
IOT Based Wireless Sensor Network with

Linux Based Server
Sahil Goti1, Jeel Ramani2, Drashti Domadiya3, Shruti Savani4, Pritesh Saxena5, Chintan Panchal6

Department of Electronics and Communication Engineering, Sarvajanik College of Engineering and Technology

Surat, India

Abstract - This paper presents the design along

with the implementation of an IoT-based

Wireless Sensor Network (WSN) that uses ESP32

as well as ESP8266 microcontrollers as sensor

nodes with a Raspberry Pi as a centralized Linux-

based server. The sensor nodes come equipped

with environmental sensors that include

temperature, humidity, gas, and also light

detectors. Because of protocols that are like UDP

or TCP, these nodes transmit data in real time to

the server wirelessly. The Raspberry Pi processes

data, stores data, also visualizes data because it

acts as a local fog computing layer that closes the

divide between edge sensing and user access.

Flask creates the web interface that the server

hosts while it handles many clients. This allows

for real-time data to be visualized and monitored.

The architecture ensures some scalability and

energy efficiency as well as low-latency

communication and that makes the architecture

quite suitable for some applications like smart

agriculture or environmental monitoring as well

as health monitoring plus home automation. The

system is modular and extensible in nature,

which makes it easy to integrate additional nodes,

connect to the cloud, and improve future features

like encrypted communication and edge-based

intelligence. Because of how the results acquire

more data and can service multiple clients quite

reliably, they can validate the idea that a Linux-

based WSN model works in practical IoT

deployments.

Keywords—ESP32, ESP8266, Raspberry Pi,

Flask, Wireless Sensor Network, IoT, Fog

Computing, Sensor Nodes, Real-Time

Monitoring, UDP, TCP.

I. Introduction

Today, the Internet of Things (IoT) is virtually

limitless, from smartwatches to great and all-

encompassing smart cities. At its simplest, IoT is

about devices communicating with each other and

transmitting data without the need for human

intervention. One of its coolest and most valuable

components is called a Wireless Sensor Network

(WSN). A WSN is made up of tiny devices known

as sensor nodes. These sensor nodes collect data

from the environment and transmit that data to a

central location for processing. IoT can provide

significant utility through WSN in similar ways that

automated farms, pollution monitoring, smart traffic

systems, and hospital monitoring utilize WSN

systems.

However, developing a WSN that actually works in

practice is no easy task. Considerations must be

made about how little power the sensor nodes can

utilize (because they are often powered by batteries),

delays in time for the data to be transmitted

wirelessly, accommodating multiple users, and still

permissively handle different types of data.

Balancing all of this is no easy task.

This study presents an IoT-oriented WSN

framework, consisting of inexpensive, low-power

sensor nodes (ESP32 and ESP8266) based on

microcontrollers, and a Linux-centric centralized

server based on Raspberry Pi. The sensor nodes are

configured to collect parameters such as

temperature, humidity, gas levels, and ambient light

through different sensor modules, to send the data

wirelessly to Raspberry Pi, which acts like a fog

computing unit for data processing, data logging,

and user interface to monitor data collection and

parameters.

The Linux-based server, which offers stability,

flexibility, and capability to support a multitude of

open-source applications and protocols and capable

of handling multiple clients while locally storing

data even in a variety of formats (CSV or JSON), in

addition to a graphical interface to report real time

state of the system utilizing a web interface powered

by Flask.

The addition of a local processing layer minimizes

dependence on cloud services and allows for

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 282

increased reliability and awareness of privacy that

would be critical in sensitive or critical applications.

This paper outlines the hardware and software

architecture, communication protocols, system

integration, and real time performance results of the

outlined architecture. The envisioned goal is to

leverage the components described to generate a

robust WSN framework as a scalable, low-cost, low-

power, and flexible WSN solution that can easily

adapt to a wide array of IoT applications.

