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Abstract - This paper presents the design along 

with the implementation of an IoT-based 

Wireless Sensor Network (WSN) that uses ESP32 

as well as ESP8266 microcontrollers as sensor 

nodes with a Raspberry Pi as a centralized Linux-

based server. The sensor nodes come equipped 

with environmental sensors that include 

temperature, humidity, gas, and also light 

detectors. Because of protocols that are like UDP 

or TCP, these nodes transmit data in real time to 

the server wirelessly. The Raspberry Pi processes 

data, stores data, also visualizes data because it 

acts as a local fog computing layer that closes the 

divide between edge sensing and user access. 

Flask creates the web interface that the server 

hosts while it handles many clients. This allows 

for real-time data to be visualized and monitored. 

The architecture ensures some scalability and 

energy efficiency as well as low-latency 

communication and that makes the architecture 

quite suitable for some applications like smart 

agriculture or environmental monitoring as well 

as health monitoring plus home automation. The 

system is modular and extensible in nature, 

which makes it easy to integrate additional nodes, 

connect to the cloud, and improve future features 

like encrypted communication and edge-based 

intelligence. Because of how the results acquire 

more data and can service multiple clients quite 

reliably, they can validate the idea that a Linux-

based WSN model works in practical IoT 

deployments. 
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Flask, Wireless Sensor Network, IoT, Fog 
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I. Introduction 

Today, the Internet of Things (IoT) is virtually 

limitless, from smartwatches to great and all-

encompassing smart cities. At its simplest, IoT is 

about devices communicating with each other and 

transmitting data without the need for human 

intervention. One of its coolest and most valuable 

components is called a Wireless Sensor Network 

(WSN). A WSN is made up of tiny devices known 

as sensor nodes. These sensor nodes collect data 

from the environment and transmit that data to a 

central location for processing. IoT can provide 

significant utility through WSN in similar ways that 

automated farms, pollution monitoring, smart traffic 

systems, and hospital monitoring utilize WSN 

systems. 

However, developing a WSN that actually works in 

practice is no easy task. Considerations must be 

made about how little power the sensor nodes can 

utilize (because they are often powered by batteries), 

delays in time for the data to be transmitted 

wirelessly, accommodating multiple users, and still 

permissively handle different types of data. 

Balancing all of this is no easy task. 

This study presents an IoT-oriented WSN 

framework, consisting of inexpensive, low-power 

sensor nodes (ESP32 and ESP8266) based on 

microcontrollers, and a Linux-centric centralized 

server based on Raspberry Pi. The sensor nodes are 

configured to collect parameters such as 

temperature, humidity, gas levels, and ambient light 

through different sensor modules, to send the data 

wirelessly to Raspberry Pi, which acts like a fog 

computing unit for data processing, data logging, 

and user interface to monitor data collection and 

parameters.  

The Linux-based server, which offers stability, 

flexibility, and capability to support a multitude of 

open-source applications and protocols and capable 

of handling multiple clients while locally storing 

data even in a variety of formats (CSV or JSON), in 

addition to a graphical interface to report real time 

state of the system utilizing a web interface powered 

by Flask.  

The addition of a local processing layer minimizes 

dependence on cloud services and allows for 
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increased reliability and awareness of privacy that 

would be critical in sensitive or critical applications.  

This paper outlines the hardware and software 

architecture, communication protocols, system 

integration, and real time performance results of the 

outlined architecture. The envisioned goal is to 

leverage the components described to generate a 

robust WSN framework as a scalable, low-cost, low-

power, and flexible WSN solution that can easily 

adapt to a wide array of IoT applications. 

Ii. Technical Background 

Wireless Sensor Networks (WSNs) arose from the 

idea of distributed sensing technology wherein 

geographically separated and autonomous devices 

(sensor nodes) monitor and record physical or 

environmental conditions, and work collaboratively 

to communicate that data to a singular location or 

processing unit. WSNs provide the foundation for 

the Internet of Things (IoT) ecosystem by supporting 

real time monitoring and shortly enabling 

automation in applications such as smart cities, 

agriculture, health monitoring, and industrial 

automation [1]. 

