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ABSTRACT The integration of uncertainties from renewable energy resources (RER) such as wind and solar based power 
generation, combined with the dwindling of fossil fuel generation and rapidly changing energy demand, poses significant 
operational and security concerns for modern power networks. This paper presents a "Novel Differential Evolution (NDE)" 
algorithm for an uncertainty-inclusive, expected security cost dynamic optimal power flow (ESC-DOPF) model that 
incorporates flexible resources (FR). The algorithm is developed based on a new crossover operator and a new local control 
strategy with a small population size. The main objective of this research work is to obtain a global solution for the total 
operating cost that meets the operational constraints during the day. The RER uncertainties are modelled through Weibull and 
Beta probability distribution functions (PDFs) and also FRs such as battery energy storage systems (BESS) and mesh-
connected multi-terminal HVDC systems are modelled to enhance security and reliability. The effectiveness of the proposed 
NDE algorithm is illustrated in two different scenarios on an IEEE 30 system while considering with and without RER along 
with different combinations of FR. Results show that the ESCDOPF model incorporating RER and FR helps to minimise the 
total operation cost under normal and post-contingency conditions.  

 
INDEX TERMS   Dynamic optimal power flow, battery energy storage systems, expected security cost, flexible resources, 
multi-terminal HVDC systems, N-1 security, novel differential evolution algorithm.  

I.  INTRODUCTION 

     The integration of renewable energy resources (RER)-based power generation, combined with dwindling fossil fuel 
generation and ever-changing energy demand, poses significant operational and security challenges for modern power systems 
[1]. The overarching goal of modern power system operations is to securely dispatch and efficiently serve the load while 
integrating diverse generation technologies. Optimal power flow (OPF) is an important issue in power system dispatching and 
security. The OPF model faces the challenge of balancing the needs of the transmission network while minimising operating 
costs [2]. In [3], the authors proposed dynamic optimal power flow (DOPF), an extended method for solving OPF over a time 
horizon by incorporating inter-temporal constraints. The AC security-constrained OPF (SCOPF) [4–5] is a tool for ensuring 
N-1 security that is primarily used in day-to-day operations to procure ancillary services. Based on the SCOPF paradigm, there 
are two methods, i.e., preventive SCOPF and corrective SCOPF. Several literature reviews have been carried out to enhance 
security against the state of post-contingency in both preventive and corrective SCOPFs [6–7]. The authors of [8] have 
presented a formulation that minimises the total expected operating cost, as well as the post-contingency generation 
rescheduling and load interruption costs, minus the customer benefits. To solve the model with dc approximation, the primal-
dual interior-point (PDIP) algorithm is used. This model was later extended to include AC networks with small-signal stability 
constraints [9]. Because of environmental concerns and recent energy shortages, the incorporation of RER (i.e., wind and solar) 
is becoming more popular [10]. Due to the stochastic nature of the RER, the management of uncertainty and variability in the 
RER is a crucial challenge. Thus, extant literature reveals that several literature studies have been reported on the formation 
of economic dispatch (ED) [11–12], OPF [13–17] and SCOPF [18] with RER using different heuristic algorithms. The 
electricity market creates a flexible resource (FR) for operating a secure and reliable system in real-time situations due to the 
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continuous increase in demand and rapid development of the smart grid [19]. Battery energy storage systems(BESS) and high 
voltage direct current (HVDC) systems are commonly used FR to enhance security and reliability.  
       BESS is a form of scalable resource that has recently attracted a lot of attention from researchers, system operators, and 
end-users [20–22]. Due to the rapid decline in the cost of storage technologies, especially lithium-ion batteries, the role of 
battery storage in a power system has gained prominence [23]. Its main purpose is to conserve the stored resources and it plays 
an important role in ensuring that supply and demand are balanced at all times. The BESS is mainly concerned with energy 
efficiency in order to reduce costs and increase revenue while maintaining flexibility. As part of the solution to the SCOPF, 
the authors of [24] propose that batteries operate in the post-contingency corrective control state. In [25], the authors studied 
the DOPF problem of active distribution networks containing RER, flexible demand and energy storage systems (ESS) in an 
active network management context. In [26], a stochastic MP-SCOPF with flexible loads and ESS to provide flexibility for 
regulating congestion and voltages has been proposed.  
       Due to the grid's controllability and reliability by enabling transmission over longer distances with less power loss, the 
line commutated converters (LCC)-HVDC systems seem to be the most secure and cost-effective choice [27–32]. The authors 
of [33] describe a decoupled way of computing multi-period (MP) SCOPF that covers both N-1 security criteria and quasi-
stationary dynamics in smart grids with ESS via interconnected area coordination. 
     As previously stated, only a few authors aiming to extend AC SCOPF have analysed emerging sources of flexibility in 
conjunction with RER uncertainties. Despite these encouraging developments, this paper proposes a new mathematical 
approach for extending the MP-SCOPF model by considering security as an economic cost rather than a constraint, colloquially 
referred to as "expected security cost DOPF" (ESC-DOPF), to minimise expected system operating costs under pre/normal 
and post-contingencies. To the best of the authors' knowledge, the researchers have not addressed the formulation of the 
problem in the form of an MP-ESCOPF or ESC-DOPF with the integration of RER and FR. The wind and solar stochastics’ 
are modelled through Weibull and Beta probability distribution functions [12–13]. To improve the system reliability, BESS is 
also applied to the proposed model. Furthermore, the authors developed a unified Newton-Raphson (NR) based meshed multi-
terminal line commutated converter (LCC)-HVDC system [27], [29–30], [32] that can be applied to the ESCDOPF model. 
Evolutionary algorithms are capable of effectively solving the proposed model. In recent decades, Storn and Price (1995) 
differential evolution (DE) algorithm has established itself as a powerful population-based stochastic search algorithm for 
finding a globalised solution with good global search capability and few or no cost function constraints [34–36]. However, 
because the standard DE has inherent difficulties in solving complex multi-modal problems with a high degree of 
dimensionality, it is encouraged to develop an effective novel DE variant. Numerous experts have proposed various control 
strategies for optimising the DE algorithm [37–40]. While all of these methods can help the standard DE perform better, they 
are insufficient for certain functions. To address this issue, the proposed model in this paper employs a "New Differential 
Evolution (NDE)" algorithm [41] to minimise the expected total operating cost. This introduces a new crossover operator and 
a new local adaptation approach. The proposed algorithm’s robustness is verified on ESCDOPF with RER and FR during pre-
and post-contingency states. Also, the economic benefits of incorporating RER and FR into the ESCDOPF model are assessed.  
        The rest of the paper is arranged as: Section II presents the formulations of the ESCDOPF model with RER and FR. 
Section III focuses on the solution methodology. Section IV represents the simulation results with discussions, respectively. 
Finally, the concluding remarks are given in Section V. 