Ii. Technical Background

Wireless Sensor Networks (WSNs) arose from the

idea of distributed sensing technology wherein

geographically separated and autonomous devices

(sensor nodes) monitor and record physical or

environmental conditions, and work collaboratively

to communicate that data to a singular location or

processing unit. WSNs provide the foundation for

the Internet of Things (IoT) ecosystem by supporting

real time monitoring and shortly enabling

automation in applications such as smart cities,

agriculture, health monitoring, and industrial

automation [1].

2.1 Microcontroller-Based Sensor Nodes

The ESP8266 and ESP32 microcontrollers from

Espressif Systems are ultra-low cost, ultra-low

power microcontrollers with built-in Wi-Fi that are

easy to deploy as sensor nodes. The ESP32 has

greater computing bandwidth because it has a dual-

core processing engine while also having built-in

Bluetooth, making it more capable to complete more

advanced and complex edge processing tasks [2].

The ESP8266 and ESP32 microcontrollers also have

the flexibility to use many different sensor interfaces

to connect any number of different sensors; their

integrated interfaces (I2C, SPI, ADC) were used in

this project to connect sensors that include

DHT11/22 (temperature and humidity

measurement), MQ-series gas (detection), and LDR

(Light Dependent Resistor) modules.

2.2 Communication Protocols

Data traveling from the sensor nodes to the central

server occurs through a User Datagram Protocol

(UDP) or Transmission Control Protocol (TCP).

UDP is utilized where low-latency, real-time data

transfer with little overhead is present and TCP is

used whenever reliability is necessary [3]. Both

UDP and TCP utilize Wi-Fi connections, facilitating

a flexible, and infrastructure-less communication

topology over a local area network (LAN).

2.3 Linux-Based Server with Fog Computing

Function

The Raspberry Pi, a small form-factor, low-power,

ARM-based single-board computer using a Linux-

based operating system (the most common operating

system is Raspbian or Raspberry Pi OS), will act as

a fog computing node in the setup. Fog computing is

a bridge between cloud and data processing at the

edge, which enables cloud storage, data processing,

and analytics at the source of event data collection.

This reduces the latency and reliance on cloud

computing capabilities [4]. The fog computing

architecture allows for edge intelligence, local data

persistence, and privacy-aware applications, which

improve the reliability of the system.

2.4 Web Interface

The Raspberry Pi runs Flask, a Python-based micro

web framework to create a lightweight but powerful

web interface. Flask supports multiple HTTP clients

at the same time, as well as real-time data

visualization. Plotting sensor data can be done

through the web browser, and the data can be saved

as CSV or JSON files. The data can also be shared

through RESTful endpoints or a web dashboard.

2.5 Modularity, scalability, and extensibility

The modular architecture makes it easy to add

additional sensor nodes without having to

reconfigure the main system. In addition, since

sensors, services, and data formats are standardized,

they can be exchanged easily, making it

interoperable. The architecture is scalable by

supporting a hierarchical node structure, and

potentially integrate with the cloud. Extensibility of

the architecture is supported as new sensors or

encrypted communication modules can be

interfaced as plug-and-play.

III. Wireless Sensor Network Architecture and

Methodology

In an IoT-based wireless sensor network (WSN)

comprising multiple sensor node (also known as

edge nodes) which are deployed over some area to

monitor either environmental or application-specific

parameters. These nodes often have limited

resources and communicate via radio or wireless

communication to transmit the sensed data to a

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 283

central node (the main node) which sends the data to

a Linux-based server running the processing,

storage, or visualization.

3.1 Data Transmission Methodology

In this proposed architecture, data from the edge

nodes is sent back to the main node following the

shortest path first. In cases where an edge node is not

in range of the main node, it first must determine its

nearest neighbouring node (any node to its cluster

might feasibly be the neighbouring node), and send

the data there. The receiving node will send the data

on to the next node in accordance with the protocol

until the data finally reaches the main node. The

main node will then forward the received data to the

server. In addition to the edge nodes sending data

back to the main node, the server also has the

capability to send data requests to any node on the

network, which can then also trigger data requests to

be routed back to the server based on the same

shortest-path routing method.