2.1 Microcontroller-Based Sensor Nodes 

The ESP8266 and ESP32 microcontrollers from 

Espressif Systems are ultra-low cost, ultra-low 

power microcontrollers with built-in Wi-Fi that are 

easy to deploy as sensor nodes. The ESP32 has 

greater computing bandwidth because it has a dual-

core processing engine while also having built-in 

Bluetooth, making it more capable to complete more 

advanced and complex edge processing tasks [2]. 

The ESP8266 and ESP32 microcontrollers also have 

the flexibility to use many different sensor interfaces 

to connect any number of different sensors; their 

integrated interfaces (I2C, SPI, ADC) were used in 

this project to connect sensors that include 

DHT11/22 (temperature and humidity 

measurement), MQ-series gas (detection), and LDR 

(Light Dependent Resistor) modules. 

2.2 Communication Protocols 

Data traveling from the sensor nodes to the central 

server occurs through a User Datagram Protocol 

(UDP) or Transmission Control Protocol (TCP). 

UDP is utilized where low-latency, real-time data 

transfer with little overhead is present and TCP is 

used whenever reliability is necessary [3]. Both 

UDP and TCP utilize Wi-Fi connections, facilitating 

a flexible, and infrastructure-less communication 

topology over a local area network (LAN).  

2.3 Linux-Based Server with Fog Computing 

Function 

The Raspberry Pi, a small form-factor, low-power, 

ARM-based single-board computer using a Linux-

based operating system (the most common operating 

system is Raspbian or Raspberry Pi OS), will act as 

a fog computing node in the setup. Fog computing is 

a bridge between cloud and data processing at the 

edge, which enables cloud storage, data processing, 

and analytics at the source of event data collection. 

This reduces the latency and reliance on cloud 

computing capabilities [4]. The fog computing 

architecture allows for edge intelligence, local data 

persistence, and privacy-aware applications, which 

improve the reliability of the system. 

2.4 Web Interface 

The Raspberry Pi runs Flask, a Python-based micro 

web framework to create a lightweight but powerful 

web interface. Flask supports multiple HTTP clients 

at the same time, as well as real-time data 

visualization. Plotting sensor data can be done 

through the web browser, and the data can be saved 

as CSV or JSON files. The data can also be shared 

through RESTful endpoints or a web dashboard.  

2.5 Modularity, scalability, and extensibility 

The modular architecture makes it easy to add 

additional sensor nodes without having to 

reconfigure the main system. In addition, since 

sensors, services, and data formats are standardized, 

they can be exchanged easily, making it 

interoperable. The architecture is scalable by 

supporting a hierarchical node structure, and 

potentially integrate with the cloud. Extensibility of 

the architecture is supported as new sensors or 

encrypted communication modules can be 

interfaced as plug-and-play.  

III. Wireless Sensor Network Architecture and 

Methodology 

In an IoT-based wireless sensor network (WSN) 

comprising multiple sensor node (also known as 

edge nodes) which are deployed over some area to 

monitor either environmental or application-specific 

parameters. These nodes often have limited 

resources and communicate via radio or wireless 

communication to transmit the sensed data to a 
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central node (the main node) which sends the data to 

a Linux-based server running the processing, 

storage, or visualization. 

3.1 Data Transmission Methodology 

In this proposed architecture, data from the edge 

nodes is sent back to the main node following the 

shortest path first. In cases where an edge node is not 

in range of the main node, it first must determine its 

nearest neighbouring node (any node to its cluster 

might feasibly be the neighbouring node), and send 

the data there. The receiving node will send the data 

on to the next node in accordance with the protocol 

until the data finally reaches the main node. The 

main node will then forward the received data to the 

server. In addition to the edge nodes sending data 

back to the main node, the server also has the 

capability to send data requests to any node on the 

network, which can then also trigger data requests to 

be routed back to the server based on the same 

shortest-path routing method. 