II. FORMULATION OF ESCDOPF MODEL WITH RENEWABLE AND FLEXIBLE RESOURCES 

      The detailed mathematical modelling of the proposed ESCDOPF with RER and FR is discussed in this section. 

A.  MODELS OF RENEWABLE ENERGY RESOURCES 

      In this model, the Weibull and Beta probability distribution functions (PDFs) are used to represent the wind speed  v and 

solar irradiance ( sG ) because it closely reflects their practical distribution, which can be found in [12].  The wind speed profile 

calculated by Weibull PDF (  Wf v )  with respect to the wind velocity function  v  m/s is as follows:

 
 

   
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s 1 skk
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f e ,0
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               (1) 

where sk and sc are the shape and scale parameters.  

The output power for a given wind speed ( v ) by using a piece-wise linear function and is given in (13).  
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Here, wind speeds are taken as cut-in speed (
inv ), cut-out speed ( outv ) and rated speed ( wrv ) respectively; (

wr
p ) is the rated 

output power. 
 

        The output of a PV generator can be found in [12]. The probability of solar irradiance ( sG ) can be calculated by Beta 

PDF (  
sG sf G ) as follows [12]: 
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        (3) 

where as and bs are the beta parameters with mean μs and standard deviation σs is as follows 
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     Since, the Beta distribution variable lies in the range of (0, 1). Hence, a nominal value of solar irradiance is (Gs/ Gmax,s) 
considered. where Gmax, s is the maximum solar irradiance. Further, the solar irradiance to energy conversion for solar is given 
by: 
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      (5) 

where sPmax,  is the maximum generated solar power; Ps is the solar power. 

B.  MODELS OF FLEXIBLE RESOURCES 

      From power generation to better transmission and distribution networks, this flexibility must be applied across the energy 
system. Flexibility resource services may be categorised using the idea of energy security and management [19]. The following 
are some of the most in-depth discussions: 

1.   BATTERY ENERGY STORAGE SYSTEM MODEL 

       For the sake of simplicity, BESS is lossless and operates at a unity power factor. In this model, three modes of operation 
have been considered [20–21]. In the first mode, excess generation charges the battery, which acts as a load. Assuming there 
is no battery, generation equals demand, and the battery remains saturated at its maximum/minimum state-of-charge (SOC) 
levels. To meet demand in the third mode, the battery discharges and acts as a generator. The SOC is determined by multiple 
time steps of charge and discharge values.  
 
      The following are the battery charging and discharging equations [21] as: 

( )b b b
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The energy stored inside the battery at each time interval t is given in (6). Whereas Eq. (7) is used to distinct each day from 
the others. Eq. (8) defines the ability to load or unload at the same time. Here, k=0 and k>0 indicate the pre/normal 

contingency(C) state and post-contingency (C) states; K is the total number of contingencies;  ,b

k
ch tP   and ,b

k
dch tP   are the bth 

battery-charging (ch) and discharging (dch) powers of the kth contingency state at time t respectively. ,U
bch t / ,U

bdch t  are the 

battery charging /discharging status. 
bch and 

bdch are the charging and discharging efficiencies.   

2.  UNIFIED HVDC NR MODEL 

      In this study, a unified HVDC/AC-DC approach based on the Newton-Raphson (NR) algorithm with mesh connected 
multi-terminal (MT) line commutated converter (LCC) configurations is developed for evaluating power flow in an ESCDOPF 
model. In this model, the AC and DC power flow solutions can be solved simultaneously by the NR algorithm with a modified 
jacobian matrix [29]. The power flow equations of AC-DC systems are briefly described in the following subsection for rapid 
reference. The complete unified power flow model can be simplified using first order Taylor expansion is given as:  

k k k
ac dc ac dc ac dcF J  X                                  (9) 

Where k
ac dcF   is   the   residual   of   AC-DC   system power flow equations; k

ac dcJ   are the jacobian matrix of k
ac dcF 

k
ac dcX   are the corrections for the AC-DC solutions, respectively. 