For the complete assurance that seamless data

transfers are maintained also with a dynamic

situation concerning nodes being disconnected etc,

the routing path is not determined statically. The

network uses a dynamic routing algorithm, where

updated routing tables are created and propagated

when the network topology changes, keeping

routing adaptive and efficient, as well as the

robustness and resiliency of the system.

3.2 Key Techniques Implemented

3.2.1 Nearest Neighbour Discovery

Description: Edge nodes dynamically perceive and

communicate with the nearest neighbouring node

that is in communication range. This is important for

multi-hop communication when a route to the main

node does not exist.

Implementation: Each node broadcasts a "hello"

message periodically, and maintains a current

neighbour table in order to be aware of their local

topology and use that information in deciding which

node is the closest and which link has the highest

quality to forward packets to. This approach aligns

with the neighbour discovery methods described in

[5], which emphasize periodic beaconing and

maintenance of neighbour tables to support low-

power, low-latency WSN communication.

3.2.2 Dynamic Routing Table Updates

Description: The routing table in each node is

dynamically updated in real-time to reflect changes

to network topology, such as when a node becomes

unavailable or a new node join.

Implementation: The network uses a protocol such

as Ad hoc On-Demand Distance Vector (AODV) or

one of the other reactive protocols that invoke route

discovery only when necessary. When a topology

change is detected by a node, the node informs the

cluster and, if the cluster must update its routing

table, it sends its updated table to all nodes. The use

of reactive routing protocols such as AODV is

supported by recent studies [6], which show that on-

demand route discovery and real-time table updates

improve performance in dynamic WSN

environments.

Figure 1. Architecture of WSN

Figure 1 portrays the multi-level structure of the

Wireless Sensor Network (WSN) proposed in this

paper that combines different layers of sensing,

communication, processing, and visualization in

order to allow for effective real-time monitoring in

IoT applications. The first level is composed of the

edge nodes, implemented on either ESP32 or

ESP8266 microcontrollers. These low power

Wireless Fidelity (Wi-Fi) devices are compatible

with various environmental, and biomedical sensors

such as, temperature/humidity sensors (DHT11),

body temperature sensors (LM35), pulse rate

measurement & SpO₂ sensors (MAX30100), and

accelerometers (MPU6050) for fall detection. Each

edge node can independently monitor each sensor

and collect data at a specified time interval, as well

as pre-process data, such as filtering out noise, or

averaging, and then wirelessly communicating this

data to the main nodes. When either direct

connection to the central server is not possible due

to distance, or there is material blocking signal

transmission, the architecture includes main nodes,

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 284

usually other ESP32, that act as intermediate data

aggregators. Main nodes collect data from edge

nodes in the vicinity, and communicate the data

wirelessly using multi-hop communication to avoid

any areas of communication failure. This also allows

the main nodes to collect a multi-hop dataset that

other noes would not normally be able to collect.

4. Raspberry Pi as Fog Node for Local Processing

and Web Display

The architecture proposed in this paper has the

Raspberry Pi as a key part of the fog computing

layer, which acts as a local processing and decision-

making layer from the distributed Wireless Sensor

Network (WSN) and any cloud infrastructure. In this

framework, given the processing power of the

Raspberry Pi, we can leverage a low-cost, low-

power, single-board computer to provide real-time

data aggregation, filtering, analysis and visualisation

without always sending all data to the cloud. By

using fog computing in this edge device as a part of

the network, we are able to reduce communication

latency, improve its reliability, and bandwidth

efficiency, which is important for systems with a

requirement of continuous data monitoring and

timely responses, as needed by health monitoring

and environmental monitoring applications.

