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Abstract: This paper introduces a variable-frequency oscillator (VFO) utilizing a current feedback amplifier (CFA) with 
grounded capacitors. The oscillation frequency (f0) is tunable via a single resistor, while the oscillation condition (CO) is set 
by a specific capacitor ratio. The circuit achieves a high-Q filter response under a nominal input (Vi), and is designed 
following the short-circuit natural-frequency (SCNF) approach, where the nominal input (Vi≈0) is grounded. By setting a 
high Q-factor (Q→∞), sustained oscillations at the pole frequency (f0) are generated. The effects of CFA port roll-off 
parameters are negligible in this configuration. The design was implemented with an f0 of approximately 9.5 MHz and phase 
noise of –98 dBc/Hz at a 21 kHz offset frequency, with experimental verification. An extension of the design leverages the 
parasitic capacitance (Cz) of the CFA to adjust f0, eliminating the need for one discrete capacitor and expanding the 
frequency range up to 22 MHz. 
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I. Introduction 

The design of variable-frequency sinusoidal oscillators employing a single current-feedback amplifier (CFA) as 
an active building block (ABB) is comparatively rare in the literature, as summarized in Table I [1-6]. A notable 
instance of a single-CFA fixed-frequency oscillator design was previously reported [1]. Grounded-capacitor 
oscillator configurations utilizing a single CFA offer distinct advantages, including enhanced immunity to device 
nonidealities and improved suitability for integration.One widely accessible CFA, the AD-844 [25], functions as a 
transresistance amplifier characterized by low distortion, high transfer-function accuracy, and a broad bandwidth, 
features that stem from its current-feedback architecture. Additionally, its bandwidth remains largely unaffected 
by changes in closed-loop gain [2,12]. In this study, we introduce a novel tunable oscillator design based on a 
single CFA and single resistor, using the single-capacitor negative feedback (SCNF) approach [13]—a concept 
that has not been extensively discussed in recent literature. Although prior works have examined [4,6] single-
active-building-block (ABB) designs for filters and oscillators [3,7,14-16,20-23], the effects of device 
nonidealities in these designs remain largely unaddressed [27,28,30]. 

Table I. Comparative Study of Single-ABB Tunable Oscillators Employing a Single Resistor 

Ref.  ABB fo(Hz)-Range 
1 Voltage-opamp (VOA) 1.6K 
Ref.  ABB fo(Hz)-Range 
1 Voltage-opamp (VOA) 1.6K 
2 CC II 1.0K 
3 CFA 200K 
4 OTRA 1.6K 
5 CFOA 123K 
6 CDTA 53.9K 
proposed                                     CFA 22 M 
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II. Proposed Design  

 The circuit analysis in Fig. 1 is performed using the CFA-port relationships: iz=αix, vx=βvy and vo=δvz, where 
ideally, α=β=δ=1. Utilizing the single-capacitor negative feedback (SCNF) concept and assuming a nominal input 
Vi, the open-circuit transfer function is derived, incorporating device parasitic capacitances Cy and Cz. 

H(s) = {sR2Co + a + 1} / (s2d2 +s d1+do)              (1) 
where   do=  1─ b                                                           (2) 
d1=R1C1(1+σ)+R2C2(1+ρ)+R1{C2(1+ρ)─Co}      (3) 
d2=R2C2(1+ρ)+R1C1(1+σ);σ=Cy/C1<1                 (4) 

ρ= Cz/C2< 1, a = R2/Ro, b=R1/Ro, where 3 < Cy,z (pF) < 6  are parasitic capacitors [8] 
shunt parasitic resistors (ry,z > 5MΩ) These effects are disregarded, as all practical circuit resistors are in the kΩ 
range. 
 

 
                                          Figure1. Tunable Oscillator Design with a Single Resistor (Ro) 

Based on the SCNF concept, by increasing the pole quality factor  Q{=√(dod2)/d1} (where d1≈0), the circuit 
achieves a pair of poles on the imaginary axis. When the input  Vi is then grounded (Vi≈0), the circuit produces a 
sustained sinusoidal oscillation at the natural pole frequency ωo = √(do/d2). Simplification with R1=R=R2, 
C1=C=C2, Ro=R/b and q= Co/C,  yields :        

ωo= √(1─b)/RC                (5) 
Q = ω0 RC/(3─ q)             (6) 

 
Hence, while q ≡ Co/C = 3 (Q~∞) sets the condition of oscillation (CO), grounded-resistor Ro tunes fo 
independently. 
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III. Effect Of Port Rolloff  
 
The CFA port-rolloffs may be expressed  as  α = (1 ─ εi)/(sτi + 1), β  = (1 ─ εv)/(sτv + 1)  and  δ = (1 ─ ε0)/(sτz 
+ 1) where the d.c. gain errors are quite low (εi,v,z<< 1) ; practically the  d.c. gains are  all unity [8,17].  The 
roll-off poles occur at several hundred MHz, positioned in close proximity to each other [12]. So, we can write  