C. OBJECTIVE FUNCTION 

The classic ESCOPF formulation, which was originally proposed in [8], is adopted in this paper. This classic approach, 
however, implies that control operations do not change during an emergency. Many resources, such as RER and FR, have 
recently been implemented in the system since their inclusion can operate as a preventive control measure during contingency 
periods and improve the system’s performance in a safe, reliable, and economical manner. The main objective is to minimise 
the expected system operating cost by satisfying the model constraints in transmission network operation under both pre-and 
post-contingency states. 

This ESCDOPF problem can be abstractly and generically  
formulated as follows: 
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             (10)                                                                                                               

where  kC t   is the expected operating cost, which includes pre/normal and post-contingency operating costs over a time 

interval T; The term “expected” is used in a probabilistic manner, and it applies to all contingencies; The probability of a 

contingency k is denoted as k  [8].  
The ESCDOPF problem with different cost models can be explicitly expressed as follows: 
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(11) 
 
D. COST MODELS 

1.   GENERATOR COST (GC) MODEL 
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     In this model, the valve point effects are considered. The valve loading effect is modelled as an absolute value with a 
sinusoidal function, which is then applied to the quadratic cost function [3] as, 
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Where ,b , ,  d
i i i iG G G Ga c  and eGi  

 
are the coefficients of generator (G) cost functions with valve loading effect. ,i

k
G tP is the 

output power of the ith generating unit of kth contingency at time ‘t’ in MW.   min
iGP is the generating unit’s  

minimum real power in MW; NG is the number of generating units.  

2.   WIND COST (WC) MODEL 

       In this model, to incorporate the uncertain effect, the operating costs of wind generators include direct wind cost, 
underestimation/penalty cost and overestimation/ reserve cost. Wind power has a direct cost associated to it. When the cost of 
underestimation is taken in to account, the available wind power is more than the estimated wind power. But at an 
overestimation cost, the available wind power is less than the estimated wind power. Therefore, penalties have been introduced 

for the unused power. The wind operating cost ( ,( )w
k

w tC P ) of wth wind generator to generate wind power ( ,
k

w tP   MW) at time 

interval ‘t’ with ‘NW’ number of wind-generating units can be described [12] as, 
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The wind direct cost (14), penalty cost (15) and reserve cost (16) can be expressed as:  
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Where  ,w t

k
wf p  is the PDF of wind power at time t; wK , pwK  and rwK  are the direct wind, penalty, reserve cost coefficients 

for wth wind power plant;    

3.  SOLAR COST (WC) MODEL 

      The solar operating cost ( ,( )s
k

s tC P ) of sth solar generator  

to generate solar power ( ,
k
s tP ) at a time interval ‘t’ with ‘NS’ number of solar-generating units can be described [12] as, 
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The solar direct cost (18), penalty cost (19) and reserve cost (20) can be expressed as follows: 
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Journal of Engineering and Technology Management 58 (2020)

PAGE N0: 34



 

  

Where  ,s t

k
sf p  is the PDF of solar power at time t. sK , 

psK  and rsK  are the direct solar, penalty, reserve cost coefficients for sth   solar power plant;    

4.  BATTERY-STORAGE COST (BC) MODEL 

       In this model, we assume that battery cost is independent of power draw (Pb) but dependent on energy storage level (

,b t

kSOC ) [20] with the total number of batteries Nbatt as given in (21). 

   , ,max
1 1

( )
batt

b t b tb

NT
k k

b b
t b

BC H SOC h SOC SOC
 

             (21) 

Where maxbSOC  is the maximum storage capacity of a battery and bh imposes a penalty proportional to the stored  

energy level’s deviation from the unit capacity on the battery’s cost function.  

5.  CONSUMER-BENEFIT COST (CC) MODEL 

       This model represents the benefit cost, which is obtained from the benefit-cost curve as a function of real power 
consumption as given in (22). Here, the load is treated as price-based demand, and social welfare (SW) is defined as consumer 
benefit costs minus producer costs. Moreover, these consumer benefit costs are treated as negative costs into an objective 
function. Thus, there would be an increase in social welfare or a reduction in the expected total cost [8].
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Where ,   b
i iL La and 

iLc  are   the coefficients of the benefit- 

cost functions; NL is the total number of load buses; 
,L ti

kP is the load demand power. 

E. CONSTRAINTS 

1.  AC POWER FLOW CONSTRAINTS 

     The real and reactive power balance equations are given as follows: 
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The calculated real ( ,Pk
i t ) and reactive ( ,

k
i tQ ) powers at time  

(t) are given as:  
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Where ,i

k
G tQ and ,i

k
L tQ are the ith reactive power output and reactive load demand in MVAR; voltage magnitude and difference 

in phase angle are ,
k

i tV  and 
, , ,ij t i t j t

k k k    ; ijG  and ijB  are the conductance and susceptance between buses i and j, 

respectively; Nbus is the total number of buses. 
 
