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Abstract— Hand gesture recognition (HGR) has evolved as a critical enabler of natural human-computer interaction (HCI), 

with applications in assistive technology, virtual/augmented reality, and smart environments. This review comprehensively analyzes 

recent advancements in AI-based gesture recognition frameworks, emphasizing real-time, vision-based systems deployable on 

embedded platforms. In particular, we explore the MediaPipe Hands framework as a benchmark solution and compare it with 

alternatives such as OpenPose, lightweight CNNs, and transformer-based architectures. The review synthesizes techniques used for 

palm detection, landmark regression, gesture classification, and edge deployment optimizations like pruning, quantization, and 

knowledge distillation. We highlight the key performance metrics reported in the literature, common challenges such as occlusion, 

dynamic lighting, and cross-lingual sign language recognition, and propose future research directions involving neuromorphic 

computing, self-evolving AI models, and multimodal fusion. This paper serves as a foundational reference for researchers 

developing scalable, low-latency gesture recognition systems for intelligent HCI. 

Keywords— Hand gesture recognition, real-time processing, MediaPipe framework, human-computer interaction, vision-based 

tracking, touchless control, embedded systems, pattern recognition. 

I. INTRODUCTION 

Touchless interaction has become an essential component in the evolution of human-computer interaction (HCI), driven by 

the increasing demand for intuitive, hygienic, and accessible control mechanisms across a range of applications including 

assistive technologies, smart homes, gaming, robotics, and augmented/virtual reality (AR/VR). Among the various input 

modalities explored, hand gesture recognition (HGR) stands out as a natural and non-invasive method for conveying human 

intent to machines. 

Over the past decade, significant advancements in computer vision, artificial intelligence (AI), and deep learning have 

accelerated the development of robust gesture recognition systems. These systems aim to detect and interpret hand 

movements in real time using standard RGB cameras, thereby eliminating the need for specialized hardware like depth 
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sensors, infrared cameras, or wearable gloves. The COVID-19 pandemic has further emphasized the value of contactless 

interfaces, making real-time vision-based HGR systems more relevant than ever. 

One of the most prominent frameworks enabling such capabilities is MediaPipe Hands, developed by Google. MediaPipe 

has gained wide adoption due to its efficient two-stage architecture that combines palm detection with landmark regression, 

enabling real-time gesture tracking even on resource-constrained devices. Its lightweight design and cross-platform 

compatibility make it suitable for deployment in embedded systems, mobile applications, and web interfaces. 

While MediaPipe offers a compelling solution for gesture recognition, a range of alternative approaches also exist. These 

include models based on convolutional neural networks (CNNs), graph convolutional networks (GCNs), and transformer-

based architectures. In addition, optimization techniques such as pruning, quantization, and knowledge distillation are 

increasingly being adopted to enhance inference efficiency on edge devices. 

Despite this progress, several open challenges remain. Gesture recognition systems still struggle with issues like hand 

occlusion, dynamic lighting variations, background clutter, and the generalization of sign language across different regions. 

Furthermore, most systems are optimized for isolated gestures rather than continuous gesture sequences or sentence-level 

recognition. 

A. Objectives of This Review 

The primary objectives of this review are: 

 To provide a consolidated overview of real-time hand gesture recognition techniques, focusing on vision-based, AI-

powered approaches. 

 To examine and compare the technical underpinnings, advantages, and limitations of popular frameworks such as 

MediaPipe, OpenPose, and lightweight CNN architectures. 

 To analyze performance benchmarks and deployment strategies for embedded systems and mobile devices. 

 To identify research gaps and propose promising future directions including neuromorphic computing, multimodal 

fusion, and adaptive learning models. 

B. Contributions of This Review 

This review paper offers the following key contributions: 

 Comprehensive Survey: It presents a systematic review of state-of-the-art hand gesture recognition models and 

frameworks published in the last few years, with an emphasis on real-time implementation. 

 Framework Comparison: It provides a detailed comparative analysis of MediaPipe and other leading solutions in 

terms of architecture, performance, and hardware suitability. 

 Optimization Insights: It discusses the application of pruning, quantization, and knowledge distillation for 

enhancing inference speed and reducing model complexity in edge computing environments. 

