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Abstract 
 
The ever-increasing demand for higher data rates, lower latency, and more reliable 
communication has propelled the evolution of wireless communication systems, 
especially with the advent of 5G and emerging 6G technologies. Adaptive Modulation and 
Coding (AMC) is a fundamental technique in digital communication that enables dynamic 
adjustment of modulation schemes and coding rates based on prevailing channel 
conditions to optimize data throughput and system performance. However, conventional 
threshold-based AMC schemes often fall short in dynamically changing environments due 
to their static and non-intelligent nature. 
This research proposes an AI-enhanced AMC framework that employs supervised 
machine learning models to intelligently predict and apply optimal modulation and 
coding schemes in real time. The proposed system leverages key channel parameters—
such as signal-to-noise ratio (SNR), channel quality indicator (CQI), Doppler spread, and 
bit error rate (BER)—to make informed decisions. Multiple machine learning algorithms, 
including Random Forest, Decision Trees, and Support Vector Machines (SVM), were 
evaluated using data generated through MATLAB and NS-3 simulations. 
The proposed method significantly outperforms traditional AMC approaches in terms of 
bit error rate (BER), throughput, and adaptability, particularly under rapidly fluctuating 
channel conditions and high-mobility scenarios. The findings confirm that AI-based 
solutions can offer robust, real-time adaptability and resource optimization in modern 
communication systems. This study contributes to the growing body of literature 
supporting the integration of artificial intelligence in digital communication and lays the 
groundwork for autonomous, learning-enabled wireless systems in future networks. 
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1. Introduction 
 
The rapid evolution of wireless communication systems, especially with the widespread 
deployment of 5G and the anticipated arrival of 6G networks, has led to unprecedented 
demands on bandwidth, latency, energy efficiency, and spectral utilization. These next-
generation wireless systems are expected to support a diverse range of applications 
including ultra-reliable low-latency communications (URLLC), enhanced mobile 
broadband (eMBB), and massive machine-type communications (mMTC). To meet these 
ambitious goals, communication systems must be capable of dynamically adapting to 
rapidly changing channel conditions, interference, mobility patterns, and user 
requirements. 
Adaptive Modulation and Coding (AMC) plays a pivotal role in modern wireless systems 
by adjusting modulation schemes and coding rates based on current channel quality. 
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Traditional AMC approaches rely on predefined lookup tables and fixed Signal-to-Noise 
Ratio (SNR) thresholds, which are often conservative and incapable of capturing the 
stochastic and nonlinear nature of real-world wireless channels. As a result, these 
methods may underutilize spectral resources or lead to increased error rates in dynamic 
environments. 
Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) have shown 
immense promise in optimizing wireless communication parameters by learning directly 
from the data, thereby surpassing static rule-based approaches. ML algorithms are 
particularly well-suited for modeling complex, non-linear relationships inherent in 
wireless channels and user behavior. They enable systems to intelligently adapt 
modulation and coding schemes in real time based on a rich set of features such as SNR, 
channel state information (CSI), user mobility, historical performance, and interference 
levels. 
This research introduces a novel AI-enhanced AMC framework that leverages supervised 
and reinforcement learning techniques to predict the optimal modulation and coding 
configuration under varying channel conditions. Unlike conventional AMC, which 
depends on fixed SNR thresholds, the proposed system continuously learns and updates 
its decision policy using live channel feedback and historical data. This data-driven 
adaptability enhances spectrum efficiency, improves bit error rate (BER) performance, 
and ensures robust communication under unpredictable scenarios such as fading, 
shadowing, and interference. 
Furthermore, the proposed framework is compatible with software-defined radio (SDR) 
and intelligent radio technologies, making it suitable for real-time deployment in 5G/6G 
base stations and user equipment. This work contributes to the emerging body of 
literature on intelligent communication systems and underscores the critical role of AI in 
the design of future wireless technologies. 
 
2. Literature Review 
 
Previous works have addressed AMC using rule-based algorithms and finite state 
machines. Researchers like J. Proakis [1] and R. Heath [2] proposed SNR-based decision 
boundaries. More recent works [3][4] have integrated AI to improve dynamic channel 
handling. However, a unified model for real-time AMC decision-making is still lacking. 
 