Thermal generator boundary limits: The active power and reactive power generation limits, and also generator voltage limits 
are given as [3]: 
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Transformer taps setting constraints: 

 k k k
Amin A,t Amax rtk k k , A 1, N                          (26) 

Where Nrt  is the total number of regulating transformers 

Reactive power injections constraints: 
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c c,t c capQ Q Q , c 1, N                           (27) 

where Ncap is the total number of shunt capacitors. 
 

Security Constraints: Load bus voltages and transmission line loadings are examples of these constraints, which can be stated 
as, 
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where Ntrl  denotes the total number of transmission lines. 
 

Ramp-up and down limits of generating limits: The ramp up and down limits are given as: 
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                        (29) 

where RUi and RDi are the up and down ramp rate limits of    
ith generating unit in MW per hour respectively. 

Prohibited zones operating limits [3]: In prohibited areas, generating unit operation is usually avoided are as follows:
min
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              (30)                                                                                      

where nz is the index of prohibited zones in the ith generating unit, the number of prohibited operating zones in the ith generating 

unit is expressed by n pz ; ,  L
i nP and ,

U
i nP  are the upper and lower boundaries of ith unit, nz

th prohibited operating zone in MW. 
 

Voltage Stability Index [40]: 

 , ,max , 1,k
l t l trlL L l N                                    (31) 

BESS constraints: The battery storage limits, charging, and 

discharging power limits are given as: 

min max
,

min max
,

min max
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            (32)  

Wind power constraints: 

 
max

k k
w,t w w0 P P ,  w 1, N                               (33) 

Solar power constraints: 
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 
max

k k
s,t s s0 P P , s 1, N                               (34) 

2.  AC-DC POWER FLOW CONSTRAINTS 

       In existing HVDC-link into the AC system, the converter terminal AC buses mismatch equations are modified as [32]: 

 
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      (35) 

On the DC side, where Nc is the number of converter buses,  

the DC voltage, current and power factor angle are 
y

k
D ,tV ,

y

k
D ,tI   and 

y

k
D ,t

 
respectively. The converter would act either as a 

rectifier (R) or an inverter (I) depending on whether sign convention (  sign y ) is +1 or -1.  

3.  DC SYSTEM CONSTRAINTS 

      Generally, DC system model equations contain converter voltages, DC network equations and control equations such as 
specified DC voltage, firing angle can be summarised as follows [32]: 
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Where, 
y

k
D ,tk  is the converter transformer ratio;

y

k
D ,t  is the rectifier’s angle with y  firing angle; 

y

k
D ,t is the inverter’s angle 

with 
y  extinction angle; 

ycX is the commutation reactance; k  is constant and is equal to 0.995 [32]; 
yjD ,tg  is the elements of 

DC nodes conductance matrix, respectively. 
 
DC network constraints: The maximum and minimum limits of DC network variables are as follows: 
           
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                (37) 

III. PROPOSED METHODOLOGY 

A. STANDARD DIFFERENTIAL EVOLUTION 

     The differential evolution (DE) algorithm is now commonly recognized as the most modern evolutionary algorithm for 
tackling a wide range of optimization problems in a set of real applications, including large-scale nonlinear, non-convex, and 
non-differentiable problems [34]. To promote fitness, mutation, crossover, and selection are the three main evolutionary 
operators employed in DE. The first two operators (mutation and crossover) are used to generate the test vectors, and the third 
operator (selection) selects which of the target vector and its test vector is better for the next generation based on their fitness 
values. 
 

The major stages of DE are as follows: 

1. Initialization 

     Initialize all the jth individuals of the ith population member ( iju ) randomly within the limits of the given constraints in the 

search-space as follows 
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0 min max min
i, j j j j popu u rand * (u u ) ,  j 1,2..,M,  &  i 1,2,.., N                                                                       (38) 

2. Mutation 

     This operator is then applied in the following step based on the scaled difference between two selected individuals in the 
standard DE in a continuous search space. The most common mutation scheme employed in DE is expressed by the following 
equation: 

1a 2a 3a

1
ij r j s r j r jmu u F (u u )                                    (39)                                                       

where Fs is referred to as the scaling factor in the [0, 1] range  

that governs the amplification of the differential variation
2a 3ar j r j(u u )  , 1a 2a 3a popr , r , r 1,  N     are integers which are chosen 

randomly. 

3. Crossover 

     A crossover operation is introduced after the mutation phase to increase the population's diversity. The target vector is 

shuffled to generate the trial vector  1
ijco with the mutant vector  1

ijmu . In crossover operations, the following scheme is 

used: 

    1
ij1

ij

ij

mu ;  rand j CR or j J
co

u ;        Otherwise






   


               (40)                                                                        

where CR is the crossover rate, the range is (0,1). J
 
is an integer chosen at random from the range [1, M] and  rand j  is a 

uniformly distributed stochastic number in the range of (0,1); 

4. Selection 

     In DE, the selection operator evaluates whether a trail vector  1
ijco or target vector  iu

 
will survive and advances to the 

next iteration depending on its objective values. As a selection operator, the following equation is defined: 

   1 1
i i i1

i

i

co ;   if   f co f u
u

u   ;   Otherwise

  




  


                      (41)                                                                                           

Where  .f  is the key objective function to be minimised.      As shown in (41), the trail vector replaces the target vector if 

its fitness value (Total expected operation cost) is better or equal, otherwise the next generation retains the target vector. As a 
result, the population is modified using these three evolutionary operators. 

