
VRK Women’s College of Engineering and Technology

1

Enhanced Image-to-Text Conversion for License Plate

Recognition Using OpenCV and Tesseract

Faezah Ayyub [1] Dr.B.Sasi Kumar [2]

[1] M.Tech Student - CSE, Department of Computer Science Engineering, Dr.V.R.K Women’s College

of Engineering & Technology, Hyderabad, Telangana, India.

[2] Principal & Professor, Department of Computer Science Engineering, Dr.V.R.K College of

Engineering & Technology, Hyderabad, Telangana, India.

1 ABSTRACT

This document explains in detail the process

of converting images to text. It describes the

different procedures required to extract text

from image files (such as jpeg or png) and

create a separate text file containing the

extracted information. The paper addresses

the limitations of current image processing

applications and aims to improve them

through different levels of image processing

and filtering. The implementation uses the

CV2 OpenCV library with Python for image

processing and Tesseract to extract text from

processed images. The different levels of

processing applied to each image help to

achieve improved text results. After

processing, the resulting text files are cleaned

by removing commas, semicolons, quotes,

periods, and other non-standard characters

using ASCII filtering, as these characters are

not typically found in standard license plates

(Palekar et al., 2017).

2 INTRODUCTION

Traffic management in cities remains a

constant challenge, especially in India, where

unlicensed vehicles are on the rise due to

population growth. Frequent traffic

congestion often leads citizens to violate

traffic rules in order to reach their

destinations faster. To address this issue, it is

important to develop a system that

streamlines the administrative work

associated with issuing fines. An efficient

and reliable system for automating and

monitoring parking barriers is also required.

For large commercial enterprises, managing

and monitoring only licensed vehicles is a

huge resource in terms of time and cost.

Therefore, a fast, accurate, and effective

system is urgently needed. Capturing license

plate images and retrieving vehicle details

from a database is a promising solution to

streamline the process (Palekar et al., 2017).

Figure 1 Traffic Police taking pictures of vehicle license

plates

The captured images need to be processed to

extract important information. Techniques such

as image segmentation, dilation, erosion, contour

finding, and thresholding are used to enhance the

images. Image processing is important to extract

the required information from the images and

connect them to the database (Singh & Bhushan,

2019). The most effective way to convert the

image information into a usable format is through

Journal of Engineering and Technology Management 73 (2024)

Page No: 595

VRK Women’s College of Engineering and Technology

2

text extraction, which can be done using

Tesseract software. Tesseract is an optical

character recognition (OCR) tool that converts

images into text (Sambana et al., 2023).

2.1 SOFTWARE’S USED
The field of image processing is primarily

software-driven, and OCR software such as

Tesseract is used to convert images to text.

However, Tesseract is prone to errors, especially

for images that are not of high quality. To

improve accuracy, you should first process the

images using OpenCV before inputting them into

Tesseract.

2.1.1 OpenCV
OpenCV (Open Source Computer Vision) is a

free library suitable for both academic and

commercial use, designed for real-time computer

vision applications. The functionality of this

library includes a wide range of functions,

including 2D and 3D toolkits, self-motion

estimation, facial recognition, gesture

recognition, action understanding, object

segmentation, recognition, and tracking (Howse

et al., 2016).

Figure 2 Open CV Real Time working

OpenCV is written primarily in C++, with a

powerful C++ interface and a less comprehensive

but extensive C interface. This library contains

many predefined functions useful for image

processing. Given its open-source nature,

OpenCV was chosen for this project, allowing the

implementation of several image processing

techniques such as RGB to grayscale conversion,

erosion, and dilation.

2.1.2 Python
Python is a popular high-level interpreted

programming language known for its focus on

code readability. The syntax allows programmers

to express concepts concisely compared to

languages like C++ or Java. Python supports

multiple programming paradigms, including

object-oriented, imperative, and functional

programming. It has a dynamic type system and

automatic memory management along with a

comprehensive standard library. Python's

simplicity and efficiency allowed us to create

short, clean code snippets for each processing

technique and facilitated the development of

multi-level processing systems. As a result,

Python has proven to be very effective for digital

image processing, with simple, easy-to-

understand code (S. Walker & Martinez, 2018).

2.1.3 Tesseract
The Tesseract package includes libtesseract, an

OCR engine developed by Ray Smith, and

tesseract, a command-line tool. Tesseract

supports Unicode (UTF-8), recognizes over 100

languages natively, and can learn new languages.

It offers a variety of output formats, including

plain text, hOCR (HTML), and PDF. Originally

developed as proprietary software by Hewlett-

Packard in the late 1980s and early 1990s,

Tesseract has since evolved through updates and

migrations from C to C++. It is compatible with

Linux, Windows, and macOS, but has been tested

primarily on Windows and Ubuntu. Previous

versions of Tesseract only supported TIFF

images with single-column text and lacked layout

analysis, resulting in errors with multiple

columns or complex text. Starting with version

3.00, Tesseract introduced text formatting, OCR

geolocation, and page layout analysis. Version

3.04, released in July 2015, expanded language

support to over 100 languages. Tesseract can be

Figure 3 Working of Python Language

Journal of Engineering and Technology Management 73 (2024)

Page No: 596

VRK Women’s College of Engineering and Technology

3

used as a backend for complex OCR tasks,

including layout analysis, when combined with a

frontend such as OCRopus (Seiter, 1993).