For the complete assurance that seamless data 

transfers are maintained also with a dynamic 

situation concerning nodes being disconnected etc, 

the routing path is not determined statically. The 

network uses a dynamic routing algorithm, where 

updated routing tables are created and propagated 

when the network topology changes, keeping 

routing adaptive and efficient, as well as the 

robustness and resiliency of the system. 

3.2 Key Techniques Implemented 

3.2.1 Nearest Neighbour Discovery  

Description: Edge nodes dynamically perceive and 

communicate with the nearest neighbouring node 

that is in communication range. This is important for 

multi-hop communication when a route to the main 

node does not exist.  

Implementation: Each node broadcasts a "hello" 

message periodically, and maintains a current 

neighbour table in order to be aware of their local 

topology and use that information in deciding which 

node is the closest and which link has the highest 

quality to forward packets to. This approach aligns 

with the neighbour discovery methods described in 

[5], which emphasize periodic beaconing and 

maintenance of neighbour tables to support low-

power, low-latency WSN communication.  

3.2.2 Dynamic Routing Table Updates  

Description: The routing table in each node is 

dynamically updated in real-time to reflect changes 

to network topology, such as when a node becomes 

unavailable or a new node join.  

Implementation: The network uses a protocol such 

as Ad hoc On-Demand Distance Vector (AODV) or 

one of the other reactive protocols that invoke route 

discovery only when necessary. When a topology 

change is detected by a node, the node informs the 

cluster and, if the cluster must update its routing 

table, it sends its updated table to all nodes. The use 

of reactive routing protocols such as AODV is 

supported by recent studies [6], which show that on-

demand route discovery and real-time table updates 

improve performance in dynamic WSN 

environments.

 

Figure 1.  Architecture of WSN  

Figure 1 portrays the multi-level structure of the 

Wireless Sensor Network (WSN) proposed in this 

paper that combines different layers of sensing, 

communication, processing, and visualization in 

order to allow for effective real-time monitoring in 

IoT applications. The first level is composed of the 

edge nodes, implemented on either ESP32 or 

ESP8266 microcontrollers. These low power 

Wireless Fidelity (Wi-Fi) devices are compatible 

with various environmental, and biomedical sensors 

such as, temperature/humidity sensors (DHT11), 

body temperature sensors (LM35), pulse rate 

measurement & SpO₂ sensors (MAX30100), and 

accelerometers (MPU6050) for fall detection. Each 

edge node can independently monitor each sensor 

and collect data at a specified time interval, as well 

as pre-process data, such as filtering out noise, or 

averaging, and then wirelessly communicating this 

data to the main nodes. When either direct 

connection to the central server is not possible due 

to distance, or there is material blocking signal 

transmission, the architecture includes main nodes, 
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usually other ESP32, that act as intermediate data 

aggregators. Main nodes collect data from edge 

nodes in the vicinity, and communicate the data 

wirelessly using multi-hop communication to avoid 

any areas of communication failure. This also allows 

the main nodes to collect a multi-hop dataset that 

other noes would not normally be able to collect. 

 

4. Raspberry Pi as Fog Node for Local Processing 

and Web Display  

The architecture proposed in this paper has the 

Raspberry Pi as a key part of the fog computing 

layer, which acts as a local processing and decision-

making layer from the distributed Wireless Sensor 

Network (WSN) and any cloud infrastructure. In this 

framework, given the processing power of the 

Raspberry Pi, we can leverage a low-cost, low-

power, single-board computer to provide real-time 

data aggregation, filtering, analysis and visualisation 

without always sending all data to the cloud. By 

using fog computing in this edge device as a part of 

the network, we are able to reduce communication 

latency, improve its reliability, and bandwidth 

efficiency, which is important for systems with a 

requirement of continuous data monitoring and 

timely responses, as needed by health monitoring 

and environmental monitoring applications. 