   τi,v,z = τp ≡ 1/ ωp  and  τ = RC. 
After re-analysis then gets  modified denominator polynomial  of  eq.(1) as 

D(s)= (s2 τp τ)2 + s3(2 τ2τp +3 τ τp2) + s2(τ2 + τp2+ 6 τ τp) +s{(3 ─ q) τ + 2τp} + (1─b)                 (7) 
This can be simplified further  in  jω-domain after writing  μ = ω τp ≡ ω/ ωp<< 1, and  λ= ωRC, given by  
 

D(ω) = [(λμ)2 ─  μ(6 λ+ μ) } + (1─b) ─ λ2]  + j [λ(3 ─ q ) +2 μ + μ λ(2 λ +3 μ)]                              (8) 
With μ << 1, eq.(8) reduces  to  

D(ω) = {(1─b) ─ λ2}  + j {λ(3─ q )}                                                                                                                 (9) 
By setting the real and imaginary parts to zero, the nominal design equations are obtained as shown in Eqs. (5) 
and (6). Here, the real part determines the oscillation frequency (ω0), while the imaginary part provides the value 
for CO. 

fo  ≈ 0.16√(1─b)/RC  and  Co=3C                                                                                                                     (10) 
The above derivations show that the proposed implementation remains unaffected by the roll-off poles of the CFA 
device, aligning closely with the ideal design equations in Eqs. (5) and (6). 
 
 

 

 

IV. Parasitic Capacitor based Design 
 

The analysis in Section 2 follows the conventional approach of disregarding the ratios between the device’s 
parasitic capacitors (Cᵧ, Cz) and the adjacent grounded discrete capacitors (C₁, C₂) shown in Fig. 1. However, 
closer consideration suggests that including these parasitic capacitors (Cᵧ, Cz) in the design, as referenced in [29], 
could significantly expand the fₒ range, allowing for the potential elimination of one discrete capacitor (C₂). 
Notably, the CFA's wide bandwidth can be fully leveraged when the device’s pole characteristics are integrated 
into the circuit design [12,2,29]. 
Re-evaluating with R1=R=R2 produces updated coefficients for the denominator as 

đ2   =  Cz C1 R2                                                                                                                                                          (11) 
đ1 = RC1 { n + p (m+2) } + 1  ─ (Co/C1)                                                                                                        (12) 
đo   =    2n + m +1  ─ (R/Ro)                                                                                                                             (13) 

where  m=R/ry<< 1, n=R/rz<< 1 and p=Cz/C1 . Equating eq.(12) to zero, we get the CO as  C0 = 2Cz + C1;  then 
by eqs. (10) and (12) the oscillation frequency is 

ωo = √ [ (1  ─ b) / CzC1] /R ; m, n << 1; b = R/Ro                                                                                        (14) 
Thus, the capability for independent adjustment of CO using C0 and C1, along with tuning of ω0 via a single 
resistor R0, is maintained. 
 

V. Experimental Results 

The design was practically implemented and verified through both PSPICE simulations and a hardware setup; 
the results are presented. in Fig.2  
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Theoretical 
 C= 40pF, Cz=6pF,R=330Ω 
C= 40pF, R=330Ω 
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Fig. 2 .(a)  Filter response with nominal-Vi designed for fo =6.3MHz and Q = 4.5 
(b) Experimentally observed sinusoid wave generation at fo = 9.5MHz with discrete capacitors 
(c) fo- tuning characteristics 
(d) Measured phase-noise Spectrum 

 
VI. Conclusions 

We propose a tunable sinusoidal oscillator that utilizes a single resistor in conjunction with a readily available 
AD-844 CFA element. The circuit offset (CO) and oscillation frequency (f 0) can be adjusted independently. 
Analysis shows that the effects of device non-idealities are minimal. An alternative design approach leverages 
the internal z-node capacitor (Cz) of the CFA device, allowing for the removal of one discrete capacitor and 
resulting in an extended fo-tunability range. The experimental results have been validated through both 
hardware implementation and simulation, demonstrating tunability within the frequency range of 1≤ f0(MHz) 
≤10, achieved using a discrete capacitor design. A satisfactory phase noise level of ─98 dBc/Hz was confirmed 
at a 21.43 kHz offset frequency when tuned to 9.5 MHz. As anticipated, this tuning range was extended to 
approximately fo~ 22 MHz by including Cz in the proposed design and removing C2, while still maintaining 
satisfactory phase noise performance within this expanded range. Compared to recent work [9], which reports 
phase noise of (─)86.61 dBc/Hz phase-noise at 10KHz offset with 1.05 MHz operating frequency, the proposed 
design exhibits improved phase noise characteristics. Furthermore, recent studies [10] indicate growing interest 
in using a single, commercially available ABB for applications in signal processing and filtering. 
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