The Raspberry Pi functions within a Debian-based

Linux environment and the Pi has a lightweight but

powerful web server based developed with the Flask

micro web framework. Incoming data packets are

transmitted via Wi-Fi as UDP or TCP from many

ESP32/ESP8266-based sensor nodes. The data

packets contain measurements from the sensors:

body temperature, ambient temperature and

humidity, heart rate, saturation of oxygen (SpO₂),

and acceleration data (for fall detection). The server

does the basic data pre-processing: smoothing

through averaging filters, as well as finding outliers

and removing noise. Our pre-processing process

isolates clean data from noisy data; only reliable data

are visualized and stored. This pre-processing

improves the accuracy and readability of the data

that the user sees.

In addition, the fog server has the possibility for

local decision-making. For example, it checks the

sensor data against thresholds (SpO₂ < 90% or a

reasonable jump in heart rate) to indicate anomalies

and notify the appropriate health worker.

The alerts were written to a log with an accurate

timestamp and viewable on a interactive dashboard

in real-time when accessed from any web browser.

The dashboard sections included: (i) patient

information providing identification and

demographic data, (ii) visual displays for plotting

the real-time time series physiological data, (iii) raw

numerical data fields showing sensor input readings,

and (iv) an alert log console for tracking abnormal

events.

The real-time web interface is capable of

simultaneous access across multiple clients and can

be effectively used in the hospital setting or with multi-

patient monitoring. With its asynchronous nature,

Flask handles connections to human agents or

machine agents, utilizing a RESTful API. In

addition, the architecture allows for conditional

integration with the cloud; when internet connection

is available, the Raspberry Pi can send validated and

compressed data packets (when needed) to a remote

server or cloud database where the information can

be stored for extended periods of time, be used for

remote diagnostics, or be uploaded for AI-based

analysis. The layered strategy of providing a

functional cloud-computing capabilities allows the

system as a whole to be usable and operable when

offline or with sporadic or unreliable connectivity

and increases the overall fault tolerance of the

overall system.

The use of Raspberry Pi as a fog node again

reinforces the modularity and scalability of the

system. New nodes can be connected to the system

with limited configuration, and new processing

scripts or visualization modules can be added to the

fog server.

5. Implementation and System Setup

This section outlines the hardware and software

implementation of the proposed IoT-based Wireless

Sensor Network (WSN) for patient health

monitoring using ESP32 microcontrollers and a

Raspberry Pi-based fog server. The system

architecture supports real-time monitoring, localized

display, multi-hop data communication, and

centralized visualization with alert management.

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 285

5.1 Edge Node Hardware Configuration

Figure 2. Edge node architecture with ESP32 and

connected sensors including MAX30100, LM35, DHT11,

and OLED display.

In the proposed system, each edge node is based on

the world-renowned ESP32 microcontroller, which

was chosen for its low power use, Wi-Fi capabilities,

and ability to transmit data over a real-time medium

in an environment with resource management in

mind. To provide an overall look at patient health,

we have added a set of biomedical sensors to each

ESP32 node. First, we added the DHT11, which

gives the ambient temperature (i.e., measuring

environment temperature and humidity). Secondly,

we added the LM35, which gives an analog reading

of the body temperature. Thirdly, the MAX30100,

which utilizes infrared to capture blood oxygen

saturation and heart rate at the same time.

We have also used dedicated pulse sensor for the

pulse of the patient to measure beats per minutes

(BPM), and combine the edge node accelerometer,

such as the MPU6050, to analyse changes in

acceleration vector, which may suggest falling if the

boundary vectors are breached. Additionally, we

could integrate an optional ECG sensor to collect the

underlying electrical activity detail of the heart and

improve diagnosis. Each edge node will also

visualize sensor data using a small TFT, or OLED,

for visualization of the instant readings at the

patient’s location. This way, a patient can be up-to-

date with their health status, even if no data is being

exchanged in an inactive way directed towards

server usage or communicating via the network.