The Raspberry Pi functions within a Debian-based 

Linux environment and the Pi has a lightweight but 

powerful web server based developed with the Flask 

micro web framework. Incoming data packets are 

transmitted via Wi-Fi as UDP or TCP from many 

ESP32/ESP8266-based sensor nodes. The data 

packets contain measurements from the sensors: 

body temperature, ambient temperature and 

humidity, heart rate, saturation of oxygen (SpO₂), 

and acceleration data (for fall detection). The server 

does the basic data pre-processing: smoothing 

through averaging filters, as well as finding outliers 

and removing noise. Our pre-processing process 

isolates clean data from noisy data; only reliable data 

are visualized and stored. This pre-processing 

improves the accuracy and readability of the data 

that the user sees.  

In addition, the fog server has the possibility for 

local decision-making. For example, it checks the 

sensor data against thresholds (SpO₂ < 90% or a 

reasonable jump in heart rate) to indicate anomalies 

and notify the appropriate health worker.                             

 

The alerts were written to a log with an accurate 

timestamp and viewable on a interactive dashboard 

in real-time when accessed from any web browser. 

The dashboard sections included: (i) patient 

information providing identification and 

demographic data, (ii) visual displays for plotting 

the real-time time series physiological data, (iii) raw 

numerical data fields showing sensor input readings, 

and (iv) an alert log console for tracking abnormal 

events. 

The real-time web interface is capable of 

simultaneous access across multiple clients and can 

be effectively used in the hospital setting or with multi-

patient monitoring. With its asynchronous nature, 

Flask handles connections to human agents or 

machine agents, utilizing a RESTful API. In 

addition, the architecture allows for conditional 

integration with the cloud; when internet connection 

is available, the Raspberry Pi can send validated and 

compressed data packets (when needed) to a remote 

server or cloud database where the information can 

be stored for extended periods of time, be used for 

remote diagnostics, or be uploaded for AI-based 

analysis. The layered strategy of providing a 

functional cloud-computing capabilities allows the 

system as a whole to be usable and operable when 

offline or with sporadic or unreliable connectivity 

and increases the overall fault tolerance of the 

overall system.  

The use of Raspberry Pi as a fog node again 

reinforces the modularity and scalability of the 

system. New nodes can be connected to the system 

with limited configuration, and new processing 

scripts or visualization modules can be added to the 

fog server. 

5. Implementation and System Setup 

This section outlines the hardware and software 

implementation of the proposed IoT-based Wireless 

Sensor Network (WSN) for patient health 

monitoring using ESP32 microcontrollers and a 

Raspberry Pi-based fog server. The system 

architecture supports real-time monitoring, localized 

display, multi-hop data communication, and 

centralized visualization with alert management. 
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5.1 Edge Node Hardware Configuration 

 

Figure 2. Edge node architecture with ESP32 and 

connected sensors including MAX30100, LM35, DHT11, 

and OLED display. 

In the proposed system, each edge node is based on 

the world-renowned ESP32 microcontroller, which 

was chosen for its low power use, Wi-Fi capabilities, 

and ability to transmit data over a real-time medium 

in an environment with resource management in 

mind. To provide an overall look at patient health, 

we have added a set of biomedical sensors to each 

ESP32 node. First, we added the DHT11, which 

gives the ambient temperature (i.e., measuring 

environment temperature and humidity). Secondly, 

we added the LM35, which gives an analog reading 

of the body temperature. Thirdly, the MAX30100, 

which utilizes infrared to capture blood oxygen 

saturation and heart rate at the same time.  

We have also used dedicated pulse sensor for the 

pulse of the patient to measure beats per minutes 

(BPM), and combine the edge node accelerometer, 

such as the MPU6050, to analyse changes in  

acceleration vector, which may suggest falling if the 

boundary vectors are breached. Additionally, we 

could integrate an optional ECG sensor to collect the 

underlying electrical activity detail of the heart and 

improve diagnosis. Each edge node will also 

visualize sensor data using a small TFT, or OLED, 

for visualization of the instant readings at the 

patient’s location. This way, a patient can be up-to-

date with their health status, even if no data is being 

exchanged in an inactive way directed towards 

server usage or communicating via the network.  

