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1  Abstract—This study delves into the dynamic landscape of 

AI/ML applications within the realm of Electric Vehicles 

(EVs). It encompasses a comprehensive analysis of 

methodologies, including CNNs for battery lifetime prediction, 

ML for accurate range forecasting, optimization of EV charge 

scheduling through ML techniques, and precise state-of-charge 

(SOC) estimation via machine learning algorithms. 

Furthermore, AI's role extends to load forecasting at EV 

charging stations, while ML models play a pivotal role in 

anticipating intricate EV charging behaviors. 

 

Abbreviations   

Electrical Vehicle – EV 

Machine Learning – ML 

Artificial Intelligence – AI  

Convolutional Neural Networks – CNN 

Absolute Mean Error – MAE 

Mean Absolute Percentage Error – MAPE 

Relative Error – RE 

Root Mean Squared Error – RMSE 

State Of Charge – SOC 

Support Vector Machine – SVM 

Vehicle to Grid – V2G  

 

INTRODUCTION 

 

The infusion of Artificial Intelligence (AI) and Machine 

Learning (ML) into Electric Vehicle (EV) applications is 

reshaping predictive analysis and future trends. AI's 

exponential growth has positioned it as a central player in 

predictive methodologies, set to profoundly influence the 

automotive landscape. 

 

One striking application is the prediction of EV battery life. 

AI, powered by ML algorithms, dissects driving patterns, 

temperature fluctuations, battery usage, and charging routines 

to craft precise predictive models. These models gain precision 

as they incorporate larger EV datasets and historical insights. 

 

Real-time battery monitoring and early degradation 

detection showcase AI's vigilance. Anticipating battery 

replacements optimizes efficiency and cost-effectiveness. 

Additionally, AI fine-tunes EV charging strategies by 

considering station availability, electricity costs, and travel 

expectations, elongating battery lifespan and minimizing 

replacements. 

AI's influence extends to elevating overall EV battery 

                                                           
1  

efficiency. Through AI-powered predictive models and 

charging optimization, the aim is to enhance consumer access 

and satisfaction. This fusion revolutionizes EV charging 

stations and behavior, making them more appealing, user-

driven, and environmentally conscious. 

 

 

Battery Lifetime prediction of electrical vehicle using CNNs  

 

Anticipating battery lifespan through charging cycles is a 

significant recent investigation. Enhanced predictions aid 

quality assessment and EV long-term planning.

 
Fig. 1. Application of AI in EV 

 

Predicting cumulative cycles and failure points is crucial. 

Can the battery endure more cycles before failing? 

 

Our goal is to predict the battery's age and remaining life 

using limited charge cycle data. 

 

Using 124 lithium-ion cells, this study collected data. Cells 

underwent charging, discharging until 'broken.' Cycle count to 

failure is battery cycle life. 

 

 
 

Fig. 2. Implementation of CNNs in Electrical vehicles. 

 

Complete cycle data included time-based attributes: 

capacity, temperature, voltage, current. Scalar traits like 
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internal resistance, cycle time were also noted. 

 

Convolutional Neural Networks (CNNs) in TensorFlow and 

Keras predicted target variables. 

 

Data fed in the model is two types: array and scalar features. 

Processed separately, then merged. Data is fed through a dense 

network, generating outputs. This approach handles diverse 

input, provides accurate predictions. 

 

 

 
Fig. 3. Result in the graph Implementation of CNNs in EV 

 

Graph clearly shows accurate predictions for battery age, 

expected lifetime. Data suggests battery lifetime: around 900 

cycles, current age: around 220 cycles, implying 677 remaining 

cycles. This model fits various battery datasets similarly." 

 

Range prediction for EV using ML 

 

 
Fig. 4. Overview of range prediction process using ML 

 

The limited driving range is a key obstacle to wider electric 

vehicle (EV) adoption. To address this, a hybrid machine 

learning model is proposed in this study. It uses real-world 

driving data to accurately predict remaining travel distance, 

alleviating range anxiety and boosting EV driver confidence. 

