score, 
and ROC-AUC—which are crucial for assessing classification tasks with potential class imbalance. Each model 

was trained on the same preprocessed dataset, ensuring consistency in evaluation. 

 

The XGBoost classifier outperformed all other models across every metric. It provided a balanced trade-
off between precision and recall, while also achieving the highest Area Under the Curve (AUC), indicating strong 

discriminative power. Although Random Forest also performed well, XGBoost offered enhanced performance and 

seamless integration with SHAP for post-hoc interpretability, which was essential for this study's explainability 

objective. In contrast, simpler models like Logistic Regression and k-NN, while interpretable, underperformed in 
recall and F1-score—making them less reliable for use cases where false negatives (i.e., missed placement 

opportunities) must be minimized. 

These findings reaffirm the value of ensemble learning techniques, especially gradient-boosted decision trees, in 

predictive modeling for career readiness assessments. The superior accuracy, robustness, and explainability of 
XGBoost ultimately led to its selection for deployment in our final system. 
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5.4 SHAP-Based Global and Local Explanations 

 

To ensure transparency and interpretability in career outcome predictions, we integrated SHAP (SHapley 

Additive exPlanations) into our XGBoost-based model. SHAP provides both global feature importance and local 
instance-level explanations, making it an ideal tool for explaining model predictions to students, faculty, and 

placement officers. 

 

5.4.1 Global Interpretability 

 

Global SHAP analysis highlights the most impactful features influencing predictions across the dataset. (As 

shown in Fig. 2 and Fig. 3) Results show: 

1. CGPA emerges as the most influential factor in predicting placement outcomes, indicating its continued 
relevance as a key academic metric. 

2. Internship experience, along with demonstrated technical skills and professional certifications, 

substantially improves placement probability—highlighting the industry's preference for candidates with 

hands-on exposure and applied learning. 
3. Soft skills, including communication, leadership, and teamwork, also play a critical role, reflecting their 

increasing value in modern workplaces. 

4. Variables such as academic branch, preferred job role, and salary expectations contribute to predictions 

in more nuanced, context-dependent ways. 
These findings offer institutions a clearer picture of the factors shaping placement readiness and can inform the 

design of targeted training programs, career counselling strategies, or curriculum enhancements. 

 

5.4.2 Local Interpretability 

 

SHAP enhances interpretability at the individual level through visual tools like force and waterfall plots: 

1. In one instance, a student with a moderate CGPA but notable achievements in certification courses and 

strong communication abilities was predicted to succeed, owing to the combined effect of 
complementary features. 

2. Conversely, another student, despite a high CGPA, was assigned a lower placement probability due to 

limited hands-on experience and weaker soft skills. 

Such individualized feedback helps learners recognize which factors are working in their favor and where 
improvement is needed. It also equips career counselors with meaningful insights to tailor guidance and 

interventions effectively. 

 

5.4.3  Interpretability in Practice 

 

Incorporating SHAP into the system enhances transparency and fairness in decision-making by ensuring 

that predictions are accompanied by clear, interpretable justifications. The resulting visual explanations can be 

effectively integrated into institutional dashboards and individual student reports, making complex model outputs 
more accessible to all stakeholders. 

 

5.5 SHAP Summary Plot Interpretation 

 
To understand the model's decision-making process, a SHAP summary plot was generated, illustrating 

the influence of input features on placement predictions.  
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                      Fig. 5. SHAP summary plot showing feature influence on placement 

            predictions, with color indicating feature value. 
 

This plot arranges features according to their influence on the model’s output, highlighting both the 

strength and direction of each feature’s contribution. Along the Y-axis, variables such as CGPA, internship 

experience, and technical skills are ordered by their overall importance. Each point on the X-axis corresponds to 
a SHAP value for an individual case, reflecting the extent to which that feature shifted the prediction upward or 

downward. 

The color scale—ranging from blue (low feature value) to red (high feature value)—illustrates how feature 

magnitude relates to impact. For example, higher CGPA values (red) typically nudge the prediction toward a more 
favorable placement outcome, whereas lower values (blue) tend to pull it in the opposite direction. Similar effects 

are noted for internships and both technical and soft skills. In contrast, attributes like Area and Gender demonstrate 

more variable effects, possibly due to categorical representation. Interpretation of such features requires careful 

consideration to ensure fairness and avoid reinforcing unintended bias. 
Overall, the plot enhances interpretability by highlighting key predictors and their individual-level contributions, 

reinforcing the transparency and fairness of the proposed explainable framework.  

 

 
6. CONCLUSION AND FUTURE WORK 

 

 

6.1  Conclusion 

 

This study presents a framework built around SHAP (SHapley Additive exPlanations) to bring greater 

clarity to AI-driven Career Prediction Systems (CPS). Drawing on principles from cooperative game theory, the 

approach offers both overarching insights and case-specific explanations. This allows students to understand the 
rationale behind individual recommendations, while also enabling educators and institutions to identify patterns, 

biases, and influential decision-making factors. Such interpretability is especially important in fields like career 

guidance, where trust and transparency are essential. 

However, the practical adoption of SHAP-based CPS at scale is not without its challenges. These include high 
computational demands, limitations in dealing with multicollinearity among features, and the complexity of 

conveying results in a format that is intuitive for non-technical users. Additionally, concerns around fairness and 

the risk of embedding bias within datasets and models continue to be areas requiring careful attention. Overcoming 

these hurdles is key to developing CPS that are not only technically robust but also equitable and accessible to a 
wide range of users. 

 

6.2  Future Work 

 

Future research should aim to improve the computational efficiency of SHAP, making it more suitable 

for real-time and large-scale applications. Investigating advanced variants like C-SHAP and incorporating more 

rigorous statistical interpretation methods could enhance its reliability, especially when dealing with complex or 

high-dimensional datasets. To address the known challenges of correlated features, approaches such as Owen 
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values offer a potential path forward. In parallel, developing automated explanation tools could help translate 
results into formats that are easier for non-technical audiences to understand and act upon. 

An emerging and promising avenue involves coupling SHAP with Large Language Models (LLMs) to produce 

natural language explanations. This integration can help convey insights more clearly and in a context-sensitive 

manner, particularly valuable in settings like career counseling where interpretability is essential. 
Equally important is the need for longitudinal studies that examine the real-world effects of explainable AI in 

guiding career decisions. Such research should explore whether transparent, personalized recommendations 

contribute to meaningful long-term outcomes—such as improved skill acquisition, adaptability to changing job 

markets, and greater job satisfaction. Gaining insight into these behavioral impacts will be crucial for assessing 
the broader educational and social value of explainable AI in career guidance systems. 
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