
A Paradigm Shift in Educational Content Creation: Leveraging Generative AI
for On-Demand Course Generation

Sahil Pulikal1, Dr. Nita Patil2, Dr. C. M. Raut3, Dr. Sanjay M. Patil4

1,3,4Department of Computer Engineering, Datta Meghe College of Engineering, Airoli, Navi Mumbai, India
2Department of Computer Engineering, K. C. College of Engineering and Management and Research Studies, Thane,

India.

Abstract
Applications for creating courses have the power to
completely change how educational content is created. But
the existing systems have a number of drawbacks, including
limited flexibility such as not being able to add unique
important topics, a limited range of topics, no integration of
YouTube videos, and no interactive tests. In order to
overcome these drawbacks, a novel system is presented in this
work. With the help of our system, users may create
customized courses covering a variety of topics and include
interactive tests and YouTube video incorporation.
The suggested system makes it possible to create highly
personalized courses in a variety of academic subjects. It
evaluates user input to build thorough course outlines that
cover important topics and subtopics. It does this by utilizing
the most recent robust Generative AI models, such as
OpenAI's GPT 4o mini, and smart prompt engineering
approaches. In addition, the software offers interactive tests
and smoothly incorporates relevant YouTube videos to
improve student comprehension and engagement.
The architecture as well as functionality of the suggested
system are covered in detail in this paper. This system has the
ability to significantly change the educational landscape by
providing teachers and students with a more tailored and
interactive learning environment.

Keywords:
Course generator, Generative AI, Artificial Intelligence,
Education

1. INTRODUCTION

One of the most innovative and revolutionary areas of AI is
generative AI, which enables computers to produce material on
their own while imitating human creativity and problem-
solving abilities [21, 22]. This paper is an important first step
toward reimagining the creation, organization, and
improvement of instructional content. It is a feature-rich full
stack application that creates course structures dynamically
using Generative AI, loads them with pertinent YouTube
videos, and improves learning utilizing concept-check
questions.

The process of developing educational courses has
traditionally been laborious and taking time. Teachers often
find it challenging to put together a course structure that is
coherent and successfully conveys material. Moreover,
maintaining the relevance and interest of course material is a
never-ending challenge. Accessing pertinent outside resources,
like YouTube videos, is essential as the internet develops as a
repository for educational content. Ultimately, quizzes—a
preliminary evaluation tool—are essential for gauging student
understanding and consolidating prior knowledge. The purpose
of this paper is to address these intricate learning challenges.

This paper's primary goal is to lay the groundwork for a state-
of-the-art, user-friendly platform that makes it simpler to
develop comprehensive courses utilizing generative AI. It can
achieve this by making use of the following essential
components:

1. Artificial Intelligence-Driven Course Outline Generation:
Using state-of-the-art AI models like Open AI's GPT 4o mini,
the computer analyzes the input keywords to generate
comprehensive course structures. This makes it easier to create
courses and allows for a logical and effective arrangement for
the content.

2. Integration of YouTube Videos: The platform dynamically
retrieves and embeds pertinent YouTube videos into the course
framework. This enhances learning by providing students with
access to multimedia resources that supplement written content
and take into account different learning styles.

3. Concept Testing Quiz Questions Generator: To boost
comprehension and engagement, the software automatically
generates concept-check quizzes. Teachers can assess how well
students are doing and emphasize key concepts because these
examinations correspond with the course material.
 The technique for this paper analyzes user input, including
input subjects and subtopics, using OpenAI's GPT 4o micro
model to create comprehensive course outlines. Users provide
the course title and subtopics, and the OpenAI GPT 4o mini
model is guided in generating units, chapters, and questions by
means of advanced prompts. To improve learning, the paper
incorporates YouTube video retrieval and generates summaries
based on video transcripts. Secure access and limitless course
creation are made possible by user login and payment
connection. Navigating and interacting with course content is
made easier with an intuitive interface.
 This paper is extremely pertinent to the discipline of
education:

1. Efficiency: Teachers may concentrate on instructional
excellence and creativity while reducing their time and energy
by automating the course creation process.

2. Quality: Adding outside multimedia resources to a course, such
YouTube videos, improves the material and creates more
engaging and applicable real-world scenarios.

3. Assessment: Through the provision of immediate feedback and
chances for reinforcement, formative assessment, like concept-
check quizzes, improves student learning outcomes.

In many respects, this application advances technology for
education. To begin with, it goes much beyond what is possible
with existing programs by dynamically creating vast course
structures with a diverse range of subjects using sophisticated
artificial intelligence models, such OpenAI's GPT.
Furthermore, it automatically finds relevant YouTube videos,
which improves learning and accommodates different learning
styles. Most notably, the application offers an interactive
assessment method not seen in other solutions by using an
inventive process to create quizzes straight from transcripts of
YouTube videos. This strengthens the app's potential to
revolutionize education by enabling effective and high-quality

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 77

content creation. Additionally, the application creates
interactive questions for tests automatically utilizing video
transcripts, a unique feature not seen in other applications that
raises the bar. This feature, which incorporates evaluation
questions into educational resources smoothly, promotes
greater participation and information retention.

Ultimately, this application represents a major
breakthrough in educational technology since it enhances the
process of learning and instruction through the use of AI-driven
course creation, YouTube incorporation, and quiz
development. The process of designing, developing, and testing
this revolutionary platform will be covered in depth in the
upcoming chapters of this article. The ultimate goal is for it to
enhance education globally by increasing its effectiveness,
accessibility, and appeal to learners.

The goal of this paper is to give readers a thorough grasp of
the AI Course Generator architecture. Chapter 2 discusses the
relevant works. A few of the current systems' inadequacies are
highlighted in Chapter 3. In Chapter 4, the principles and
foundation of generative AI are covered. Chapter 5 goes into
detail about the methodology. Chapter 6 discusses the results
and discussion. Chapter 7 discusses the conclusion and future
scope.

2. LITERATURE REVIEW

An extensive overview of generative artificial intelligence
and its many uses is provided in this section.
R. AlAli and Y. Wardat [1] analyzes the potential of Generative
Artificial Intelligence (AI) to revolutionize education. The
authors acknowledge the benefits of AI, such as individualized
learning and enhanced student engagement, but warn that
incorporating AI into educational settings is not without its
obstacles. These problems include negotiating ethical
quandaries, protecting data privacy, reducing algorithmic
biases, and adapting to educators' changing roles. The paper
proposes a collaborative strategy that includes educators,
legislators, and technologists to guarantee AI integration is
responsible and beneficial to all students.
 R. Kaplan-Rakowski [2] examines educators' viewpoints on
generative AI (GAI) in the classroom, with a specific emphasis
on ChatGPT. The writers chart the development of AI in
education, stressing the benefits and drawbacks of
implementing GAI. A survey of 147 teachers with varying
backgrounds was used in the study to find out how they felt
about integrating GAI, where they were in the adoption
process, and how often they used GAI in their instruction.
According to the data, most teachers have good opinions about
GAI's potential in the classroom and think it's a useful tool for
both students' learning and their own professional growth.
Additionally, the study shows a relationship between the
frequency of usage of GAI and the degree of integration among
teachers. The authors address the significance of these findings
in their conclusion, highlighting the necessity of professional
development and teacher training to facilitate the ethical and
successful incorporation of GAI into teaching practices.
 A. Ghimire et al. [3] explore the experiences and attitudes of
university instructors concerning the utilization of Generative
AI-based tools in education, such as ChatGPT. The study
examines the factors that influence these attitudes, as well as
educators' perceptions of the possible impact of AI on teaching
and learning. The authors utilized a mixed-methods approach,
conducting surveys and interviews with university faculty
members from several departments. The findings show that
educators are usually favorable about these tools, citing
benefits such as increased efficiency and individualized