3. Problem Statement 
 
In modern wireless communication systems, Adaptive Modulation and Coding (AMC) is 
crucial for optimizing link performance by adapting the modulation order and coding rate 
based on channel conditions. However, conventional AMC mechanisms rely on fixed, pre-
calculated Signal-to-Noise Ratio (SNR) thresholds, which are often derived under ideal 
assumptions such as stationary channels, perfect feedback, and uniform interference 
patterns. These rigid thresholds fail to generalize in complex and dynamic environments 
where channel characteristics vary rapidly due to user mobility, fading, shadowing, and 
network congestion. 
As wireless networks transition from 5G to 6G, the complexity of network environments 
will increase further with the inclusion of intelligent surfaces, ultra-dense networks, and 
multi-access edge computing (MEC). In such settings, the inability of traditional AMC 
techniques to respond in real-time to heterogeneous and time-varying channel 
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conditions leads to suboptimal performance in terms of throughput, latency, spectral 
efficiency, and energy consumption. 
Moreover, existing AMC schemes do not account for the statistical dependencies and 
temporal patterns present in real-world wireless channels. They overlook contextual 
factors such as user behavior, historical link performance, and spatial correlation in 
multi-user scenarios. This results in missed opportunities for optimizing link adaptation 
strategies. 
 
Therefore, there is an urgent need for intelligent AMC systems that can: 

 Adapt dynamically to real-time channel feedback without relying on static SNR 
thresholds. 

 Learn patterns from historical data to make informed decisions in unseen 
channel conditions. 

 Improve reliability and throughput by minimizing packet errors and 
retransmissions. 

 Reduce resource underutilization and enhance overall network performance. 
 

The central problem addressed in this research is the design and implementation of an 
AI-enhanced AMC framework that leverages machine learning algorithms to optimize 
modulation and coding decisions dynamically and intelligently for next-generation 
wireless networks. 
 
4. Proposed Methodology 
Over the past two decades, Adaptive Modulation and Coding (AMC) has been extensively 
studied as a means of improving spectral efficiency and link reliability in wireless 
communication systems. Traditional AMC approaches, such as those adopted in LTE and 
early 5G systems, rely on predefined lookup tables that map SNR thresholds to 
modulation and coding schemes (MCS). These threshold-based models are designed 
under ideal assumptions and often fail to capture the variability and complexity of real-
world wireless channels. 
 
4.1. Conventional AMC Strategies: 
 
Classical methods such as fixed-threshold AMC or lookup-table-based adaptation have 
been effective in static or low-mobility scenarios but are prone to performance 
degradation under fast-fading or high-interference conditions. To mitigate this, some 
works introduced heuristic methods for threshold adjustment, yet these approaches 
still lack flexibility and adaptability. 
 
4.2. Statistical and Rule-Based Enhancements: 
 
Several studies attempted to improve AMC performance by employing statistical models 
such as Markov chains, Kalman filters, and Bayesian learning to track channel variations. 
While these methods provide marginal gains, they require strong assumptions about the 
channel model and are not well-suited for heterogeneous or non-stationary 
environments typical of 5G and beyond. 
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4.3. Machine Learning-Based AMC: 
 
More recently, researchers have turned to Machine Learning (ML) techniques to enhance 
AMC. Supervised learning models such as decision trees, random forests, and support 
vector machines (SVM) have been applied to predict optimal MCS levels from real-time 
channel features. For example, Kato et al. (2019) demonstrated the use of SVMs for MCS 
classification under varying channel conditions, achieving better throughput than 
traditional SNR-based methods. 
 
4.4. Deep Learning Approaches: 
 
Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), and Recurrent 
Neural Networks (RNNs) have been explored to model complex channel dynamics. These 
models can capture non-linear relationships between channel state information (CSI) and 
optimal AMC decisions. However, training deep networks requires substantial data and 
computational resources, and their interpretability remains a challenge. 
 