 

The model is trained on diverse factors including motor and 

battery energy, driving behavior, and temperature. The initial 

phase focuses on algorithm training using a dataset of over two 

thousand trips, covering 600,000+ kilometers with five 

identical-model EVs. 

 

After feature selection, the machine learning model predicts 

remaining range based on State Of Charge (SOC). Model 

performance is evaluated using metrics like MAE, RMSE, and 

MAPE. 

 

This research introduces an innovative approach to forecast 

EV travel distance based on SOC, improving usability and 

driver confidence. 

 

 
 

Fig. 5. Result in the graph range prediction 

 

Besides the State Of Charge (SOC), the machine learning 

model incorporates various other features like fast charging 

capacity, efficiency, top speed, and acceleration of the vehicle. 

These additions substantially enhance the predictive accuracy 

of the model. By utilizing a broader dataset, the model gains the 

ability to provide more accurate and dependable forecasts 

regarding the electric vehicle's remaining driving range. 

 

Electric vehicle charge scheduling using machine learning 

 

This research employs Support Vector Machine (SVM) to 

analyze home charge scheduling and determine an electric 

vehicle's status: idle, Grid to Vehicle (G2V) charging, or 

Vehicle to Grid (V2G) charging. The SVM model uses user 

energy consumption and State of Charge (SOC) data at different 

time segments to predict the vehicle's status with almost 100% 

accuracy. 

 

The SVM model is trained using six days' worth of data at 

30-minute intervals, including power consumption, trip 

duration, and SOC. The output data is labeled: Idle (1), G2V 

(2), and V2G (3). By establishing decision boundaries for each 

class, the SVM accurately identifies the vehicle's status based 

on the input features. 

 

This approach relies on smart meter readings and SOC to 

determine whether the vehicle is idle, in G2V charging, or V2G 

charging. SVM's decision boundaries define the vehicle's state. 
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Fig. 6. Result of charging schedule 

 

After partitioning the complete dataset into three subsets, 

individual analyses were conducted for each labeled output. To 

ensure consistency, all features were normalized to a common 

scale. 

 

Decision boundaries were visualized for three scenarios: 

Idle, G2V, and V2G. A detailed performance analysis was 

carried out for each case. In this context, "feature-1" represents 

State of Charge (SOC) data from the vehicle owner, while 

"feature-2" corresponds to energy consumption values 

measured by the smart meter. Due to normalization, specific 

units for these features were not provided. 

 

In the visualizations, the blue line signifies the decision 

boundary. The trained model accurately classified the two 

examples, underscoring its effectiveness in making reliable 

predictions for the output classes (Idle, G2V, and V2G). 

 

ML based SOC estimation of electric vehicles 

 
This study introduces an SOC estimation model using ML 

algorithms, leveraging driving data from EVs. Through 

experiments with various ML algorithms, the model accurately 

estimates EVs' SOC status during motion. 

 

Creating an ML-based SOC estimation model requires 

substantial charge/discharge data, which is challenging due to 

SOC's nonlinearity. Experimental data might not fully represent 

SOC variations under different drivers, differing from real 

driving conditions. 

 

To overcome this, a novel SOC estimation approach is 

proposed, using extensive cloud-stored driving data. This 

method analyzes real-world driving patterns of multiple EVs, 

leading to more reliable predictions, complementing limited 

experimental data. 

 

 

Time 

Spee

d 

(Km

/H) 

Mileag

e 

(Km) 

Lon Lat SOC 

16/04/2018 

04:24:52 
0 43173 

116.6

8 
39.88 76 

16/04/2018 

04:25:02 
0 43173 

116.6

8 
39.88 76 

16/04/2018 

04:25:12 
0 43173 

116.6

8 
39.88 76 

16/04/2018 

04:25:22 
0 43173 

116.6

8 
39.88 76 

16/04/2018 

04:25:33 
0.6 43173 

116.6

8 
39.88 76 

16/04/2018 

00:00:00 
3.2 43173 

116.6

8 
39.88 76 

16/04/2018 

04:26:23 
19.7 432173 

116.6

8 
39.88 76 

16/04/2018 

04:26:33 
0.9 43173 

116.6

8 
39.88 75 

 

Table. 1. Data used for analysis 

 

This study gathers driving data from different EVs of the 

same model, comprising records from 5 EVs across a year, 

totaling approximately one million cleaned records. Data is 

captured every 10 seconds during EV operation. 