5.2 Main Node and Communication Topology 

The communication architecture proposed for the 

hospital-wide monitoring system is a hierarchical 

topology, where multiple edge nodes send 

monitoring data to a main node. The main node uses 

the ESP32 microcontroller as the focal point for 

sensor data aggregation within each local cluster of 

sensor nodes, collecting, buffering, and forwarding 

sensor data packets from the nearest edge devices to 

the fog computing server via a secure Wi-Fi link. 

Reliability and low latency data communication 

transmissions methods will be important, especially 

when viewing large-scale implementations like 

hospital wards or care facilities. 

Communication follows a multi-hop model based on 

proximity and communication stability for a 

connection between nodes. Each edge node is 

programmed to detect and connect with the nearest 

node (i.e., the main node) which helps reduce 

transmission power and ultimately battery depletion. 

The main node then immediately relays the 

structured data (composed of device ID, timestamp, 

and priority flags for critical or abnormal readings) 

to the Raspberry Pi-based server for aggregation. 

The data collected and in transit is designed to be 

robust and adaptable. Dynamic routing is employed 

with real-time updates from periodic broadcast 

messages, ensuring routing tables could be updated 

continuously and even when nodes disconnect 

temporarily. 

5.3 Server Architecture and Web-Based 

Visualization 

With the implementation of a hospital-wide 

monitoring system, the communication structure is 

defined as a hierarchy, where multiple edge nodes 

send data to a main node. The main node is an 

ESP32, which is designed to work as an aggregator 

of data for a local cluster of sensor nodes. The main 

node collects, buffers, and forwards packets of 

sensor data from nearby edge nodes to the fog 

computing server using a secure Wi-Fi channel. 

Either by using multiple edge deployed edge nodes, 

or by using a single edge (node)/ main node for 

clustering data packets, creates a reliable option for 

performing data transmissions while ensuring low-

latency, especially in large-scale installations in 

hospitals in units like wards or care facilities. 

The fog server layer is implemented as a Raspberry 

Pi 4 single-board computer that is running a Debian 

Linux distribution. It runs a Python application using 

the Flask library as the main application/interface 

for data processing, alert generation, and real-time 

patient health data visualization. The fog server 

continuously listens for incoming data from multiple 

clusters of main nodes across the network and is 

responsible for three broad operations which include 
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data aggregation, observation of anomalies, and 

visual representation of patient health data in real-

time. 

The server structure is a key element of the detailed 

IoT-based patient monitoring system. The fog 

computing server acts as the fog computing layer 

tying edge data acquisition to end-user visualization. 

The fog server is implemented via a Raspberry Pi 4 

that is running a Debian-based Linux operating 

system, and utilizes a web application stack built 

with the Flask micro web framework. The Raspberry 

Pi acts as a server with the capability to receive 

multiple incoming data transmissions from the main 

nodes installed in the wireless sensor network. The 

server, upon receipt of a data transmission packet 

will perform the three fundamental tasks of data 

aggregation, filtering and alerting, and real-time 

visualization. 

Data Aggregation: The server receives structured 

data streams from all patient nodes connected to it 

and appends them to files stored locally using a 

format of your choice (e.g., JSON, CSV). Our server 

permanently records all incoming data for you to 

analyse later or to process more meaningfully. 

Filtering and Alerts: The server compares incoming 

data against accepted thresholds to recognize 

abnormal patterns. For example, if someone's blood 

oxygen saturation (SpO₂) drops below 90%, their 

SpO₂ event will generate an email alert, or if they 

throw an abnormal acceleration, we might suspect 

they've fallen. 

Real-Time Visualization: Using Flask, a web 

dashboard is automatically generated and delivered 

through any standard web browser from any device 

connected to the same Wi-Fi network. The web app 

provides the clinician or caretaker a way to view 

patient data in real time from anywhere using an 

intuitive interface. 

 

 

 

 

Figure 3. Real-time monitoring dashboard showing 

patient details, plotted graphs for SpO₂, ECG, respiration, 

and CO₂, alongside numerical data. 

As shown in Figure 3, the dashboard is subdivided 

into four high-level categories to improve 

readability and functionality:  

A. Patient Information Block. This displays 

metadata for each monitored patient, including the 

patient's name, age, gender, birth date, and their 

device ID 

B. Graphical Data Plot. This shows dynamic plot(s) 

for monitored physiological signals including SpO2, 

ECG, respiration, and CO2 levels. 