Figure 4 Tesseract using OCR to detect texts

3 METHODOLOGY

3.1 IMAGE ACQUISITION:
Collect image files in formats like JPEG, PNG,

etc. that contain text information for extraction.

3.2 PREPROCESSING:
Image Loading: Load image files using the CV2

OpenCV library in Python.

Preprocessing: Apply basic preprocessing steps

like resizing or contrast adjustment to improve

image quality.

3.3 IMAGE PROCESSING:
Grayscale Conversion: Convert images from

RGB to grayscale to simplify processing.

Noise Reduction: Reduce noise using image

processing techniques like Gaussian Blur.

Binarization: Apply thresholding to convert

grayscale images to binary images where text can

be clearly distinguished from background.

Formal Operations: Enhance text by performing

stretching and erosion to remove small artifacts.

3.4 TEXT EXTRACTION:
OCR Application: Input processed binary images

into Tesseract OCR software to extract text.

Text Recognition: Convert processed images to

text format using Tesseract functions.

3.5 POST-PROCESSING:
Text Cleanup: Clean the extracted text by

removing non-standard characters such as

commas, semicolons, quotation marks, and

periods using ASCII filtering.

Text Formatting: Format the cleaned text as

needed to ensure that the final output is consistent

and readable.

3.6 OUTPUT GENERATION:
Create Text File: Save the cleaned and formatted

text to a separate text file.

Validation: Validate the extracted text to ensure

accuracy and completeness.

3.7 EVALUATION:
Accuracy Evaluation: Evaluate the accuracy of

the text extraction by comparing it to manually

verified text.

Performance Metrics: Measure the performance

of the image processing and text extraction steps

to identify areas for improvement.

This methodology provides a comprehensive

approach to converting images into text by

addressing image quality issues and improving

the text extraction process.

4 CONCLUSION

In conclusion, the proposed methodology

effectively addresses the problem of converting

images to text. By leveraging advanced image

processing techniques using the CV2 OpenCV

library and the Tesseract OCR application for text

extraction, the process significantly improves the

accuracy and reliability of text conversion.

Preprocessing steps including grayscale

conversion, noise reduction, and morphological

operations ensure that the images are optimized

for OCR, resulting in more accurate text

extraction. Postprocessing measures such as

ASCII filtering further enhance the extracted text

by removing non-standard characters, ensuring

that the final output meets the standards required

for readability and conformance (2022) (Larsen

& Becker, 2021).

Journal of Engineering and Technology Management 73 (2024)

Page No: 597

VRK Women’s College of Engineering and Technology

4

The iterative approach of the methodology,

combining image enhancement and sophisticated

text recognition, provides a powerful solution to

the limitations of current image processing

applications. By generating clean and accurate

text files from image inputs, the approach not

only improves the efficiency of text extraction

but also addresses real-world problems in

applications such as license plate recognition and

automated document processing. Future work

may include further improving the process,

exploring additional image processing

techniques, and extending the capabilities of the

system to handle a wider range of text and image

types (Larsen & Becker, 2021).

5 REFERENCE

(2022) Optimization and machine learning

[Preprint]. doi:10.1002/9781119902881.

Howse, J., Joshi, P. and Beyeler, M. (2016)

OpenCV: Computer vision projects with python:

Get savvy with opencv and actualize Cool

Computer Vision Applications: A course in three

modules. Birmingham, UK: Packt Publishing.

Larsen, K.R. and Becker, D.S. (2021) ‘Why use

automated machine learning?’, Automated

Machine Learning for Business, pp. 1–22.

doi:10.1093/oso/9780190941659.003.0001.

Palekar, R.R. et al. (2017) ‘Real time license plate

detection using opencv and Tesseract’, 2017

International Conference on Communication and

Signal Processing (ICCSP) [Preprint].

doi:10.1109/iccsp.2017.8286778.

S. Walker, J. and Martinez, A. (2018) Python.

Chicago: Jonathan Wee.

Sambana, H. et al. (2023) ‘License plate

recognition using a sequential model and

opencv’, 2023 7th International Conference on

Computing Methodologies and Communication

(ICCMC) [Preprint].

doi:10.1109/iccmc56507.2023.10083767.

Seiter, C. (1993) OCR: The recognition you

deserve. Estados Unidos: PC World

Communications.

Singh, J. and Bhushan, B. (2019) ‘Real time

indian license plate detection using deep neural

networks and Optical Character Recognition

Using LSTM TESSERACT’, 2019 International

Conference on Computing, Communication, and

Intelligent Systems (ICCCIS) [Preprint].

doi:10.1109/icccis48478.2019.8974469

Journal of Engineering and Technology Management 73 (2024)

Page No: 598