 

Various prominent ML algorithms are chosen to build the 

SOC estimation model. Model effectiveness is assessed using 

two performance metrics: Mean Absolute Error (MAE) and 

Relative Error (RE). 

 

The SOC estimation models are constructed with different 

ML algorithms and evaluated using MAE and RE. 

Additionally, the model's predictive abilities across time 

intervals – half an hour, one hour, and two hours of EV driving 

– are examined, offering insights into its performance over 

varying durations. 

 

 

Journal of Engineering and Technology Management 73 (2024)

Page No: 406



 

Model 
Forecast 

(Hours) 
MAE 

MAE 

Varianc

e 

RE 

SI_LGB 

0.5 0.880 0.827 0.026 

1.0 1.446 2.206 0.042 

2.0 2.379 5.773 0.066 

SI_GBDT 

0.5 0.897 0.931 0.027 

1.0 1.493 2.644 0.044 

2.0 2.492 7.500 0.071 

SI_BPNN 

0.5 1.312 2.073 0.046 

1.0 2.312 5.979 0.080 

2.0 4.011 16.382 0.129 

SI_ElasticNet 

0.5 1.302 1.668 0.042 

1.0 2.210 4.490 0.070 

2.0 3.691 11.331 0.111 

DA_RF 

0.5 0.776 5.879 0.065 

1.0 1.499 16.991 0.109 

0.2 2.930 49.208 0.178 

DA_LGB 

0.5 0.975 7.755 0.058 

1.0 1.673 23.143 0.095 

2.0 2.909 69.937 0.170 

 

 

Table. 2. Result of SOC estimation of electric vehicle 

 

This study introduces a method to estimate the State of 

Charge (SOC) of electric vehicles (EVs) using limited data. The 

model uses fewer inputs while maintaining similar SOC 

estimation accuracy to algorithms based on complex power 

battery models. This discovery is significant as it simplifies EV 

travel planning, requiring less data and making SOC estimation 

more practical in real-world scenarios. This approach 

empowers EV users and planners to make informed travel 

decisions, optimizing energy use and improving overall 

efficiency. 

 

Forecasting the load of electric vehicle charging station 

using Al [8] 

 

With the rapid rise of electric vehicles (EVs), power grids face 

fresh challenges as load profiles undergo significant shifts. To 

tackle this, a novel approach is introduced in this study, 

utilizing machine learning (ML) techniques to predict loads on 

EV charging stations. By precisely forecasting these loads, the 

approach aims to help power grids efficiently manage resources 

and accommodate the growing EV demand. 

 

As electric vehicle adoption continues to expand, energy 

management within power grids grows more intricate and 

demanding. This complexity arises primarily from EVs' 

influence on market prices and electricity requirements. As a 

result, accurate forecasting of EV charging load demand 

becomes crucial for effective power grid management. 

 

This research compares three widely recognized artificial 

intelligence (AI) techniques - Artificial Neural Network 

(ANN), Recurrent Neural Network (RNN), and Q-learning - for 

EV charging load prediction [8]. The goal is to showcase the 

merits and efficacy of these ML techniques across diverse 

scenarios. 

 

For all three methods, the input consists of 24 data points, 

representing the past 24 hours, used to predict the charging load 

for the upcoming hour. In ANN and RNN, the input and output 

units involve previous EV load data. 

 

The Q-learning technique [8] leverages predictions from ANN 

and RNN for preceding days. Experimental outcomes are 

presented in Figure 7, illustrating AI-driven forecasts for EV 

charging stations. 

 

Results suggest that the Q-learning technique, which integrates 

information from both ANN and RNN, surpasses them in 

accurately predicting EV load charging. Simulations indicate 

that Q-learning achieves more precise load forecasts for EVs 

compared to ANN and RNN techniques. 