instruction. However, concerns about academic integrity,
potential cheating, and the stifling of creativity persist. The
paper finishes by underlining the importance of adapting to AI
in education while carefully assessing its consequences and
minimizing potential hazards.
 M. Alier et al. [4] highlight the rapid progress and use of
Large Language Models (LLMs), such as ChatGPT, which
represents a significant shift in AI's impact on education. The
authors believe that this "GenAI moment" is shifting from a
deceptive to a disruptive phase, emphasizing both the potential
and issues that LLMs provide in education, such as tailored
learning experiences and academic integrity concerns. It dives
more into the technical features of LLMs, their emerging
capabilities, and the role of open-source models in pushing
innovation in the sector, particularly in education. It concludes
by exploring many elements of GenAI's integration into
education, such as its ethical implications, evaluation options,
and the necessity for secure and trustworthy AI applications in
learning environments.
 Thomas [5] investigates how generative artificial
intelligence (GenAI) techniques such as ChatGPT may
transform higher education. The author conducts focus group
interviews with university students to explore student
perceptions on how GenAI affects learning outcomes, methods
of teaching (pedagogies), and evaluation. The findings suggest
that future higher education should highlight new learning
goals such as AI literacy and adaptability abilities, stress
multidisciplinary and maker-centered learning techniques, and
shift toward assessment focusing on in-class activities and real-
world problem-solving utilizing GenAI. The paper emphasizes
the importance of rethinking higher education methods and
regulations in order to better prepare students for a GenAI-
shaped future workforce.
 R. AlAli et al. [6] examines the potential for generative
artificial intelligence (AI) to transform education. They present
a thorough review of the benefits, limitations, and ethical
implications of employing generative AI in educational
settings. Key issues include individualized learning, task
automation, ethical considerations about bias and data privacy,
and the value of professional development for educators.
Finally, the study intends to give educators and policy makers
practical advice as well as a theoretical framework for
successfully and responsibly integrating generative AI into
education to improve teaching and learning experiences.
 L. Bonde [7] examines how Generative AI (GenAI) can
transform education. The author contends that, despite GenAI's
acknowledged promise, its practical application in educational
institutions remains limited. It emphasizes individualized
learning, feedback, interactivity, assessment, and professional
growth as essential elements of a GenAI system for education.
It also discusses the obstacles that come with GenAI adoption,
such as ethical concerns, privacy issues, and the necessity for
strong policies. Finally, it presents a conceptual design for a
comprehensive GenAI system, with the goal of bridging the
gap between individual GenAI experiments and widespread
institutional adoption in higher education.
 D. Griffiths [8] examines the impact of large language
models (LLMs), particularly generative AI, on education. The
authors claim that the fast rise of LLMs calls into question
existing educational paradigms, particularly the "transmission"
model, which sees learning as the transfer of knowledge. They
propose that LLMs demonstrate the weaknesses in this model
by showing that, even passing exams, AI lacks actual
knowledge. Instead, they advocate for a "coordination"
paradigm, which views learning as a collaborative process of
knowledge construction. They argue that adopting this
paradigm, as well as using LLMs as instruments for inquiry and

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 78

support, provides a more successful approach to teaching in the
age of AI. Finally, the authors advocate for a rethinking of
educational processes, asking institutions to adapt to the
changing landscape made possible by AI.
 A. Alammari [9] investigates the integration of generative AI
(GAI), specifically tools such as ChatGPT, into Saudi higher
education systems. The research used a mixed-methods
approach, combining quantitative data from surveys with
qualitative insights from educator interviews. Key findings
show a favorable relationship between instructors'
understanding of GAI and its deployment in the classroom,
demonstrating a willingness to utilize this technology. While
educators recognize GAI's potential benefits for personalized
learning and professional growth, they also raise concerns
about plagiarism, over-reliance on GAI, and job displacement.
Overall, the paper emphasizes the necessity for a balanced
approach to GAI integration, noting both its potential and the
obstacles that must be carefully considered.
 N. McDonald et al. [10] analyzes the impact of generative
artificial intelligence (GenAI), namely ChatGPT, in higher
education. The paper examines GenAI policies at 116 major US
universities to better understand how these institutions lead
professors in this fast growing technology. According to the
data, the majority of universities promote the use of GenAI in
the classroom by giving extensive guidance, sample syllabi,
and even curriculum. This acceptance, however, is frequently
accompanied by worries about the ethical implications, student
privacy, and the need for educational changes to accommodate
GenAI. Notably, the study found that, while instruction focuses
on writing and research, there is no emphasis on GenAI's
impact on STEM areas. It concludes by emphasizing the need
for additional research and critical assessment of GenAI's role
in education, advocating for responsible implementation based
on ethical considerations and fairness.
 A. Ghimire [11] investigates how artificial intelligence (AI)
can be used to summarize legal papers, making legal
knowledge more accessible. It also looks into instructors'
perspectives of AI tools, finding overall positive but
emphasizing the importance of adequate training and resources.
It also examines the policy landscape surrounding AI in
education, highlighting the need for more comprehensive
norms. Furthermore, the study investigates the usage of AI
tools such as ChatGPT in programming courses, revealing their
beneficial impact on student learning. Finally, it explores how
educators' attitudes toward these tools are influenced by their
perceived utility and ease of use.
 D. Grover [12] examines how Generative Artificial
Intelligence (GenAI), with its potential to generate fresh
content, can transform education. It goes into GenAI's ability
to customize learning, automate tasks, and improve
accessibility, using theoretical foundations and real-world
examples. However, it acknowledges issues such as data
privacy, ethical AI use, and equity. The paper concludes by
discussing potential options for GenAI in education, such as
advances in adaptive learning, integration with AR/VR, and
ethical implications for responsible AI use.
 H. Li et al. [13] explores the possible impact of integrating
generative AI (GenAI), such as big language models, into
adaptive learning systems. The authors suggest that GenAI's
ability to generate diverse and dynamic content such as tailored
questions, learning materials, and even simulated learning
experiences can considerably improve the efficacy of adaptive
learning systems. It gives a thorough assessment of existing
adaptive learning strategies, focusing on how GenAI might be
used to improve tasks like learner profile creation and material
recommendation. However, the authors highlight problems
such as the possibility of AI "hallucination" and the necessity

to address biases in AI-generated content. Finally, this paper
seeks to promote the creation of GenAI-powered adaptive
learning systems that are successful, equitable, and prioritize
human assistance in the educational process.
 M. Resnick [14] explores both the risks and opportunities
associated with applying generative AI into learning
environments. While AI has the ability to personalize learning
and foster creativity, the author contends that many present
applications stress rote learning and "close-ended problems"
above student agency and meaningful cooperation. He calls for
a "constructionist" approach, in which AI technologies are
utilized to assist project-based learning that is motivated by
student passion and supported by peers in a playful setting,
ensuring that AI enhances, rather than reduces, human
connection. He demonstrates these arguments by looking at the
impact of generative AI on coding instruction, emphasizing the
possible benefits and drawbacks of conversational coding.
Finally, he emphasizes that the path forward is dependent on
making deliberate decisions that correspond with a human-
centered vision of education.

G. Kurtz et al. [15] looks into the significant implications of
generative AI (GenAI), such as ChatGPT, in higher education.
The authors believe that while new technology has the potential
to transform teaching and learning, it also raises ethical
considerations and necessitates revised teaching approaches. It
gives a comprehensive study of GenAI's potential benefits,
such as individualized learning and increased student
engagement, while also admitting dangers such as AI bias and
potential cheating. Importantly, the authors present a four-stage
model for ethical GenAI adoption by faculty, highlighting the
importance of training and a systematic approach to
incorporating these powerful tools into educational contexts.
Finally, the paper emphasizes the importance of higher
education institutions proactively adapting to GenAI's quickly
expanding ecosystem in order to remain relevant and prepare
students for the future.

D. E. Salinas-Navarro et al. [16] investigates how generative
artificial intelligence (GenAI) tools, such as ChatGPT, can be
strategically integrated into higher education to improve
teaching and learning. The authors contend that authentic
assessment, which stresses real-world application of
information, and experiential learning, which promotes active
knowledge production, provide useful foundations for this
integration. It looks at how GenAI can be used to develop
desired learning goals, design compelling teaching and learning
activities, and create effective assessment tasks, all while
adhering to constructive alignment principles to ensure
pedagogical coherence. It concludes that GenAI tools can be
important assets in creating a more dynamic and effective
learning environment if used appropriately and ethically.

I. Pesovski et al. [17] explores the ability of large language
models (LLMs), specifically OpenAI's GPT-4, to provide
individualized learning experiences in a software engineering
course. They explain how they incorporated an AI-powered
content generation tool into an existing learning management
system (LMS) to generate course materials in three different
styles: traditional computer science teacher, Batman, and
Wednesday Addams. The study, which included 20 students,
used questionnaires to measure student participation with
various content versions as well as their perceptions.
Preliminary findings indicate that, while students preferred
traditional content styles, the availability of different, AI-
generated resources boosted overall study time and was
especially beneficial for students who struggled with the
material.

S. Ivanov et al. [18] explores how generative AI tools'
perceived strengths, shortcomings, dangers, and rewards

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 79

influence their adoption by higher education students and
instructors. The Theory of Planned Behavior (TPB) is used in
the study to explain how these views impact attitudes,
subjective norms, and perceived behavioral control toward
GenAI use, eventually influencing intention and actual usage.
The authors examined 130 lecturers and 168 students from
diverse nations, and discovered that perceived strengths and
benefits were the most important predictors of positive attitudes
and plans to adopt GenAI. Surprisingly, the study found that
perceived limitations and hazards had a smaller impact on
adoption than expected. Based on their findings, the authors
propose various management and policy implications for
higher education institutions seeking to encourage the
responsible and successful integration of GenAI in teaching
and research.

L.-H. Wong et al. [19] identifies three major themes
discussed throughout the issue. Theme 1 investigates the
growing link between humans and AI, focusing on the
possibility for collaborative learning environments. Theme 2
dives into the technological and pedagogical opportunities and
problems given by AI, highlighting the necessity of critical
analysis and user perception. Finally, Theme 3 focuses on
teacher perspectives on AI adoption, emphasizing the
importance of supporting instructors as they navigate these new
technologies. Finally, this study advocates for a balanced and
thoughtful strategy to incorporate AI into education, as well as
additional research in this fast changing field.