B. PROPOSED NOVEL DE ALGORITHM 

     Many intelligent algorithms that are readily entrapped in a local search are highly expensive to process for large 
dimensionality optimization problems. There are a number of issues with the DE and its variants [37]-[39]. Increasing 
population diversity by combining strategies like large-scale population, multi-population strategy, and hybridization is the 
most common solution to these problems. Using a large-scale population and a multi-population approach, on the other hand, 
would significantly increase the computed amount while reducing the algorithm's convergence speed. When DE is combined 
with other methods, the end result is usually a very complicated algorithm. 
To resolve these issues, we suggest a new small population-sized DE that combines the mutation operator, a new crossover 
operator, and a proposed local adaptation strategy to decrease computing costs. In addition, the CR is dynamically updated 
using an evolution method to balance exploration and extraction power [41]. Fig. 1  depicts the flow chart of the proposed 
novel DE (NDE) algorithm in detail. However, there are three important differences between the NDE and the standard DE. 

(1) Prior to mutation and crossover operation, each trail vector  ico  is allocated to a target vector  iu . 

(2) To improve the capability of global search, a new local control approach is introduced into the crossover operator. 
(3) The parameter CR is supervised for both mutation and crossover. These differences are explored as below. 
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1. The dynamic crossover rate 

      In contrast to standard DE, where CR is fixed from start to end, the proposed NDE algorithm employs a dynamic CR 
function. CR achieves a high probability value for mutations, crossover, and local adaptation in the early stages of evolution. 
In the following step, CR has a low value for changing the decision parameters to obtain high - precision solutions. 
The expression of CR is given as follows: 

( )
CR

CR CR
CR

maxmin
max

max






æ ö÷ç ÷ç ÷ç ÷÷çè øæ ö÷ç ÷= ´ ç ÷ç ÷çè ø

2

                         (42) 

2. The local adaptation approach 

      The local adaptation (LA) approach is proposed to prevent local search in the early stages of evolution while still using 
high-precision solutions later on. This approach is based on step-disturbance and random-perturbation. Using the local 
adaptation rate (LAR), a trial solution can be altered in the vicinity of the current location with the help of the step-disturbance. 
Also, random-perturbation is used to explore new unknown regions in the feasible space with a probability of 0.1 LAR, mainly 
to prevent trapping in local search. 

( )
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LAR LAR
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min
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                     (43) 

The adaptation step (AS) differs dynamically with the τ – iteration as shown in Eqn. (44). The AS with a high value aims at 
exploring new areas in the initial process of evolution. As the value of τ increases, AS decreases steadily from ASmax to ASmid.  

( )

id

id
id

AS
AS

AS
AS

AS
AS

AS

max

max

max

/
m max

max
max

/

/
min max

m
m

,

,




 










    

   g

æ ö÷ç ÷ç ÷ç ÷÷çè ø

æ ö- ÷ç ÷ç ÷ç ÷÷çè ø

ìïïï æ öï ÷çï ÷´ £çï ÷ç ÷ï çè øïï= íïïï æ öï ÷ï ç ÷´ >çï ÷çï ÷çï è øïî

2

2

2

2

2

2

2

              (44) 

where 
midAS AS ASmin max< <  

When there is also a very small AS value for the region including an ideal global solution, the DE will start focusing all efforts 
on the use of the high- precision solution in the discovered region. 

3. Integrating the mutation and crossover operations 

      In the standard DE, whether the crossover operation is carried out on  iju   or not, the mutation operation is always  

performed on each variable  iju  of target vector  iu   so as to generate the donor vector  ijmu . However, usually, there 

are only part of values in  ijmu   could be adopted in trial vector  ijco , which is as follow 

    1
ij1

ij

ij

mu ;  rand j CR or j J
co

u ;        Otherwise






   


              (45) 

 

C. CONSTRAINTS REPAIRING MECHANISM               

           In this paper, the inequality constraints are integrated into the fitness function using the penalty function approach.  
The objective function is to minimize expected system operating cost. Once the N-1 criteria is violated, the objective function 
is multiplied by a penalty factor equal to the square of the variable's violated value, and any infeasible solution obtained is 
rejected [40], which is expressed as:  
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(46) 
 
where the penalty factors for ramp-rate limits, wind power limits, solar power limits, reactive power limits, voltage limits, line-
loading limits, line voltage stability limits, battery storage limits, dc voltage limits, converter transformer ratio limits, trigger 
angle or extinction angle limits are P , w , PV , Q , V , S , L , b , VD , TD and AD . The limit value of the dependent 

variable u is ulim is provided as: 

max maxlim

min max

u     u>u
u   

u     u>u


 


                              (47) 

 

IV.  SIMULATION RESULTS AND DISCUSSIONS 

       In this paper, the proposed NDE algorithm has been implemented in the MATLAB-2016 version and evaluated on an 
IEEE-30 bus system, to validate its potential. In implementing the proposed NDE algorithm, the following NDE control 
parameters were set through experiment as follows:   dimension of problem (M) = 11, population size (Npop) =5, number of 
iterations (τmax) =500, mutation factor (Fs) =0.5, CRmax =100/M, CRmin =30/M, LARmax =0.99, LARmin =0.1, ASmax =(umax-
umin)/10, ASmid =(umax-umin)/(1E+4), ASmin =(umax-umin)/(1E+15).  
     The proposed NDE algorithm is tested for both pre-and post-contingency states. To study the performance of the proposed 
NDE, two scenarios are considered as below: 
 