5.2 Main Node and Communication Topology

The communication architecture proposed for the

hospital-wide monitoring system is a hierarchical

topology, where multiple edge nodes send

monitoring data to a main node. The main node uses

the ESP32 microcontroller as the focal point for

sensor data aggregation within each local cluster of

sensor nodes, collecting, buffering, and forwarding

sensor data packets from the nearest edge devices to

the fog computing server via a secure Wi-Fi link.

Reliability and low latency data communication

transmissions methods will be important, especially

when viewing large-scale implementations like

hospital wards or care facilities.

Communication follows a multi-hop model based on

proximity and communication stability for a

connection between nodes. Each edge node is

programmed to detect and connect with the nearest

node (i.e., the main node) which helps reduce

transmission power and ultimately battery depletion.

The main node then immediately relays the

structured data (composed of device ID, timestamp,

and priority flags for critical or abnormal readings)

to the Raspberry Pi-based server for aggregation.

The data collected and in transit is designed to be

robust and adaptable. Dynamic routing is employed

with real-time updates from periodic broadcast

messages, ensuring routing tables could be updated

continuously and even when nodes disconnect

temporarily.

5.3 Server Architecture and Web-Based

Visualization

With the implementation of a hospital-wide

monitoring system, the communication structure is

defined as a hierarchy, where multiple edge nodes

send data to a main node. The main node is an

ESP32, which is designed to work as an aggregator

of data for a local cluster of sensor nodes. The main

node collects, buffers, and forwards packets of

sensor data from nearby edge nodes to the fog

computing server using a secure Wi-Fi channel.

Either by using multiple edge deployed edge nodes,

or by using a single edge (node)/ main node for

clustering data packets, creates a reliable option for

performing data transmissions while ensuring low-

latency, especially in large-scale installations in

hospitals in units like wards or care facilities.

The fog server layer is implemented as a Raspberry

Pi 4 single-board computer that is running a Debian

Linux distribution. It runs a Python application using

the Flask library as the main application/interface

for data processing, alert generation, and real-time

patient health data visualization. The fog server

continuously listens for incoming data from multiple

clusters of main nodes across the network and is

responsible for three broad operations which include

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 286

data aggregation, observation of anomalies, and

visual representation of patient health data in real-

time.

The server structure is a key element of the detailed

IoT-based patient monitoring system. The fog

computing server acts as the fog computing layer

tying edge data acquisition to end-user visualization.

The fog server is implemented via a Raspberry Pi 4

that is running a Debian-based Linux operating

system, and utilizes a web application stack built

with the Flask micro web framework. The Raspberry

Pi acts as a server with the capability to receive

multiple incoming data transmissions from the main

nodes installed in the wireless sensor network. The

server, upon receipt of a data transmission packet

will perform the three fundamental tasks of data

aggregation, filtering and alerting, and real-time

visualization.

Data Aggregation: The server receives structured

data streams from all patient nodes connected to it

and appends them to files stored locally using a

format of your choice (e.g., JSON, CSV). Our server

permanently records all incoming data for you to

analyse later or to process more meaningfully.

Filtering and Alerts: The server compares incoming

data against accepted thresholds to recognize

abnormal patterns. For example, if someone's blood

oxygen saturation (SpO₂) drops below 90%, their

SpO₂ event will generate an email alert, or if they

throw an abnormal acceleration, we might suspect

they've fallen.

Real-Time Visualization: Using Flask, a web

dashboard is automatically generated and delivered

through any standard web browser from any device

connected to the same Wi-Fi network. The web app

provides the clinician or caretaker a way to view

patient data in real time from anywhere using an

intuitive interface.

Figure 3. Real-time monitoring dashboard showing

patient details, plotted graphs for SpO₂, ECG, respiration,

and CO₂, alongside numerical data.