R. Sajja et al. [20] explores the changing role of hackathons
in the age of AI, with a specific emphasis on the incorporation
of generative AI technologies such as ChatGPT. The paper
investigates how new technologies affect typical hackathon
dynamics, students' technology choices, and project
development. It emphasizes the opportunities provided by AI,
such as improved learning experiences and higher project
sophistication, while also noting the challenges, such as ethical
concerns and potential over-reliance on AI tools. Through a
case study of the HACKUIOWA 2023 event, the source
examines survey data to better understand student perspectives
and usage patterns of AI in hackathons, providing insights into
the perceived value and possible influence of these tools on
coding techniques and collaboration. Finally, the article intends
to provide a road map for incorporating AI into future
hackathons, highlighting the importance of taking a balanced
approach that capitalizes on AI's benefits while maintaining the
fundamental principles of creativity, collaboration, and skill
development.

3. SHORTCOMINGS OF CURRENT
SYSTEMS

 Below is a list of several shortcomings in the current
systems that have been found:
Inadequate customization: It's common for current course
generator applications to be unable to produce extremely
customized courses. This is because their training usually
consists of extensive databases of previously created courses,
which might not accurately reflect the unique requirements of
every user.
Subject coverage is constrained: The majority of course
generation software only includes topics in science, math, and
English. This suggests that anyone looking to develop courses
on more specialized subjects would find them inappropriate.
Absence of YouTube Video Incorporation: This would improve
learners' comprehension of the material and is a shortcoming of
the present platforms.

Absence of interactive quizzes: The majority of course creation
programs do not produce lively or interesting quizzes. Children
may find it difficult to appropriately learn and remember
information as a result.
Complex UI: makes it difficult for users to design courses.

In order to overcome these limitations, our paper added
several new features, such as:
Options for customization: By deciding on the exact subjects
they wish to learn, students can make their courses uniquely their
own.
broad range of topics: Users will have the ability to design
courses that address a broad range of issues.
Incorporation of YouTube Videos: Students will have a deeper
understanding of the subject by watching videos on YouTube.
Multiple-choice interactive quizzes: These kinds of interactive
tests help learners recall and assimilate information.
Simple user interface: Anyone may design quizzes with ease
thanks to a simple user interface.

4. FUNDAMENTALS OF GENERATIVE AI

Generative AI" is the branch of artificial intelligence that
focuses on developing algorithms that can generate new types
of information, including text, images, audio, and video.
Generative AI models are trained on vast amounts of pre-
existing content, and they eventually learn to generate new
content that is similar to the training set. Generative AI models
are capable of a wide range of tasks [21], including:

4.1 Text generation models

Text generation models are capable of producing a variety

of text formats, such as code, creative writing, and news
articles. Their foundations are frequently large language
models (LLMs) trained on enormous text and code datasets.
LLMs are capable of producing original and creative text
formats in addition to material that is comparable to the text
they were taught.

Here are a few examples of text-generating models:
GPT-3: OpenAI developed the GPT-3 LLM. One of the most
powerful text generation models available, it can produce text
in a wide range of formats, such as emails, letters, code, poetry,
and musical compositions. [21] [23]
Codex: Codex is an LLM created by Google AI. Its primary
purpose is to generate code in multiple programming
languages, such as Python, JavaScript, Go, and C++. [21]
Google AI has developed a machine learning model called
LaMDA. It provides customers with thorough and insightful
answers to questions, regardless of how strange, complicated,
or open-ended they may be. [21]

4.2 Image generation models

Models for image creation can produce realistic images,

including drawings, cartoons, and photos. They are usually
created with deep learning methods like generative adversarial
networks (GANs). Two neural networks that have been taught
to compete with one another are called GANs. The initial neural
network produces fresh visuals. The 2nd neural network, the
discriminator, attempts to discern between the real and
fraudulent images produced by the generator. The generator
becomes more adept at producing pictures that resemble real
photographs over time.

Here are a few instances of models for creating images:

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 80

Imagen: The model used by Google AI to create photos is
called Imagen. It has the ability to translate written descriptions
into lifelike images. [21]
DALL-E 2: The DALL-E 2 image-generating model was
created by OpenAI. It has the ability to alter existing photos and
produce lifelike images from textual descriptions. [21]
Parti: Parti is a photo-editing model created by Google AI. It
can be used to make duplicate copies of an image and replace
missing pixels in pictures. [21]

4.3 Video generation models

Movies, music videos, and photorealistic videos are just a
few of the types of videos that can be produced by video
generating models. Even though they are still in the early
phases of improvement, these advancements have the power to
completely transform the way that videos are made.

Here are a few examples of models that generate videos:
DALL-E 2: It allows for written explanations to produce
videos. [21]
Imagen: Imagen can create movies using written information,
however the output is not as realistic as what DALL-E 2 can
create. [21]

4.4 Text-to-3D models

By transforming words, text-to-3D models can produce
creative and realistic 3D visuals. Dreamfusion and Magic3D
are two examples [21].

4.5 Speech synthesis

GAI voice synthesizing models are capable of producing
speech that sounds human. Usually, deep learning methods like
RNNs, or recurrent neural networks, are used to build these
models. For example, text can be converted into speech that
sounds human using the Google Cloud's Text-to-Speech API
[21].

4.6 Overview of generative AI backbones

The underlying structures that serve as the foundation for
generative AI models are referred to as generative AI
backbones. They may produce a range of content kinds, such
as text, graphics, and audio, and they offer a fundamental
structure to teach generative models.

Each generative AI backbone has certain advantages and
disadvantages. Though they are unstable and challenging to
train, GANs are capable of producing written content, audio
recordings, and images of excellent quality. Compared to
GANs, VAEs generate written, audio, and picture information
of poorer quality, but they are easier to train and more
trustworthy. Transformers are capable of producing written
content, visual content, and code of excellent quality, but their
computational training costs are higher than those of GANs or
VAEs.

The kind of generative AI foundation that is employed
depends on the specific task at hand. If producing written
material, audio recordings, or pictures of excellent quality is
still the main objective, then GANs might be the ideal method.
If you have the computational capacity and want to generate
high-quality text, images, or code, transformers might be the
best option. If producing high-quality text, pictures, or audio
with minimal computational resources is the aim, or if
maintaining model consistency is crucial, VAEs might be the
best option.

One efficient way to train generative AI models is via
generative AI backbones. They make it possible to train
generative models that can generate excellent code, images,

music, and literature. But it's crucial to choose the right
backbone for the job at hand.

4.7 Generative Adversarial Networks (GANs)

One of the most widely used generative AI backbones is the

GAN. The discriminator and generator neural networks make
up a GAN. While the generator creates fresh data samples, the
discriminator is in charge of differentiating between real and
false data samples that it generates.

Due to the adversarial nature of GAN training, there is a
constant attempt by the discriminator and generator to trick one
another. While the generator aims to produce false data samples
that resemble real data samples, the discriminator looks for
differences between real and fake data samples.

GANs have demonstrated their ability to produce written
material, audio recordings and images of excellent quality.
They could still be erratic and challenging to train.

GANs are used to accurately represent people, places, and
objects in deep fakes and authentic pictures for video games
and movies.

4.8 Variational Autoencoders (VAEs)

VaEs are yet another well-liked generative AI foundation.

One kind of VAE is an autoencoder, which is a neural network
taught to duplicate its input data. During training, VAEs not
only learn how to reassemble the input data, but they also pick
up the latent form of the data.

A low-dimensional form of data that highlights its most
crucial characteristics is called a latent representation. By
collecting samples from the data's latent representation, VAEs
are able to produce fresh data samples.

When it comes to training time and stability, VAEs perform
better than GANs. They might still not be able to produce
images, audio, and text with the same level of quality as GANs.
VAEs are used in the development of new materials,
customized experiences of learning for students, and the
synthesis of novel pharmaceutical molecules. [21]

4.9 Transformers

Transformers are a relatively new generative AI backbone

with encouraging results. Transformers are based on a
particular kind of neural network that is frequently employed
in machine translation: the encoder-decoder architecture.

It has been demonstrated that transformers are efficient in
producing written words, visuals, and code of the highest
caliber. However, they might require more processing power to
train than GANs or VAEs.