A.  Scenario-A:  ESCDOPF with FR during normal (N) and  
                           post-contingency (PC) states  
B.  Scenario-B:  ESCDOPF with RER and FR during normal  
                          (N) and post-contingency (PC) states 
    To investigate the performance without/with RER and FR on the operation of the proposed NDE based ESCDOPF model 
in all scenarios, different cases are considered for each scenario, as given below.  
1. Case # 1: Base case (all FRs are ignored) 
2. Case # 2: With MT HVDC only 
3. Case # 3: With BESS only 
4. Case # 4:  With both BESS and MT HVDC 
 

A.  SCENARIO-A: ESCDOPF WITH FR  

      In this paper, the complete IEEE 30 bus system data along with generator fuel cost, consumer benefit cost, forecasted load 
demand, ramp rate limits and all other data are extracted from [3, 42].   Additionally, on bus 14, a 100 MWh BESS with a 
battery SOC that can range from 40% to 100% of the rated battery capacity is installed. Both the charging and discharging 
efficiencies of 

bch  and 
bdch  are set to 90%. The battery power limits are set to 0 ≤ Pb ≤ 15 MW. The bh  is assumed to be 1.0 

Rs/MWh. In extension with the existing proposed ESCDOPF model, this scenario considers a multi-terminal (MT)-HVDC 
lines.  The DC data for the MT-HVDC link that has mesh connected between HVDC -1 (2 and 7), HVDC-2 (5 and 7), and 
HVDC-3 (2 and 5), can be found in [28]. 
     To assess the performance of the proposed NDE algorithm for the DOPF problem, we compared it to the conventional DE 
and other heuristic algorithms that used quadratic fuel cost with valve-point effect as an objective function over a 24-hour time 
horizon. The proposed NDE for the conventional DOPF problem yields a global fuel cost of 16,496 $/day. When compared to 
DE with different population sizes and previous literature findings, the proposed NDE has achieved the best solution with a 
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smaller population size and less computational time, as shown in Table 1. As illustrated in Fig.  2, the proposed NDE algorithm 
outperforms the standard DE with different population sizes and other literature findings in terms of obtaining the best value 
of fuel cost of 16,496 $/day over 500 iterations. 
 

 
 

FIGURE.  1   Flow chart of proposed NDE algorithm based ESCDOPF with RER and FR 
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TABLE.  1   Comparison of conventional DOPF generation cost with all the constraints  
Method Fuel Cost ($/day) time (sec) 

SA [3] 16,703.81 1408.46 

PSO [3] 16,619.92 811.69 

DE (Npop=30) 16,522.99 392.02 

DE (Npop=40) 16,509.34 533.35 

DE (Npop=50) 16,505.82 666.95 

NDE (proposed) 16,496.00 128.06 

 
 

 
FIGURE.  2   DOPF fuel cost convergence characteristics  

     From the actual forecasted load demand [3], the peak load hours have been chosen at 18:00-20:00 hours, respectively. The 
storage schedules are determined based on the generation limits of all the generators and load demand. By proper selection of 
charging and discharging hours, the BESS would act either as a variable load or a generator, depending on whether to absorb 
surplus active power or to provide deficit active power. When the BESS is used, the total charging power is greater than the 
total discharging power. Due to this, there is a reduced peak load of power.  Because of reduced peak load power, the size of 
system equipment, and the reserve capacity of the system are reduced.  
     Furthermore, a single transmission line outage was used to include   a contingency in   this simulation.  Using bus 1 as a 
reference, 36   "N-1"   contingencies   are   defined   in   which islanding circuits are excluded. The line-loading and voltage 
limits are set to 120% and 5%, respectively, of the standard case values, respectively. In this work, the performance index is 
measured by the NR load flow (NRLF) approach, which was used to rank the contingencies [18]. Only five contingencies are 
considered, each representing the outage of lines along with their performance indexes: 6-8 (497.3), 6-28 (230.20), 28-27 
(131.21), 10-21 (82.58), and 11-12 (62.73). Here, in x(y), x as the line outage and y as the severity index. Following a security 
review, it was discovered that the outage of the line connecting buses 6-8 creates a most severe contingency situation in the 
network. 
      The proposed NDE algorithm is used to tackle the ESCDOPF problem of performing preventive control actions, such as 
generator rescheduling, to return the system to its original state while satisfying model constraints. Moreover, SOC of   BESS 
along with the operational time frame is included in the ESCDOPF during normal and post-contingency states of cases 3 and 
4 as shown in Fig.  3. Indeed, by storing energy during the off-peak phase and switching to the discharge mode during peak 
hours, the BESS units have reduced the need for conventional generation units during peak hours. This has also resulted in a 
decrease in operational costs. 

 
 

FIGURE.  3   Scenario-A: SOC under normal (N) and post-contingency (PC) states. 
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       The DC control parameters solution values and the corresponding powers at the converters are given in Table.  2. The 
final results for total security cost, power losses and their computational times in all cases under normal and post-contingency 
states are given in Table.  3. Optimal power scheduling of generating units for base case (i.e., case 1) is shown in Fig.  4. Also, 
the voltage stability index for the load bus voltages is shown in Fig. 5. The comparison convergence characteristics of total 
security costs for Scenario-A of all cases during normal-and-post contingency states are shown in Fig.  6.   
 