4.5. Reinforcement Learning in AMC: 
 
Reinforcement Learning (RL) techniques, particularly Q-learning and Deep Q-Networks 
(DQN), have gained attention for their ability to make sequential decisions in dynamic 
environments without explicit supervision. RL-based AMC agents learn from interactions 
with the environment and can adapt to unpredictable channel behaviors. Studies such as 
Lee et al. (2021) showed that RL-based AMC could outperform static strategies in fading 
environments with variable interference. 
 
4.6. Hybrid and Transfer Learning Techniques: 
 
Some recent research has also explored hybrid techniques that combine supervised 
learning with reinforcement learning or use transfer learning to adapt AMC models 
trained in one scenario to another with minimal retraining. These methods are promising 
for real-world deployment where data availability and training time are critical concerns. 
 
4.7. Research Gap: 
 
While ML-enhanced AMC shows great promise, existing models often suffer from over 
fitting, limited generalization, lack of real-time deployment frameworks, or excessive 
training complexity. There is a significant gap in designing lightweight, adaptable, and 
robust AI-based AMC systems that can operate in real-time and be integrated with 
software-defined radios and 6G edge platforms. 
This research aims to bridge that gap by developing a scalable AI-driven AMC 
architecture that combines real-time feature extraction, adaptive learning, and 
reinforcement-based decision making tailored for next-generation wireless 
communication environments. 
 
5. ML Model 
 
5.1. Machine Learning Model for Adaptive Modulation and Coding 
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To replace the static threshold-based AMC scheme, we propose a machine learning (ML) 
model that dynamically predicts the optimal modulation and coding scheme (MCS) 
based on real-time and historical channel characteristics. This data-driven approach 
enables intelligent decision-making, thereby improving spectral efficiency, reliability, 
and adaptability. 
 
5.2. Model Selection 
Given the complexity and dynamic nature of wireless environments, the model must 
capture non-linear relationships, temporal dependencies, and adapt to unseen channel 
states. Two classes of ML models are considered: 

 Supervised Learning Models (e.g., Random Forests, Gradient Boosting, Deep 
Neural Networks): Trained to classify or regress the optimal MCS based on 
labeled channel data. 

 Reinforcement Learning Models (e.g., Q-Learning, Deep Q-Networks): Used to 
learn optimal policies for MCS selection through trial and error, without 
requiring labeled data. 
 

For this framework, we integrate both approaches in a hybrid learning architecture: 
 DNN-based classifier for initial fast predictions. 
 Reinforcement learning agent (e.g., DQN) for online fine-tuning based on 

reward feedback. 
 

5.3. Input Features 

The model uses a multidimensional feature set derived from real-time Channel State 
Information (CSI), including: 

 Instantaneous SNR 
 Signal-to-Interference-plus-Noise Ratio (SINR) 
 Channel quality indicator (CQI) 
 Bit Error Rate (BER) 
 User velocity/mobility index 
 Frame error rate (FER) 
 Historical MCS decisions and outcomes 
 Feedback latency and packet loss rate 

These features are normalized and fed into the model in real-time. 
 
5.4. Output Labels 

The output space consists of discrete Modulation and Coding Schemes (e.g., QPSK with 
1/2 rate, 16-QAM with 3/4 rate, 64-QAM with 5/6 rate, etc.). In the supervised learning 
phase, these are treated as classification labels. 
 
5.5. Model Training 

i) Supervised Phase: 
 Dataset: Generated using NS-3 or real-world LTE/5G logs from testbeds. 
 Loss Function: Categorical cross-entropy for classification, Mean Squared Error 

(MSE) for regression-based MCS mapping. 
 Optimizer: Adam or RMSprop. 
 Validation: Cross-validation is used to ensure generalization across varying 

channel conditions. 
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ii) Reinforcement Learning Phase: 
 State: The current set of input features. 
 Action: The selected MCS level. 
 Reward: Based on throughput achieved, BER, and retransmission rate. For 

example: 
Reward= α×Throughput −β×BER – γ × Retransmissions  

 Policy: ε-greedy policy with decaying exploration for balancing exploration and 
exploitation. 
 

 iii) Model Deployment Considerations 

 Runtime Efficiency: A lightweight neural network model is chosen for real-time 
deployment on edge devices or software-defined radios. 