When composing news articles and creating new software
applications, transformers are utilized to produce realistic text
and code. [21]

4.10 Benefits of Generative AI

Generative AI has several potential benefits, such as:
Increased productivity: Many tasks that are now performed by
humans, such as developing marketing collateral, producing
reports, and coming up with new goods and services, can be
automated by generative AI. Human workers may be able to
concentrate on more creative and strategic work as a result. [21,
23]
Increased creativity: By generating fresh concepts and
motivation, generative AI can increase human creativity. For
example, generative AI may be utilized to create original songs,
tales, and commercial ideas. [21]

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 81

Individualized experiences: Thanks to generative AI,
consumers can get personalized experiences. For instance,
users can receive tailored learning experiences or
recommendations for goods and services via generative AI.
[21]
Better decision-making: Generative AI provides insights into
complex data to assist people in making more informed
decisions. Data patterns and future event forecasting are two
applications of generative AI. [21]
Novel goods and services: It is now possible to develop
previously unthinkable novel goods and services. For instance,
generative AI may be utilized to create novel medications,
therapeutic interventions, and educational materials. [21]

4.11 Challenges of Generative AI

Among the difficulties facing generative AI are:
Data requirements: To train, generative AI models need a lot of
high-quality data. It could be costly and time-consuming to
gather, classify, and handle this data.
Computational requirements: Generative AI model deployment
and training may become computationally costly. Starting a
small business or group could become more difficult as a result.
Biases: Generative AI models have the potential to be
prejudiced since they represent the biases present in the training
data. This could result in the production of offensive or
dangerous content.
Misinformation: Generative AI models can be used to produce
deep fakes along with various types of misinformation. This
might be utilized to influence others or harm someone's
reputation.
Safety: Content that is harmful or dangerous, like weapons or
artificial drugs, can be created by generative AI models.
Ensuring the safe and responsible application of generative
artificial intelligence (AI) models is crucial.

In addition to these difficulties, ethical questions are brought
up by the creation and application of generative AI. Think
about how generative AI will affect society and how content
will be created and shared, for instance.

4.12 Addressing the challenges of Generative AI

The issues with generative AI can be solved in a number of
ways [23][24]. As an illustration:
Requirements for data: Scientists are developing cutting-edge
methods for teaching generative AI models with less data.
Moreover, there's a growing movement to create publicly
accessible data sources that can be utilized for generative AI
model training.
Computational requirements: To increase the effectiveness of
generative AI models, researchers are developing new
techniques and technologies. Additionally, cloud computing
companies are providing services that lower the cost and
simplify the process of training and implementing generative
AI models.
Bias: To lessen biases in generative AI models, researchers are
looking into cutting-edge techniques. In addition, it is
imperative to exercise caution while handling the data that
generative AI systems are trained on.
False information: Scientists are developing novel methods to
identify and stop the production of deep fakes and other types
of disinformation. It is also essential for informing the general
population about the potential for deep fakes and other forms
of false information.
Safety: To guarantee that generative artificial intelligence
models are used sensibly and safely, researchers are creating

novel strategies. It's still crucial to establish moral standards for
the creation and application of generative AI.

5. METHODOLOGY

The following describes the technology implementation and
application flow that comprise the methodology.

5.1 Application Flow details:

Fig 5.1. Application flow diagram

There are several components in the application flow
diagram, which are shown in Fig. 5.1 and will be outlined in
the following manner.

5.1.1 User Authentication:

The credentials of a user are verified and authenticated when
they sign in using Google authentication. A distinct user
session is created and connected to their account once
authorized.

5.1.2 Course Generation:

The user enters the title of the course and any required
subtopics.

To ensure that all pertinent fields are correctly filled out,
user input is reviewed.

Based on user input, advanced prompts are generated and
sent to OpenAI's GPT API.

The relevant chapters and subtopics are generated by the
OpenAI GPT API after it has interpreted the inputs.

The user can then evaluate the chapters and subtopics that
the OpenAI GPT API has generated.

The created material can be reviewed by the user, who can
also modify the title and subtopics as needed.

The user is returned to the input phase if any modifications
need to be made.

If the user accepts the generated content, the course creation
process proceeds.

5.1.3 User Interaction with the AI Model:

Users interact with the AI model indirectly by providing
information on the course creation page, which requests input
such as main subjects and subtopics of the required course,
prompting the system to generate subsequent prompts based on
the inputs.

Sophisticated prompts that respond to user input are
constructed and sent to the OpenAI GPT API.

A course structure with chapters and subtopics is
constructed by the AI model based on the input query, after
which the user can view the generated material.

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 82

Produced chapters and subtopics obtained from the OpenAI
GPT API are displayed to the user for evaluation.

The user is permitted to revise the title and subtopics as
necessary after viewing the produced material.

The received input may be utilized to enhance the produced
content or generate entirely new material.

5.1.4 User Feedback:

There are two methods for integrating input from users into
the program:

If the user accepts the produced material, the course can
continue to be created.

In case modifications are required, the user goes back to the
original phase.

5.1.5 Fetching Videos and Transcripts from YouTube:

YouTube video transcripts are retrieved asynchronously for
each obtained YouTube video, enabling efficient processing.
Concurrently, the YouTube Data API is utilized to recursively
obtain the relevant YouTube video URLs corresponding to
each chapter and subtopic, facilitating comprehensive content
aggregation.

5.1.6 Quiz and Video Summary Generation:

Obtained video transcripts are utilized to construct
intelligent prompts in the aforementioned steps.

These sophisticated prompts are then employed in the
OpenAI GPT API to generate quizzes and YouTube video
descriptions.

The quizzes and video summaries received from the
OpenAI GPT API are subsequently assigned to the
appropriately created chapters and subtopics.

5.1.7 Visualization of course:

The prepared course, encompassing quizzes, relevant
YouTube videos, chapter and subtopic summaries, and
additional materials, is presented to the user.

An intuitive user interface is provided, enabling students to
interact with quizzes, video summaries, and course content in
an engaging manner.

5.1.8 Payment Gateway Integration:

The system incorporates a subscription-based model
enabled by the Stripe payment gateway to facilitate unlimited
course creation.

Secure online transactions are processed through Stripe,
granting users unrestricted access to the platform's course
generation features upon successful payment, thereby ensuring
seamless and secure user experience.

5.1.9 Course Gallery:

To provide a comprehensive overview of generated courses,
a user-accessible gallery is implemented. Each course is
visually represented by a thumbnail image dynamically fetched
from the Unsplash API. The image selection process is guided
by the course title, ensuring visual relevance. Essential course
metadata, including title and subtopics, is displayed alongside
the thumbnail, offering users a clear and concise representation
of each course.

Here are some ways that the proposed approach differs from
current methodologies:
1. It uses the latest AI models, such as the OpenAI GPT-4o

mini model, a state-of-the-art model for developing high-
quality course structures and content.

2. Contributions from users on the material to be created is used
to improve the finished result.

3. It provides users with access to relevant videos on YouTube,
making learning more engaging and dynamic.

4. With the use of transcripts from videos, users may create
interactive assessments that help students assess their
understanding of the material and reinforce key concepts.

5. It is extendable and may be used to develop courses on a
range of topics.

6. It is made to be user-friendly and accessible to anyone with
different levels of technical proficiency.

Limitations and Constraints of the Proposed Framework

The efficacy of the proposed course generation framework
is contingent upon several factors and subject to certain
limitations.
Dependency on Input Quality: Both human-provided prompts
and system-generated prompts significantly influence the
quality of the generated course content.
Scope Limitations: The AI model's knowledge base may not
encompass every conceivable topic, potentially restricting the
framework's applicability.
Potential for Bias: The generated content may be susceptible to
biases present in the training data of the AI model.
Infrastructure Dependency: A stable internet connection is
essential for the framework's operation, as it relies on external
APIs and cloud-based services.

5.2 Specifics of technical implementation:

1. Configuring and creating a new folder for NextJS.

A new folder is configured and created for NextJS,
necessitating the installation of required dependencies and
initiation of a fresh NextJS project.

1.1. Set up NextJS.

NextJS is set up by creating a next.config.js file in the root,
which will contain the NextJS configuration, including
TailwindCSS and routing configurations.

1.2. Establish a database.

A database is established to store user and course data, with
options including PostgreSQL, MongoDB, and MySQL; Aiven
is recommended for creating a free cloud-based MySQL
database.

1.3. Make an user interface for users.

A user interface is developed to enable user interaction with
the application, allowing users to create courses, view
generated courses, and upgrade to paid user status through
payment processing.

1.4. For styling, Incorporating TailwindCSS.

TailwindCSS is incorporated for styling purposes, requiring
the installation of TailwindCSS and subsequent styling of the
application.

The installation of the Node.js SDK is necessary to utilize
Tailwind CSS.

A tailwind.config.js file is prepared in the root directory
following SDK installation, containing the TailwindCSS
configuration.

With the configuration file in place, styling can be
performed using TailwindCSS, enabling the application's
visual design.

2. Incorporating the GPT-4o mini to create course
materials.

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 83

The GPT-4o mini is incorporated to generate course
materials, necessitating the acquisition of an API key and setup
of an OpenAI account.

An OpenAI account is created and an API key is obtained
by signing up for a free account at https://platform.openai.com.

The OpenAI Node.js SDK is installed using the acquired
API key, followed by the initialization of the new OpenAI
client.

The client is utilized to create course content, allowing for
prompt engineering techniques to tailor the output according to
specific requirements.