 

FIGURE.  4   Scenario-A: Optimal power scheduling of the generating units for 24 hours  

 

 
FIGURE.  5   Scenario-A: Voltage stability indices for base case  

 
 
FIGURE.  6   Scenario-A: Cost-convergence characteristics of all cases under normal (N) and post-contingency (PC) states.  
 
      Analyzing the results in   Table. 3, it is observed that the proposed algorithm reduces the total generator fuel cost and 
power losses with the incorporation of FR. Nonetheless, by observing the total security costs (TSC) in Table. 3, a reduction is 
observed. However, TSC is not as reduced in cases 3 and 4 as compared to cases 1 and 2.   This   is   expected due to the   
inclusion of battery storage costs. 
 

B. SCENARIO-B: ESCDOPF WITH RER AND FR  
 

      This scenario investigates the effects of RER and FR on the ESCDOPF of the proposed NDE algorithm. The modified 
IEEE 30 bus system is employed to accommodate wind and solar farms with a total capacity of 40 MW and 20 MW, 
respectively, located on buses 22 and 24, which are depicted arbitrarily in Fig. 7.  
        The wind speed and solar irradiance information with hourly resolution are accessible on the National Renewable Energy 
Laboratory (NREL) webpage [43]. Using the least square method (LSM) and the graphical method, the scale factor (sc) and 
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shape factor (sk) of the Weibull distribution are estimated at 6.1589 and 4.0381, respectively. The parameters of the Beta 
distribution are estimated at 2.9721 and 8.9928 as scale factor (as) and shape factor (bs). Therefore, the actual forecasted wind 
( ,w actP ) and solar power ( ,s actP ) is plotted in Fig.  8. It is assumed that wind and solar power forecasts are affected by an 

adequate error in order to achieve wind and solar power generation. As a random variable, the maximum wind and solar power 
fluctuations are taken to be 20% of the predicted. Then wind and solar power are considered schedulable. The parameters  
of the wind velocities in out wr,(v ,v  and v )  are 3 m/s, 20 m/s  

and 10.28 m/s, respectively. The PV module specifications  
for solar energy conversion can be found in [12]. The cost-coefficients of wind generators are wK = 8 Rs/MWh, pwK  = 1.5 

Rs/MWh, and rwK = 10 Rs/MWh respectively. The cost-coefficients of solar generators are 
sK =9 Rs/MWh, 

p sK = 1.5 

Rs/MWh, and 
rsK = 11 Rs/MWh respectively. 

 

FIGURE.  7   Modified IEEE-30 bus system with RER and FR 

 

 
FIGURE.  8   Actual forecasted wind and solar power generations 
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FIGURE.  9   Scenario-B: SOC under normal (N) and post-contingency (PC) states. 
 
      As noted previously and illustrated in Fig. 9, the BESS operation has a large impact on the total security cost and its SOC 
conditions during normal and post-contingency states, respectively. The DC control parameters solution values and powers at 
the converters are given in Table.  4. The results obtained from the MT-HVDC link show that the proposed NDE approach 
enables the study of the effects of DC on the AC power flows during pre- and post-contingency states. This observation is 
delineated in Table. 5 with their power losses and computational times. Fig.  10 shows the output of conventional generating 
units including RERs, for each hour for the base case. Also, the voltage stability index for the load buses is shown in Fig. 11. 
The comparison convergence characteristics of total security costs for Scenario-B of all cases during normal-and-post 
contingency states are shown in Fig.  12.  
         Analyzing the results of Scenario-B, it is observed that in all cases, the total operation costs are reduced due to the 
incorporation of FR. Nonetheless, by observing the total security costs (TSC) in Table 5, a reduction is observed. However, 
TSC is not as reduced in cases 3 and 4 as compared to cases 1 and 2. This is expected due to the inclusion of battery storage 
costs. 

 
FIGURE.  10   Scenario-B: Optimal power scheduling of the generating units for 24 hours 

 
FIGURE.  11   Scenario-B: Voltage stability indices for DOPF model 
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Table 2: Scenario-A: Final results of MTHVDC   

 
Table 3:  Scenario-A: Comparison results of all cases under normal (N) and post- contingency states (PC) 

Scenario-A Case  1 Case  2 Case  3 Case  4 

N PC N PC N PC N PC 
Total fuel Cost  ($/day) 16496.00 16535.62 16479.23 16516.34 16428.45 16406.49 16409.11 16373.60 
Total Benefit Cost  ($/day) 100960.00 100960.00 100960.00 100960.00 100960.00 100960.00 100960.00 100960.00 
Total Storage Cost  ($/day) X x x x 608.27 641.67 571.86 609.64 
Total Security  Cost  ($/day) -84464.00 -84424.38 -84480.77 -84443.66 -83923.28 -83911.84 -83979.03 -83977.36 
Total Power Loss (MW/day) 186.89 194.18 180.47 187.68 181.55 188.21 171.40 179.78 
Computational time (sec) 168.8800 168. 7720 282.7190 282.3070 134.4480 134.4370 194.7680 195.2120 