 Research Gap Identification: It highlights current limitations in gesture recognition systems, especially in sign 

language generalization, robustness under real-world conditions, and continuous gesture understanding. 
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 Future Roadmap: It outlines future research opportunities that can lead to more scalable, accurate, and intelligent 

gesture-based interaction systems. 

II. RELATED WORK 

The field of hand gesture recognition and interactive control systems has experienced substantial advancement, largely driven 

by innovations in computer vision and deep learning technologies. Most existing studies have utilized convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), and transformer-based models to address real-time application 

demands. Nevertheless, the convergence of neuromorphic computing with biologically inspired processing techniques 

remains an area yet to be thoroughly investigated. 

A foundational milestone in real-time hand tracking is the introduction of the MediaPipe Hands framework [1], which offers 

an efficient and lightweight method for identifying hand landmarks. Despite its widespread adoption, it continues to face 

limitations related to occlusion management and the recognition of dynamic gestures. The BlazeFace model [2], initially 

designed for neural face detection on mobile GPUs, has influenced numerous low-latency hand tracking architectures, 

although its adaptation for gesture classification is still an open research challenge. 

Advanced model-based 3D tracking techniques, such as those introduced by Oikonomidis et al. [3], have shown the 

effectiveness of depth-aware representations. When coupled with structured light sensors like Microsoft Kinect v2 [4], these 

approaches exhibit improved resilience. However, they often falter in dynamic or uncontrolled environments. The integration 

of MediaPipe improvements, as discussed in recent arXiv literature [5], has enhanced tracking performance, yet considerable 

progress is still needed in generalizing across varied hand shapes and sizes. 

The development of localized sign language recognition systems, such as those presented by Hassanat et al. [6], has shown 

promise. These solutions combine MediaPipe with deep learning techniques to enable real-time communication support. In 

parallel, Tanaka et al. [7] have applied nonlinear theoretical models to recognize Japanese fingerspelling, offering a glimpse 

into culturally tailored adaptations. Nevertheless, the broader applicability of these models to different sign languages remains 

limited. 

In a recent contribution, Wang et al. [9] proposed a user guidance interface utilizing MediaPipe to improve interaction 

accuracy. Meanwhile, Sun et al. [10] delivered a comprehensive review of gesture recognition through deep learning, 

highlighting the importance of multimodal fusion methods. Zhang et al. [11] designed a lightweight CNN specifically for 

real-time gesture detection on embedded hardware, although further work is needed to address trade-offs in recognition 

accuracy. 

From an industrial application standpoint, gesture-based control systems using advanced AI strategies have been examined by 

Kim et al. [13], who demonstrated the value of hybrid deep learning models. Similarly, Nguyen and Tran [14] explored the 

use of MediaPipe in augmented reality settings, showing its potential for immersive user interfaces. However, current 

literature largely overlooks the integration of blockchain technologies for securing gesture data, which poses a key 

opportunity for future work. 
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A comprehensive overview provided by Verma and Sinha [15] encompasses a broad spectrum of real-time hand tracking 

methods. Yet, their analysis lacks focus on the integration of neuromorphic sensors with adaptive AI approaches—an area 

that holds substantial promise for enabling ultra-efficient, low-power gesture recognition. 

Although the field has made notable progress in achieving real-time hand gesture recognition, several critical research 

directions remain insufficiently addressed. Future studies should prioritize the development of self-adaptive AI systems, 

energy-efficient neuromorphic vision technologies, and multimodal sensor integration to improve robustness, flexibility, and 

scalability in gesture-based applications. 

III. PROPOSED METHOD 

Real-time hand gesture recognition (HGR) systems typically follow a multi-stage processing pipeline involving image 

acquisition, preprocessing, feature extraction, hand detection or landmark estimation, and gesture classification. In this 

section, we review notable architectures and frameworks widely adopted in the literature, focusing on their technical 

foundations, optimization strategies, and deployment suitability for embedded platforms. 

A. General Architecture of Gesture Recognition Systems 

Most vision-based HGR systems operate through the following stages: 

1. Image Acquisition: Capturing hand gestures using RGB or depth cameras. 

2. Preprocessing: Normalization, background filtering, and image enhancement to improve recognition accuracy. 

3. Feature Extraction: Use of CNNs, GCNs, or transformer-based models to extract spatial and temporal features. 

4. Hand Detection / Landmark Estimation: Identifying hand regions or precise 2D/3D keypoints. 

5. Gesture Classification: Recognizing specific gestures using classifiers such as softmax layers, support vector 

machines (SVMs), or RNNs for dynamic gestures. 