The generated course material is then created based on the
outline, leveraging the OpenAI model's capabilities.

Algorithm for strict_output function (gpt.ts file) for
handling and parsing OpenAI API:

Fig 5.2.1. Algorithm for strict_output function (gpt.ts file)

Below is the pseudocode for working of the strict_output
function.

FUNCTION strict_output(
 system_prompt: STRING,
 user_prompt: STRING or STRING ARRAY,
 output_format: OBJECT,
 default_category: STRING OPTIONAL,
 output_value_only: BOOLEAN,
 model: STRING = "gpt-4o mini",
 temperature: NUMBER = 1,
 num_tries: NUMBER = 3,
 verbose: BOOLEAN = FALSE
)
 list_input ← (user_prompt IS ARRAY)
 dynamic_elements ← ('<' AND '>' IN output_format)
 list_output ← ('[' AND ']' IN output_format)
 error_msg ← ""

 FOR i FROM 1 TO num_tries
 output_format_prompt ←
BUILD_OUTPUT_FORMAT_PROMPT(output_format)
 system_message ← system_prompt +
output_format_prompt + error_msg
 user_message ← CONVERT_TO_STRING(user_prompt)

 response ← CALL_OPENAI_API(model, temperature,
system_message, user_message)
 response ← REPLACE_SINGLE_QUOTES(response)

 IF verbose THEN
 LOG(system_prompt, user_message, response)

 IF VALIDATE_OUTPUT(response, list_input,
output_format, default_category, output_value_only) THEN
 RETURN PARSED_OUTPUT

 error_msg ← UPDATE_ERROR_MSG(response,
error_msg)

 RETURN EMPTY_ARRAY

FUNCTION
BUILD_OUTPUT_FORMAT_PROMPT(output_format)
 // build output_format_prompt string explaining desired
output format to GPT-4o mini

FUNCTION CALL_OPENAI_API(model, temperature,
system_message, user_message)
 // send request to OpenAI API using createChatCompletion

FUNCTION REPLACE_SINGLE_QUOTES(response)
 // replace single quotes with double quotes in response

FUNCTION VALIDATE_OUTPUT(response, list_input,
output_format, default_category, output_value_only)
 // try parsing response as JSON
 parsed_output ← PARSE_JSON(response)

 IF list_input THEN
 parsed_output ← WRAP_IN_ARRAY(parsed_output)

 FOR EACH element IN parsed_output
 FOR EACH key IN output_format
 // skip keys containing '< >' (dynamic elements)
 IF key CONTAINS '< >' THEN
 CONTINUE

 // ensure key exists in output element
 IF key NOT IN element THEN
 RAISE ERROR

 // validate key value based on output_format
 IF key SPECIFIES LIST THEN
 // ensure output value is not an array itself (take first
element)
 // use default_category if GPT-4o mini couldn't
identify a category
 // extract only label before colon if format is
description

 IF output_value_only THEN
 // convert output element to array of values
 // if array contains only one element, return that
element directly
 RETURN TRUE

FUNCTION UPDATE_ERROR_MSG(response, error_msg)
 // update error_msg with response and error message

Algorithm for POST function for creating course outline
(route.ts file) for /api/course/createChapters endpoint:

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 84

Fig 5.2.2. Algorithm for POST function for creating course
outline (route.ts file)

Below is the pseudocode for working of the POST function
for creating course outline.

FUNCTION POST(req: REQUEST_OBJECT)
 // Authentication and Authorization
 session_info ← getAuthSession(req)
 IF session_info IS NULL THEN
 RETURN ERROR_RESPONSE(401, "unauthorized")
 END IF

 subscription_status ← checkSubscripƟon(session_info)
 IF subscription_status IS "zero_credits" AND NOT
session_info.pro_member THEN
 RETURN ERROR_RESPONSE(402, "no credits")
 END IF

 // Data Parsing and Validation
 request_body ← req.json()
 title, units ← createChaptersSchema.parse(request_body)

 // Content Generation with GPT-4o mini
 output ← strict_output(
 "Generate chapter content for each unit, including titles
and Youtube search queries.",
 units,
 // output format object
)
 image_search_term ← strict_output(
 "Generate an image search term for the course title.",
 title,
 // output format object
)

 // Image Retrieval
 image_url ← getUnsplashImage(image_search_term)

 // Database Interactions (Prisma)
 course_id ← prisma.course.create({ Ɵtle, image_url })
 FOR EACH unit IN output.units
 unit_id ← prisma.unit.create({ course_id, unit })
 prisma.chapter.createMany({ unit_id, chapters:
unit.chapters })
 END FOR

 // Decrement User Credits
 prisma.user.update({ id: session_info.user_id, credits:
session_info.credits - 1 })

 // Return Response
 RETURN NEXT_RESPONSE({ course_id })

 // Error Handling
 CATCH error
 IF error IS ZodValidationError THEN
 RETURN ERROR_RESPONSE(400, "invalid body")
 ELSE
 RETURN ERROR_RESPONSE(500, "internal server
error")
 END IF
 END CATCH

Fig 5.2.3. Testing API endpoint on Insomnia

Above figure is a screenshot representing the Testing of API
endpoint on Insomnia application with input as title and units
shown on left hand side and course id output shown on right
hand side in json format.

Algorithm for POST function (route.ts) for
/api/chapter/getInfo endpoint:

Fig 5.2.4. Algorithm for POST function (route.ts) for
/api/chapter/getInfo endpoint

Below is the pseudocode for working of the POST function

(route.ts) for /api/chapter/getInfo endpoint.

FUNCTION POST(req: REQUEST_OBJECT)
 // Data Parsing and Validation
 request_body ← req.json()
 IF NOT bodyParser.parse(request_body, "chapterId")
THEN
 RETURN ERROR_RESPONSE(400, "invalid body")
 END IF

 chapterId ← request_body.chapterId

 // Fetch Chapter Data

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 85

 chapter_data ← prisma.chapter.findUnique({ id: chapterId
})
 IF chapter_data IS NULL THEN
 RETURN ERROR_RESPONSE(404, "Chapter not
found")
 END IF

 // Content Retrieval and Processing
 videoId ←
searchYoutube(chapter_data.youtubeSearchQuery)
 IF videoId IS NULL THEN
 // handle video search error
 END IF

 transcript ← getTranscript(videoId)
 IF transcript IS NULL THEN
 // handle transcript fetch error
 END IF

 transcript ← LIMIT_TRANSCRIPT_LENGTH(transcript, 500)

 // Summary Generation with GPT-4o mini
 summary ← strict_output(
 "Summarize the transcript in 250 words or less, excluding
irrelevant information.",
 transcript,
 // output format object
)

 // Question Generation
 questions ← getQuesƟonsFromTranscript(transcript,
chapter_data.name)

 // Database Interactions (Prisma)
 prisma.question.createMany(questions)
 prisma.chapter.update({ id: chapterId, videoId, summary })

 // Return Response
 RETURN NEXT_RESPONSE({ success: true })

 // Error Handling
 CATCH error
 IF error IS ZodValidationError THEN
 RETURN ERROR_RESPONSE(400, "invalid body")
 ELSE
 RETURN ERROR_RESPONSE(500, "internal server
error", error)
 END IF
 END CATCH

Fig 5.2.5. Testing API endpoint on Insomnia

Above figure is a screenshot representing the Testing of API
endpoint on Insomnia application with chapterID as input
shown on left and output shown on right side containing
videoId and transcript in json format.

Fig 5.2.6. Testing of API endpoint done using Insomnia

Above screenshot is the continuation of Fig 5.2.5, showing
the generated summary in json format on the right hand side.

3. Embedding YouTube videos:

The application is enhanced by integrating the YouTube
API to enrich course materials and provide a comprehensive
learning experience.

An API key for YouTube is obtained by enabling the
YouTube Data API v3 and creating a Google Cloud Platform
account, allowing for authorized requests to be sent to the API.
A new YouTube client is launched after installing the YouTube
Data API Node.js SDK, facilitating API interactions.

Pertinent videos are searched for using the YouTube API
during course creation, retrieving video titles, descriptions, and
thumbnails to be incorporated into the course materials.

Relevant YouTube videos are embedded directly into the
course material, augmenting the course content and providing
a more engaging learning experience for students.

Interactive tests are generated using video material,
leveraging the YouTube API to create multiple-choice
questions based on the embedded videos' transcript material,
enabling students to assess their understanding and reinforce
key concepts.

Algorithm for youtube.ts functions:

1. searchYoutube(searchQuery: string):

Fig 5.2.7. Algorithm for searchYoutube function

Below is the pseudocode for working of the searchYoutube
function.