 
Table  4:   Scenario-B: Final results of MTHVDC (base case)     

 
Table 5: Scenario-B: Comparison results of all cases under normal (N) and post-contingency states (PC) 

Scenario-B      80507.43 Case  1 Case  2 Case  3 Case  4 
N PC N PC N PC N PC 

Wind direct cost  ($/day) 3023.00 3033.20 3052.60 3028.20 3045.20 3054.00 3044.80 2981.30 

Wind penalty cost  ($/day) 16.78 15.04 13.13 23.53 17.26 19.75 17.49 23.86 

Wind reserve cost  ($/day) 40.82 41.96 53.57 38.87 71.74 43.15 50.31 35.84 

Solar direct cost  ($/day) 758.91 764.73 715.25 711.91 740.98 701.88 710.51 733.43 

Solar penalty cost  ($/day) 19.94 6.76 13.10 13.37 16.90 15.73 10.68 12.34 

Solar reserve cost  ($/day) 43.35 37.07 35.44 32.15 21.33 37.93 31.43 39.80 

Total fuel cost  ($/day) 15984.00 16050.00 15930.00 16009.00 15864.00 15857.00 15834.00 15815.00 

Total battery cost  ($/day) --- --- --- --- 633.16 600.8 623.02 651.37 
Total benefit cost  ($/day) 100960.00 100960.00 100960.00 100960.00 100960.00 100960.00 100960.00 100960.00 

Total security cost ($/day) -81073.20 -81011.24 -81146.91 -81102.97 -80549.43 -80629.80 -80637.76 -80667.06 

Total losses (MW/day) 173.95 177.60 168.50 172.98 169.29 165.15 164.07 169.76 

Computational time (sec) 88.568 89.178 262.211 283.298 86.921 87.199 260.388 254.947 
 

 
 
FIGURE.  12   Scenario-B: Cost convergence characteristics of all cases in normal (N) and post- contingency (PC) states. 
 

MT-HVDC 
Final values  

VDR 

(p.u) 
kDR 

αR 

(deg) 
VDI 

(p.u) 
kDI 

γI 

(deg) 
PDR 

(MW) 
QDR 

(MVAR) 
PDI 

(MW) 
QDI 

(MVAR) 
ID 

(pu) 

   HVDC-1 1.2858 0.947 8 --- --- --- 56.10 16.10 --- --- 0.436 

   HVDC-2 1.286 0.959 12.7 --- --- --- 61.70 15.9 --- --- 0.48 

   HVDC-3 --- --- --- 1.279 1.01 22 --- --- 117.20 54.2 0.916 

MT-HVDC 
Final values  

VDR 

(p.u) 
kDR 

αR 

(deg) 
VDI 

(p.u) 
kDI 

γI 

(deg) 
PDR 

(MW) 
QDR 

(MVAR) 
PDI 

(MW) 
QDI 

(MVAR) 
ID 

(pu) 

HVDC-1 1.27 0.961 8 --- --- --- 55.4 15.90 --- --- 0.436 

    HVDC-2 1.272 0.915 12.7 --- --- --- 61.10 12.10 --- --- 0.48 
    HVDC-3 --- --- --- 1.267 0.996 22 --- --- 116.10 53.8 0.916 
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FIGURE.  13   Comparison of generator fuel cost savings  
 

      When the results of Scenarios A and B are analysed, it is clear that the total expected operation costs are reduced in all 
situations due to the inclusion of RER and FR. Also, when Scenario-A is compared to Scenario-B, it is evident that with the 
integration of RER and FR, the generator fuel cost is reduced in all cases. The percentage fuel cost savings are observed as 
3.1037 (2.9368) %, 3.3328 (3.0717) %, 3.4358 (3.3492) %, 3.5048 (3.4115) when compared to all cases in normal and post- 
contingency conditions, as shown in Fig.   13. Here, in x(y), x as the percentage fuel cost savings in normal state and y as the 
post-contingency cost savings. On the contrary, generator fuel costs are decreasing significantly, indicating a promising 
development in non-conventional resources. 
 
V. CONCLUSIONS 

       This paper develops a new ESCDOPF model that includes renewable energy resources (RER) and flexible resources (FR) 
to show how these resources affect expected system operating cost. The uncertainties of the RERs have been modelled using 
Weibull and Beta PDFs. This study also confirms the idea that BESS is more useful not only for temporary energy shifts but 
also for reliability purposes. To enhance grid flexibility, MT LCC-HVDC systems are used as a fast-controlling device. A 
Novel DE (NDE) algorithm for an IEEE-30 bus system has been devised to address the ESCDOPF problem in the presence of 
RER and FR.  Furthermore, the proposed NDE algorithm for the standard DOPF problem is compared to the standard DE and 
other existing algorithms to overcome the limitations of the standard DE approach, and a good result was reported with less 
convergence time and population size. The proposed NDE algorithm for the ESCDOPF problem was evaluated in two 
scenarios in both normal and post-contingency states. According to the technical findings, the presence of RER and FR 
provides significant benefits, such as reduction in peak load, power losses and generation costs. In all test scenarios, the 
proposed NDE algorithm offers cost savings and promising solutions to achieve secure, reliable, cost-effective operations and 
good convergence performance 
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