 

In summary, the proposed Q-learning technique excels in faster, 

more accurate, and flexible tracking of EV load, surpassing the 

capabilities of ANN and RNN techniques. Furthermore, 

varying hidden layer numbers, epoch numbers (iterations), and 

node numbers can notably enhance the accuracy of EV charging 

load forecasting. [8] 

 

 
Fig. 7. Result – forecast of EV charging station using AI 

 

Prediction of EV charging behavior using ML 

 
 

Fig. 8. [9] Overview of the implementation  

The rapid adoption of electric vehicles (EVs) presents a 

notable challenge to power grid infrastructure. To tackle this, 

intelligent scheduling algorithms can effectively manage the 

surging demand for public charging. Leveraging data-driven 

tools and machine learning (ML) algorithms to comprehend EV 
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charging behavior can further enhance these scheduling 

strategies. 

 

This study introduces a method that merges historical 

charging data with weather, traffic, and events data to forecast 

both EV session duration and energy consumption [9]. These 

essential factors are targeted for prediction using various ML 

techniques. 

 

The innovative approach proposed here employs weather, 

traffic, and local events data in conjunction with historical 

charging records to forecast EV charging behavior [9]. Multiple 

ML algorithms, including RF, SVM, XGBoost, and ANN, are 

applied to the adaptive charging network (ACN) dataset [9]. 

 

Empirical findings underscore the positive impact of 

incorporating additional data on prediction accuracy [9], 

outperforming previous methods reliant solely on historical 

charging information. This approach notably enhances the 

understanding and prediction of EV charging behavior [9], 

ultimately optimizing charging networks and addressing the 

challenges associated with the widespread deployment of EVs. 

 

 

Metrics / Model 
RMSE 

(kWh) 

MAE  

(kWh) 
  R2 

SMAPE  

(%) 

RF 98.7 68 0.63 10.1 

SVM 101 67.4 0.64 10.1 

XGBoost 97.9 68 0.63 10.1 

Deep ANN 101 73.7 0.57 10.9 

Voting Ensemble 97.7 66.5 0.73 9.92 

Stacking Ensemble 97.5 67.1 0.73 9.95 

User predictions 430 394 -4.20 69.9 

 

Table. 3 [9] Session Duration 

 

Metrics / Model 
RMSE 

(kWh) 

MAE  

(kWh) 
  R2 

SMAPE  

(%) 

RF 5.5 3.39 0.54 11.7 

SVM 5.69 3.54 0.51 12.4 

XGBoost 5.61 3.48 0.51 12.1 

Deep ANN 5.65 3.55 0.55 12.5 

Voting Ensemble 5.54 3.41 0.69 11.8 

Stacking Ensemble 5.5 3.38 0.70 11.6 

User predictions 20.6 11.8 0.04 55.0 

 

Table. 4 [9] Energy Consumption 

The study identifies the most critical predictors for session 

duration: maximum traffic post-arrival and connection time. 

This underscores the importance of integrating traffic data for 

precise duration predictions [9]. 

For energy consumption, historical average usage emerges as 

the key factor. This is due to a consistent energy consumption 

pattern when session duration remains unchanged. 

 

The evaluation of developed models employs metrics such as 

RMSE, MAE, R², and SMAPE [9]. Results reveal that 

ensemble models outperform other approaches, attaining the 

highest accuracy in predicting target variables. 

 

By incorporating these predictors and utilizing ensemble 

models, the study significantly improves the accuracy of 

predicting session duration and energy consumption during EV 

charging. This advancement bears substantial implications for 

optimizing charging networks and effectively managing EV 

charging demands, fostering the seamless integration of EVs 

into power grid infrastructure. 

 

 

Conclusion 

In essence, AI is revolutionizing the automotive industry by 

optimizing manufacturing, driving, and maintenance. From 

efficient production and safer autonomous vehicles to 

predictive maintenance, the potential is vast. Addressing safety, 

ethics, and regulations is key, but the automotive landscape is 

undeniably on the cusp of an AI-driven transformation. 
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