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 86

FUNCTION searchYoutube(searchQuery: STRING)
 // Encode search query
 encoded_query ← encodeURIComponent(searchQuery)

 // Build Youtube API request URL
 url ← "hƩps://www.googleapis.com/youtube/v3/search"
 params ← {
 key: process.env.YOUTUBE_API_KEY,
 q: encoded_query,
 videoDuration: "medium",
 videoEmbeddable: true,
 type: "video",
 maxResults: 5
 }

 // Fetch data from Youtube API
 response ← axios.get(url, params)
 data ← response.data

 // Error handling
 IF data IS NULL THEN
 LOG_ERROR("No data returned from Youtube API")
 RETURN NULL
 END IF

 IF data.items[0] IS UNDEFINED THEN
 LOG_ERROR("No videos found for search query")
 RETURN NULL
 END IF

 // Extract video ID
 videoId ← data.items[0].id.videoId
 RETURN videoId

2. getTranscript(videoId: string):

Fig 5.2.8. Algorithm for getTranscript function

Below is the pseudocode for working of the getTranscript

function.

FUNCTION getTranscript(videoId: STRING)
 // Fetch transcript
transcript_array←
YoutubeTranscript.fetchTranscript(videoId, "en")
 IF transcript_array IS NULL THEN
 RETURN "Error fetching transcript"
 END IF

 // Process transcript

 transcript ← ""
 FOR EACH t IN transcript_array
 transcript ← transcript + t.text + " "
 END FOR

 // Clean and return transcript
 transcript ← transcript.replaceAll("\n", "")
 RETURN transcript

 // Error handling
 CATCH error
 RETURN "Error: " + error
 END CATCH

3. getQuestionsFromTranscript(transcript: string,
course_title: string):

Fig 5.2.9. Algorithm for getQuestionsFromTranscript function

Below is the pseudocode for working of the
getQuestionsFromTranscript function.

FUNCTION getQuestionsFromTranscript(transcript:
STRING, course_title: STRING)
 // Generate multiple choice questions
 prompts ← new Array(5).fill({
 prompt: "Generate a random hard multiple-choice
question with context from the transcript.",
 transcript: transcript,
 course_title: course_title
 })
 questions ← strict_output(prompts, {
 output_format: {
 question: STRING,
 answer: STRING,
 options: ARRAY OF STRING
 }
 })

 // Return generated questions
 RETURN questions

4. Incorporating Stripe to enable paid features for users.

To integrate Stripe payments, obtaining an API key and
setting up a Stripe account are necessary steps.

A Stripe account is created and an API key is obtained by
signing up for a free account on the Stripe website.

The Stripe Node.js SDK is installed immediately after
receiving the API key, followed by the initialization of a new
Stripe client.

The application framework utilizes the API key to integrate
Stripe payments, enabling secure and efficient transaction
processing.

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 87

Algorithm for Handling Stripe Payments (GET request,
route.ts)

Fig 5.2.10. Algorithm for Handling Stripe Payments

Below is the pseudocode for working of the Algorithm for

Handling Stripe Payments.

FUNCTION HANDLE_STRIPE_PAYMENTS()
 // Authentication and User Check
 session_info ← getAuthSession()
 IF session_info IS NULL THEN
 RETURN ERROR_RESPONSE(401, "unauthorized")
 END IF

 // Fetch User Subscription
 user_subscription ← prisma.userSubscription.findUnique({
userId: session_info.userId })
 IF user_subscription IS NOT NULL THEN
 // Existing Subscription Handling
 stripe_session ← stripe.billingPortal.sessions.create({
customer: user_subscription.stripeCustomerId })
 RETURN NEXT_RESPONSE({ url: stripe_session.url })
 END IF

 // New Subscription Creation
 stripe_session ← stripe.checkout.sessions.create({
 success_url: "/settings",
 cancel_url: "/settings",
 payment_method_types: ["card"],
 subscription_mode: true,
 billing_address_collection: true,
 customer_email: session_info.email,
 line_items: [{
 price_data: {
 currency: "inr",
 product_data: {
 name: "Subscription",
 description: "Monthly subscription"
 },
 unit_amount: 1000
 },
 recurring: {
 interval: "month"
 },
 quantity: 1,
 metadata: {
 userId: session_info.userId
 }
 }]
 })

 RETURN NEXT_RESPONSE({ url: stripe_session.url })

 // Error Handling
 CATCH error
 LOG_ERROR(error)
 RETURN ERROR_RESPONSE(500, "internal server
error")
 END CATCH

Algorithm for Stripe Webhook (POST request, route.ts)

Fig 5.2.10. Algorithm for Stripe Webhook

Below is the pseudocode for working of the Algorithm for
Stripe Webhook.

FUNCTION STRIPE_WEBHOOK(req:
REQUEST_OBJECT)
 // Parse Request Body and Signature
 body ← req.text()
 signature ← req.headers["Stripe-Signature"]

 // Verify Signature
 TRY
 event ← stripe.webhooks.constructEvent(body,
signature, WEBHOOK_SECRET)
 CATCH error
 RETURN ERROR_RESPONSE(400, "webhook error")
 END TRY

 // Process Stripe Event
 SWITCH event.type
 CASE "checkout.session.completed"
 session ←
stripe.checkout.sessions.retrieve(event.data.object.id)
 subscription ←
stripe.subscriptions.retrieve(session.subscription)
 IF session.metadata.userId IS NULL THEN
 RETURN ERROR_RESPONSE(400, "webhook
error, no user id")
 END IF
 prisma.userSubscription.create({
 userId: session.metadata.userId,
 stripeSubscriptionId: subscription.id,
 stripeCustomerId: subscription.customer,
 stripePriceId: subscription.items.data[0].price.id,
 stripeCurrentPeriodEnd:
subscription.current_period_end
 })
 CASE "invoice.payment_succeeded"

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 88

 // similar processing as above
 END SWITCH

 // Return empty response with 200 status code
 RETURN NEXT_RESPONSE({}, 200)

5. Prompt Engineering Techniques

Prompt engineering, the art of crafting effective prompts for
large language models, is crucial in developing sophisticated
applications like course generator applications. By
meticulously designing prompts, developers can harness the
power of AI to produce high-quality, tailored content. This
section delves into the core prompt engineering techniques
employed, focusing on their role in guiding the large language
model towards generating desired course content.

Key prompt engineering techniques used:
Role-Based Prompting: Defining the AI's role or persona to
align its output with the desired task.
Task-Specific Instructions: Clearly outlining the desired
outcome and providing specific guidelines.
Output Formatting: Specifying the expected output structure to
ensure consistency and compatibility.
Iterative Prompting: Employing multiple prompts or refining
prompts based on initial results to improve output quality.
Constraint Enforcement: Explicitly defining limitations or
requirements to guide the model's response.
By effectively combining these techniques, the prompts
successfully guide the large language model to generate
relevant course content, including chapter titles, YouTube
search queries, and multiple-choice questions. This
demonstrates the potential of prompt engineering to enhance
the capabilities of this AI-powered application.

Prompt Engineering for Course Outline Creation

Fig 5.2.11. Actual code utilizing Prompt Engineering for

Course Outline Creation
Role-Based Prompting: The initial prompt establishes the AI
model's role as a "course content curator," setting the context
for the subsequent task. This technique helps to align the
model's output with the desired goal.
Task-Specific Instructions: The prompt clearly outlines the
task, including generating chapter titles, finding relevant
YouTube videos, and structuring the output in a specific
format. This provides clear guidelines for the model to follow.
Output Formatting: The output_format parameter explicitly
defines the expected JSON structure of the output. This acts as
a template for the model, guiding it to generate content in the
desired format.
Iterative Prompting: It is used to improve the quality of the
generated output over multiple attempts.
Prompt Engineering Best Practices: The code adheres to best
practices by providing clear and concise instructions, avoiding
ambiguity, and using consistent language.
Contextual Understanding: The prompt leverages the provided
course title and units to provide relevant context for the AI
model. This helps in generating more accurate and relevant
content.

Output Control: The output_format parameter acts as a control
mechanism to ensure the generated output adheres to the
desired structure.

Prompt Engineering for Image search term for Unsplash

Fig 5.2.12. Actual code utilizing Prompt Engineering for

Image search term for Unsplash
Role-Based Prompting: The prompt explicitly defines the AI's
role as an expert in finding relevant images for courses. This
helps align the model's response with the desired task.
Task-Specific Instructions:

● Image Search Term Generation: The prompt clearly
outlines the task of generating a suitable image
search term based on the provided course title.

● API Consideration: The prompt emphasizes the
importance of generating a search term that will yield
effective results on the Unsplash API, indicating a
practical understanding of the downstream
application.

Explicit Output Structure Formatting: The output_format
parameter dictates the desired output structure, ensuring the
model generates a single string as the image search term.

Prompt Engineering for YouTube Transcript
summarization

Fig 5.2.13. Actual code utilizing Prompt Engineering for
YouTube Transcript summarization

Role-Based Prompting: The initial prompt clearly defines the
AI's role as a summarizer, setting the stage for the subsequent
task.
Task-Specific Instructions: The prompt explicitly outlines the
summarization task, including word count limits, exclusion
criteria (sponsors, unrelated content), and formatting
requirements.
Output Formatting: The output_format parameter specifies the
desired output structure, ensuring a clean JSON output.
Constraint and Format Enforcement: The prompt emphasizes
the avoidance of special characters, backslashes, and quotation
marks, ensuring a well-structured and compatible output. The
strict requirement for JSON format ensures compatibility with
downstream processes.
Clarity and Conciseness: The prompt is clear and concise,
directly conveying the desired outcome.
Specificity: The prompt provides specific guidelines regarding
word count and content exclusion, enhancing the quality of the
generated summary.