C. Numeric Panel. This panel shows the most 

recently read sensor values in coloured numeric 

boxes. 

D. Alert Log Console. This records all triggered 

alerts as they occur with a timestamp to help 

caregivers identify and address abnormal states 

quickly. 

5.4 Warning and Fall Detection System 

The fog server has a severe warning and fall 

detection subsystem built in, so it can identify 

serious health events immediately. This subsystem is 

continuously running in real-time analysing 

incoming sensor data and determining if it indicates 

a clinically significant event. The subsystem levels 

of severity are based on the following indicators: 

SpO₂ Level: Less than 90% is considered hypoxemia 

Heart Rate: Less than 60 bpm (bradycardia) and 

greater than 120 bpm (tachycardia) are both 

abnormal heart rates. 

Body Temperature: A marked variance from 

baseline body temperature is used for a thermal alert. 

Fall Detection: Anomaly detection of the 

acceleration vector is performed using the 
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MPU6050 accelerometer based on predefined 

threshold vectors. 

When one of these events occurs the system logs the 

event with a time stamp and visually generates a 

warning under the alerts component on the web 

dashboard. This means that medical staff and 

caregivers are able to intervene quickly and prevent 

possible health complications and take timely 

ambulatory action. 

 

Figure 4. Warning log section displaying fall detection and 

vital parameter alerts with timestamps. 

 

6. Conclusion 

This paper has described the design and 

implementation of a scalable, low power, real-time 

IoT-based Wireless Sensor Network (WSN) for 

monitoring patient health in a hospital. Using ESP32 

microcontrollers at the edge, the system integrates 

multiple biomedical sensors such as DHT11, LM35, 

MAX30100, pulse sensors, and accelerometers, to 

monitor critical health parameters, such as body 

temperature, SpO₂, heart rate, and fall detection. 

Each edge node transmits data wirelessly to a 

centralized server via a hierarchical main node, and 

also displays the vital readings locally at the edge 

node with an integrated screen for on-site 

monitoring. 

The fog server was implemented on a Raspberry Pi 

and is capable of processing incoming data on the 

fog server and visualizing it using a Flask-based web 

dashboard that provides a real-time graphical plot, 

numeric indicators, and timestamped alerts for 

observation of outlier readings or emergencies such 

as falls. The architecture demonstrated is modular, 

dynamic, and allows for multiple clients to connect, 

making it a robust foundation for continuous 

healthcare supervision applications, particularly 

intensive care, elderly care, and remote health 

monitoring applications. 

The effective deployment of edge computing, real-

time alerts, and local visualization indicates the 

potential use ability of this WSN model in actual 

medical spaces. Future enhancements could include 

cloud integration and long-term analytics, 

communication encryption, and automated anomaly 

detection with AI processing to enhance and 

potentially ensure the system's accuracy, security, 

and predictive aspects 

7. References 

[1] D. Rani and P. Kumar, “Wireless sensor networks 

in the Internet of Things: Review, techniques, 

challenges, and future directions,” ResearchGate, 

2024. 

[2] Espressif Systems, ESP32 Technical Reference 

Manual, 2022. [Online]. Available: 

https://www.espressif.com 

[3] B. Patel, “Performance evaluation of TCP, UDP 

and DCCP traffic over 4G network,” ResearchGate, 

2015. 

[4] P. Thakare and S. Patil, “A review of fog 

computing: Concept, architecture, application 

parameters, and challenges,” ResearchGate, 2024. 

[5] X. Liu, J. Wang, and Y. Zhang, “A Practical 

Neighbor Discovery Framework for Wireless Sensor 

Networks,” Sensors, vol. 19, no. 9, pp. 2136, 2019.  

[6] L. Zhang and Q. Li, “An Improved AODV 

Routing Protocol of Wireless Sensor Network,” 

International Conference on Information Science 

and Technology, 2014.

 

 

  

 

 

  

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 288

https://www.espressif.com/