As shown in Figure 3, the dashboard is subdivided

into four high-level categories to improve

readability and functionality:

A. Patient Information Block. This displays

metadata for each monitored patient, including the

patient's name, age, gender, birth date, and their

device ID

B. Graphical Data Plot. This shows dynamic plot(s)

for monitored physiological signals including SpO2,

ECG, respiration, and CO2 levels.

C. Numeric Panel. This panel shows the most

recently read sensor values in coloured numeric

boxes.

D. Alert Log Console. This records all triggered

alerts as they occur with a timestamp to help

caregivers identify and address abnormal states

quickly.

5.4 Warning and Fall Detection System

The fog server has a severe warning and fall

detection subsystem built in, so it can identify

serious health events immediately. This subsystem is

continuously running in real-time analysing

incoming sensor data and determining if it indicates

a clinically significant event. The subsystem levels

of severity are based on the following indicators:

SpO₂ Level: Less than 90% is considered hypoxemia

Heart Rate: Less than 60 bpm (bradycardia) and

greater than 120 bpm (tachycardia) are both

abnormal heart rates.

Body Temperature: A marked variance from

baseline body temperature is used for a thermal alert.

Fall Detection: Anomaly detection of the

acceleration vector is performed using the

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 287

MPU6050 accelerometer based on predefined

threshold vectors.

When one of these events occurs the system logs the

event with a time stamp and visually generates a

warning under the alerts component on the web

dashboard. This means that medical staff and

caregivers are able to intervene quickly and prevent

possible health complications and take timely

ambulatory action.

Figure 4. Warning log section displaying fall detection and

vital parameter alerts with timestamps.

6. Conclusion

This paper has described the design and

implementation of a scalable, low power, real-time

IoT-based Wireless Sensor Network (WSN) for

monitoring patient health in a hospital. Using ESP32

microcontrollers at the edge, the system integrates

multiple biomedical sensors such as DHT11, LM35,

MAX30100, pulse sensors, and accelerometers, to

monitor critical health parameters, such as body

temperature, SpO₂, heart rate, and fall detection.

Each edge node transmits data wirelessly to a

centralized server via a hierarchical main node, and

also displays the vital readings locally at the edge

node with an integrated screen for on-site

monitoring.

The fog server was implemented on a Raspberry Pi

and is capable of processing incoming data on the

fog server and visualizing it using a Flask-based web

dashboard that provides a real-time graphical plot,

numeric indicators, and timestamped alerts for

observation of outlier readings or emergencies such

as falls. The architecture demonstrated is modular,

dynamic, and allows for multiple clients to connect,

making it a robust foundation for continuous

healthcare supervision applications, particularly

intensive care, elderly care, and remote health

monitoring applications.

The effective deployment of edge computing, real-

time alerts, and local visualization indicates the

potential use ability of this WSN model in actual

medical spaces. Future enhancements could include

cloud integration and long-term analytics,

communication encryption, and automated anomaly

detection with AI processing to enhance and

potentially ensure the system's accuracy, security,

and predictive aspects

7. References

[1] D. Rani and P. Kumar, “Wireless sensor networks

in the Internet of Things: Review, techniques,

challenges, and future directions,” ResearchGate,

2024.

[2] Espressif Systems, ESP32 Technical Reference

Manual, 2022. [Online]. Available:

https://www.espressif.com

[3] B. Patel, “Performance evaluation of TCP, UDP

and DCCP traffic over 4G network,” ResearchGate,

2015.

[4] P. Thakare and S. Patil, “A review of fog

computing: Concept, architecture, application

parameters, and challenges,” ResearchGate, 2024.

[5] X. Liu, J. Wang, and Y. Zhang, “A Practical

Neighbor Discovery Framework for Wireless Sensor

Networks,” Sensors, vol. 19, no. 9, pp. 2136, 2019.

[6] L. Zhang and Q. Li, “An Improved AODV

Routing Protocol of Wireless Sensor Network,”

International Conference on Information Science

and Technology, 2014.

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 288

https://www.espressif.com/