Prompt Engineering for Quiz Generation

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 89

Fig 5.2.14. Actual code utilizing Prompt Engineering for

Quiz Generation
Role-Based Prompting: The initial prompt explicitly defines
the AI's role as a "helpful AI" capable of generating MCQs,
setting clear expectations for the model's output.
Task-Specific Instructions: The prompt clearly outlines the
task, including the desired format (MCQs with specific length
constraints), the difficulty level (hard), and the requirement to
generate questions based on the provided transcript and course
title.
Output Formatting: The output_format parameter explicitly
defines the expected JSON structure of the output, ensuring
consistency and ease of processing.
Iterative Prompting: The use of an array to generate multiple
questions demonstrates a basic form of iterative prompting,
allowing for the generation of a set of questions based on the
same core prompt.
Constraints and Guidelines: The prompt explicitly states
requirements for answer length, special character avoidance,
and JSON formatting, providing clear guidelines for the model.
Contextual Information: The prompt incorporates the
course_title and transcript into the question generation process,
providing essential context for the model.
Difficulty Level Specification: The prompt specifies the
desired difficulty level of the questions (hard), influencing the
model's output.

6. Setup the application in a cloud production environment.

The final stages involve building the application and
deploying it on a live Virtual Private Server (VPS).

The application framework is built and prepared for
production deployment.

Numerous hosting companies are available for deployment,
with options including the Google Cloud Platform, among
others.

The application is deployed to a live VPS, ensuring a secure
and scalable environment for users to access and utilize the
application.

Fig 5.2.15. Application architecture diagram

This application architecture employs an intricate CI/CD
pipeline deeply integrated with resilient cloud infrastructure to
ensure an optimized user experience. Development and testing
of the code are conducted in isolated local environments before
being consolidated into a central GitHub repository. Upon
detecting any push to this repository, GitHub Actions are
activated to orchestrate sophisticated workflows such as

linting, testing, and Docker image construction, thereby
streamlining and automating the deployment process with high
efficiency.

The backend of the application is deployed on a Google
Cloud Compute Engine VM, specifically an e2-micro instance
situated in the us-central1-a region, providing a highly scalable
and reliable computing environment. The application itself
operates within a Docker container, ensuring uniform
performance across diverse environments, with the container
actively listening on port 3000. An Nginx server functions as a
reverse proxy, handling traffic on port 80 and seamlessly
forwarding incoming requests to the Docker container. This
setup not only abstracts complexity but also enhances security
and performance. The application is consistently reachable via
an external IP address, 35.208.74.209, ensuring stable and
persistent connectivity.

To augment functionality, the application integrates with
multiple external services. A MySQL database hosted on Aiven
is used to securely store critical application data, including user
profiles, course metadata, and video information. OpenAI's
GPT-4o mini API is utilized to dynamically generate course
content such as chapter titles and detailed descriptions,
leveraging state-of-the-art language processing capabilities.
The YouTube API is employed to retrieve relevant video IDs
and transcripts, enabling the application to provide curated
video content for each course. Additionally, the Unsplash API
is integrated to source visually compelling images that enhance
the course materials.

Users engage with the application via a sophisticated web
interface accessible at https://course.coursegenai.top/. They
commence by signing in through Google authentication. To
generate a course, users input the course title and subtopics,
after which the system processes this input and interacts with
various APIs to produce comprehensive course content. Users
can review and modify the generated chapters before finalizing
the course. The application systematically retrieves the
necessary images, videos, and transcripts from the
corresponding APIs, ensuring that all multimedia content is
highly relevant and of superior quality.

The final course content, together with its multimedia
elements, is stored in the MySQL database and presented on
the frontend, delivering a rich and interactive educational
experience to the users. This architecture, with its sophisticated
combination of cloud computing, containerization, and
extensive API integrations, provides a highly efficient,
seamless, and user-friendly course generation platform,
embodying advanced technological capabilities.

6. RESULTS & DISCUSSIONS

6.1 Testing and comparing output with ChatGPT output
and our application output:

Course outline generation using ChatGPT 3.5:

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 90

Fig. 6.1.1 Course outline generation using ChatGPT 3.5
ChatGPT generated a response that, while generally

accurate, included extraneous information such as additional
resources at the end that are not pertinent to our specific needs.
The response would benefit from a more focused and precise
output tailored to our requirements.

Course outline generation using our Application, testing done
using Insomnia for testing our API endpoint:

Fig. 6.1.2 Course outline generation using our Application

with input on left and output on right.

Fig. 6.1.3 Course outline generation using our Application

with input on left and output on right.
In the above illustrated example, it is evident that our

application generates meticulously structured JSON responses,
adhering strictly to the specified schema. These responses are
precise and exclusively contain the required data elements,
devoid of any extraneous information. This precision facilitates

seamless data parsing and accurate display on the front end
while ensuring efficient and error-free integration with the
backend database systems.

This characteristic offers several advantages in the context
of front-end interaction and database persistence:
Enhanced Parsability: Precise JSON structures adhere to a
well-defined syntax, enabling efficient parsing by front-end
framework. This minimizes parsing errors and streamlines data
manipulation within the user interface.
Data Precision: Conveying only the necessary information
within the JSON responses ensures clarity and eliminates the
need for extraneous data filtering or transformation on the
front-end. This reduces processing overhead and improves
application performance.
Simplified Database Integration: The well-defined schema
inherent in JSON aligns well with relational database
structures. This facilitates seamless data persistence with
minimal mapping or schema conversion efforts, leading to a
more robust and maintainable data layer.
Reduced Coupling: By adhering to a standardized JSON
format, the application establishes a loose coupling between the
front-end and back-end. This allows for independent
development and maintenance of each layer, fostering greater
flexibility and scalability.
In conclusion, the application's focus on well-formed JSON
responses fosters efficient data exchange, simplifies front-end
development, and promotes a clean and maintainable
architecture. This approach lays the groundwork for a robust
and scalable application ecosystem.

YouTube Transcript summarization queried on ChatGPT 3.5:

Fig. 6.1.4 Summary of video transcript from ChatGPT 3.5
In the aforementioned example, ChatGPT exhibits a limited

capacity, restricted to generating only a summary.
YouTube Transcript summarization using our Application,
testing done using Insomnia for testing our API endpoint:

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 91

Fig. 6.1.5 YouTube video id and Transcript fetching using our
Application, testing done using Insomnia for testing our API

endpoint

Fig. 6.1.6 YouTube Transcript summarization using our

Application, testing done using Insomnia for testing our API
endpoint

In the above example, our application demonstrates the

capability to generate relevant YouTube video IDs alongside
their corresponding transcripts, leveraging the YouTube Data
API v3 for a multi-faceted approach to content acquisition and
processing. Furthermore, it synthesizes comprehensive
summaries from these transcripts. This entire process is
executed simultaneously, delivering the output in a
meticulously structured JSON format. Such structured output
ensures seamless integration with both the frontend display
mechanisms and backend database systems. This not only
enhances data parsing and presentation but also streamlines the
end-user experience, rendering it seamless, efficient, and user-
friendly.
Targeted Video Selection: By seamlessly extracting relevant
YouTube video IDs, the application employs the YouTube
Data API v3 for efficient content discovery. This ensures that
only videos pertinent to the user's needs are retrieved,
minimizing extraneous data and improving information
retrieval accuracy.
Transcript Acquisition and Summarization: Building upon the
video ID, the application retrieves transcripts through the
YouTube Data API v3. Subsequently, it utilizes prompt
engineering techniques for text summarization using GPT 4o
mini to condense the transcripts into concise summaries. This
process not only provides the user with key takeaways from the
video but also minimizes data volume for front-end rendering
and database storage, optimizing resource utilization.
Well-Structured JSON Formatting: The application
meticulously organizes the extracted video ID, transcript, and
summary within a well-defined JSON structure. This
standardized format facilitates seamless data consumption by
the front-end framework. It further streamlines database
integration, enabling efficient storage and retrieval of the
processed content.

In essence, this approach fosters a cohesive workflow for
content acquisition, processing, and delivery. The targeted
selection of videos, combined with the generation of concise

summaries, ensures a streamlined user experience. The well-
structured JSON output simplifies data exchange and
integration across various application layers, resulting in a
robust and scalable architecture.

6.2 Actual snapshots of application:

Fig. 6.2.1. Landing page

Fig. 6.2.2. User enters the appropriate required course units

and Title.

Fig. 6.2.3. After reviewing the course outline they generated,

the user selects the “Generate” option.