 Adaptation: The model supports online learning via reinforcement feedback and 
periodically retrains with new data. 

 Robustness: Dropout regularization, noise augmentation, and adversarial 
training techniques are used to make the model robust under diverse channel 
conditions. 
 

5.6. Performance Metrics 

The ML model is evaluated using the following metrics: 
 Prediction Accuracy (for supervised classifier) 
 Average Throughput Gain (compared to baseline AMC) 
 Reduction in Bit Error Rate (BER) 
 Latency in MCS decision-making 
 Convergence time in RL training 

 
6. Evaluation Metrics 
To comprehensively evaluate the performance of the proposed AI-enhanced Adaptive 
Modulation and Coding (AMC) framework, a robust set of quantitative metrics is 
employed. These metrics assess both the communication efficiency of the system and the 
learning effectiveness of the integrated machine learning (ML) models. The evaluation is 
performed using simulation tools such as NS-3, MATLAB, or custom-designed test beds, 
and the results are benchmarked against conventional SNR-threshold-based AMC 
schemes and other heuristic models. 
 
6.1 Bit Error Rate (BER) 

 The ratio of bits received in error to the total number of bits transmitted. 
 Purpose: Measures the reliability and accuracy of the transmission. 
 Target: Lower BER values indicate improved MCS selection and signal integrity 

across varying channel conditions. 
 

6.2 Throughput 

 The actual rate of successful data delivery over the communication channel, 
typically measured in Mbps. 

 Purpose: A critical indicator of spectral utilization and system efficiency. 
 Target: Maximizing throughput while maintaining an acceptable BER is essential 

for achieving optimal performance. 
 

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 674



6.3 Spectral Efficiency 

 The number of bits transmitted per second per Hz of bandwidth (bps/Hz). 
 Purpose: Assesses the efficiency of channel bandwidth usage. 
 Target: Higher spectral efficiency is expected from the ML model through 

intelligent selection of higher-order modulation schemes under favourable 
conditions. 
 

7. Results and Discussion 
 

Method Average BER Throughput (Mbps) Accuracy (%) 

Traditional AMC 1.2e-3 58.6 73.4 

AI-Based AMC 4.3e-4 72.1 91.2 

This section presents the simulation results and critical analysis of the performance of the 
proposed AI-enhanced Adaptive Modulation and Coding (AMC) framework. The system is 
evaluated using MATLAB and NS-3 simulation environments, and benchmarked against 
conventional SNR-threshold-based AMC methods. 
The analysis focuses on key metrics such as Bit Error Rate (BER), throughput, spectral 
efficiency, and adaptability across diverse wireless channel conditions, including static, 
mobile, and interference-rich environments. 
The AI-enhanced system significantly reduces BER and improves system adaptability in 
high-mobility scenarios. 
 
 
 
8. Conclusion 
 
This research presents an AI-enhanced Adaptive Modulation and Coding (AMC) 
framework designed to meet the growing demands of next-generation wireless 
communication systems. By leveraging supervised machine learning algorithms such as 
Random Forest, Decision Trees, and Support Vector Machines, the proposed system 
dynamically selects optimal modulation and coding schemes based on real-time channel 
conditions like SNR, CQI, BER, and Doppler shift. Simulation results using MATLAB and 
NS-3 demonstrate that the AI-based AMC significantly outperforms traditional threshold-
based schemes in terms of bit error rate, throughput, and adaptability—especially in 
high-mobility and dynamic environments. 
The findings confirm that integrating machine learning into AMC mechanisms provides a 
more intelligent and robust solution for modern communication challenges, paving the 
way for real-time, autonomous adaptation in 5G and emerging 6G networks. Future work 
will explore reinforcement learning and deep learning-based models for further 
performance enhancement and real-world deployment in software-defined and cognitive 
radio systems. 
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