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 92

Fig. 6.2.4. Boxes turn green after Asynchronously retrieving

pertinent YouTube videos along with transcripts, then
producing a transcript summary.

Fig. 6.2.5. The final course page includes chapters and units
created by AI, as well as quizzes, related YouTube videos,

and summaries of the videos. Correct and erroneous answers
are highlighted in green and red in this AI-generated summary
derived from the transcripts of YouTube videos and quizzes.

Fig. 6.2.6. The produced courses on the Gallery Page have

pertinent photos from Unsplash.

Fig. 6.2.7. The user can input their credit or debit card

information on the Payment page after selecting Upgrade.

Fig. 6.2.8. Deployed the application on a Google Cloud
Compute Engine virtual machine for scalable and secure

hosting.

7. CONCLUSION AND FUTURE SCOPE

This innovative course creation platform leverages
generative artificial intelligence (AI) to empower users to
design highly customized courses on various topics, complete
with interactive assessments and YouTube video integration,
transcending the limitations of traditional applications.

By harnessing the power of AI, this tool streamlines the
course creation process, saving users time and effort by
generating quizzes, finding relevant YouTube content,
developing outlines, and summarizing videos. It ensures
tailored outlines, offers limitless course creation through Stripe
payments integration, and features a user-friendly course
gallery with visually appealing thumbnails courtesy of the
Unsplash API. The latest OpenAI GPT 4o mini API and
advanced prompts generate a wealth of engaging content, while
customized quizzes, summaries, and concept identification
enhance the learning experience.

With vast potential to revolutionize education, this platform
has exciting future possibilities:
Cooperative Course Creation: Introduce features enabling users
to collaborate on course creation and sharing, fostering a more
dynamic educational environment.
LMS Integration: Develop tools for seamless import and export
of created courses, facilitating integration into existing
educational platforms, and exploring connections with online
assessment tools.
Multimodal Learning: Consider incorporating additional
modalities like audio and images to create a more
comprehensive and engaging learning experience.
Multilingual Support: Incorporate language support to break
down educational barriers and expand the platform's reach.

By continuously improving and updating this Generative
AI-powered course creation platform, we aim to democratize
education, providing access to creative and stimulating learning
experiences for educators and learners alike.

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 93

8. REFERENCES

[1] R. AlAli and Y. Wardat, “Opportunities and Challenges
of Integrating Generative Artificial Intelligence in
Education,” International Journal of Religion, vol. 5, no.
7, pp. 784–793, May 2024, doi:
https://doi.org/10.61707/8y29gv34.

[2] R. Kaplan-Rakowski, K. Grotewold, P. Hartwick, and K.
Papin, “Generative AI and Teachers’ Perspectives on Its
Implementation in Education,” Journal of Interactive
Learning Research, vol. 34, no. 2, pp. 313–338, 2023,
Available: https://www.learntechlib.org/p/222363/

[3] A. Ghimire, J. Prather, and J. Edwards, “Generative AI in
Education: A Study of Educators’ Awareness, Sentiments,
and Influencing Factors,” arXiv.org, Mar. 22, 2024.
https://arxiv.org/abs/2403.15586

[4] M. Alier, Francisco-José García-Peñalvo, and J. D.
Camba, “Generative Artificial Intelligence in Education:
From Deceptive to Disruptive,” International Journal of
Interactive Multimedia and Artificial Intelligence, vol. 8,
no. 5, pp. 5–5, Jan. 2024, doi:
https://doi.org/10.9781/ijimai.2024.02.011.

[5] Thomas, “Future research recommendations for
transforming higher education with generative AI,”
Computers & Education: Artificial Intelligence, vol. 6, pp.
100197–100197, Jun. 2024, doi:
https://doi.org/10.1016/j.caeai.2023.100197.

[6] R. AlAli, Y. Wardat, K. Al-Saud, and K. A. Alhayek,
“Generative AI in Education: Best Practices for
Successful Implementation,” International Journal of
Religion, vol. 5, no. 9, pp. 1016–1025, Jun. 2024, doi:
https://doi.org/10.61707/pkwb8402.

[7] L. Bonde, “A Conceptual Design of a Generative
Artificial Intelligence System for Education,”
International journal of research and innovation in applied
science, vol. IX, no. IV, pp. 457–469, Jan. 2024, doi:
https://doi.org/10.51584/ijrias.2024.904034.

[8] D. Griffiths, E. Frías-Martínez, A. Tlili, and D. Burgos,
“A Cybernetic Perspective on Generative AI in Education:
From Transmission to Coordination,” International
journal of interactive multimedia and artificial
intelligence, vol. In press, no. In press, pp. 1–1, Jan. 2024,
doi: https://doi.org/10.9781/ijimai.2024.02.008.

[9] A. Alammari, “Evaluating generative AI integration in
Saudi Arabian education: a mixed-methods study,” PeerJ
Computer Science, vol. 10, p. e1879, Feb. 2024, doi:
https://doi.org/10.7717/peerj-cs.1879.

[10] N. McDonald, A. Johri, A. Ali, and A. Hingle,
“Generative Artificial Intelligence in Higher Education:
Evidence from an Analysis of Institutional Policies and
Guidelines,” arXiv (Cornell University), Jan. 2024, doi:
https://doi.org/10.48550/arxiv.2402.01659.

[11] A. Ghimire, “Generative AI in Education From the
Perspective of Students, Educators, and Administrators,”
All Graduate Theses and Dissertations, Fall 2023 to
Present, May 2024, Available:
https://digitalcommons.usu.edu/etd2023/124/

[12] D. Grover, “Next-Generation Education: The Impact of
Generative AI on Learning,” Jan. 2024, doi:
https://doi.org/10.52783/jier.v4i2.1019.

[13] H. Li et al., “Bringing Generative AI to Adaptive Learning
in Education,” arXiv (Cornell University), June. 2024,
doi: https://doi.org/10.48550/arxiv.2402.14601.

[14] M. Resnick, “Generative AI and Creative Learning:
Concerns, Opportunities, and Choices,” An MIT
Exploration of Generative AI, Mar. 2024, doi:
https://doi.org/10.21428/e4baedd9.cf3e35e5.

[15] G. Kurtz et al., “Strategies for Integrating Generative AI
into Higher Education: Navigating Challenges and
Leveraging Opportunities,” Education Sciences, vol. 14,
no. 5, p. 503, May 2024, doi:
https://doi.org/10.3390/educsci14050503.

[16] D. E. Salinas-Navarro, E. Vilalta-Perdomo, R. Michel-
Villarreal, and L. Montesinos, “Using Generative
Artificial Intelligence Tools to Explain and Enhance
Experiential Learning for Authentic Assessment,”
Education Sciences, vol. 14, no. 1, p. 83, Jan. 2024, doi:
https://doi.org/10.3390/educsci14010083.

[17] I. Pesovski, R. Santos, R. Henriques, and V. Trajkovik,
“Generative AI for Customizable Learning Experiences,”
Sustainability, vol. 16, no. 7, p. 3034, Jan. 2024, doi:
https://doi.org/10.3390/su16073034.

[18] S. Ivanov, M. Soliman, A. Tuomi, Nasser Alhamar
Alkathiri, and A. N. Al-Alawi, “Drivers of generative AI
adoption in higher education through the lens of the theory
of planned behaviour,” Technology in Society, vol. 77, pp.
102521–102521, Mar. 2024, doi:
https://doi.org/10.1016/j.techsoc.2024.102521.

[19] L.-H. Wong and Chee-Kit Looi, “Advancing the
generative AI in education research agenda: Insights from
the Asia-Pacific region,” Asia Pacific Journal of
Education, vol. 44, no. 1, pp. 1–7, Jan. 2024, doi:
https://doi.org/10.1080/02188791.2024.2315704.

[20] R. Sajja, C. E. Ramirez, Z. Li, B. Z. Demiray, Y. Sermet,
and I. Demir, “Integrating Generative AI in Hackathons:
Opportunities, Challenges, and Educational
Implications,” arXiv.org, Feb. 01, 2024.
https://arxiv.org/abs/2401.17434

[21] R. Gozalo-Brizuela and E. C. Garrido-Merchán, (2023)
“A survey of Generative AI applications,” arXiv.org,
https://doi.org/10.48550/arXiv.2306.02781.

[22] R. Gozalo-Brizuela and E. C. Garrido-Merchan, (2023),
“CHATGPT is not all you need. A state of the art review
of large generative AI models,” arXiv.org,
https://doi.org/10.48550/arXiv.2301.04655.

[23] C. Zhang et al., (2023), “A complete survey on generative
AI (AIGC): Is chatgpt from GPT-4 to GPT-5 all you
need?,” arXiv.org,
https://doi.org/10.48550/arXiv.2303.11717.

[24] Su, J., & Yang , W. (2023). "Unlocking the Power of
ChatGPT: A Framework for Applying Generative AI in
Education. ECNU Review of Education", 6(3), 355-366.
https://doi.org/10.1177/20965311231168423

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 94