This general pipeline is implemented with varying architectures across different frameworks shown in figure 1. 

 

 

 

 

 

 

Fig.1. General architecture of proposed system 

 

Image 
Acquisition 

Preprocessing 

Feature extraction - 

Object Detection 

Hand 
Landmark 

Output 

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 264



 

 

B. MediaPipe Hands Framework 

Developed by Google, MediaPipe Hands offers a two-stage pipeline: 

 Palm Detection: A lightweight single-shot detector trained to localize rigid palm regions rather than articulated 

hands, enhancing detection reliability. 

 Hand Landmark Model: A regression-based model that estimates 21 3D keypoints from the detected palm using 

CNNs optimized for mobile inference. 

Advantages: 

 Real-time processing (30–35 FPS) on mobile and embedded devices. 

 Low-latency execution with minimal resource requirements. 

 3D hand pose estimation from a single RGB frame. 

Limitations: 

 Limited performance under occlusion or variable lighting. 

 Optimized mostly for frontal or semi-frontal hand views. 

C.  OpenPose-Based Skeleton Tracking 

OpenPose estimates 2D skeletal keypoints using part affinity fields (PAFs) to connect body and hand parts. 

Strengths: 

 Multi-person tracking capability. 

 Accurate keypoint localization in high-resolution frames. 

Drawbacks: 

 High computational cost, unsuitable for edge devices. 

 Lower FPS compared to MediaPipe. 

D. Lightweight CNN and Transformer-Based Models 

Recent works such as Zhang et al. [11] have proposed compressed CNN architectures to achieve real-time inference on 

constrained hardware. These are often deployed using frameworks like TensorFlow Lite or ONNX. 

Common Strategies: 

 Use of depthwise separable convolutions. 

 Model pruning and quantization to reduce size and latency. 

 Attention-based transformer layers to capture temporal patterns in dynamic gestures. 

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 265



 

 

E.  Optimization Techniques for Embedded Deployment 

To meet the constraints of real-time performance on edge devices, researchers have adopted various optimization strategies: 

 

Technique Function Impact 

Pruning Removes redundant weights/connections Reduces model size with minimal accuracy 

loss 

Quantization Converts weights to 8-bit/16-bit representations Improves inference speed and lowers 

memory usage 

Knowledge 

Distillation 

Transfers knowledge from a large model to a 

lightweight version 

Maintains accuracy while reducing model 

complexity 

Incorporating these methods, researchers have achieved significant reductions in model size (up to 60%) while maintaining 

accuracy above 94% in several benchmark datasets. 

F. Graph Convolution Networks (GCN) for Temporal Modeling 

Some frameworks combine MediaPipe-based landmark extraction with GCNs to model the temporal evolution of gestures. 

This hybrid approach improves performance for dynamic gestures such as sign language or hand commands in AR 

environments. 

 Input: Landmark sequences extracted from MediaPipe. 

 Processing: GCN layers analyze node relations across time steps. 

 Output: Classified gesture based on trajectory and posture features. 

G.  Comparative Summary 

Framework / Model Key Features Accuracy FPS Deployment Suitability 

MediaPipe Hands Palm detection + 21-point 3D 

landmarking 

~96.2% 30–35 Mobile, Edge (Jetson, Android) 

OpenPose Skeletal keypoints via PAFs ~89–92% 10–15 Desktop GPUs 

Zhang et al. (CNN) Lightweight CNN for embedded use ~93–94% ~25 ARM-based embedded boards 

GCN + MediaPipe 

Hybrid 

Temporal modeling of landmark 

sequences 

~95–97% ~20–

30 

Edge devices with moderate 

compute 

This section has outlined the diverse architectures and optimization strategies applied in real-time gesture recognition. In the 

next section, we present a deeper comparative performance analysis across recent literature, followed by an exploration of 

current challenges and open research problems. 
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IV.  COMPARATIVE ANALYSIS OF RECENT GESTURE RECOGNITION SYSTEMS 

This section presents a comparative evaluation of major hand gesture recognition systems, highlighting their performance 

metrics, architectural choices, hardware compatibility, and use-case focus. The goal is to synthesize insights from the 

literature and provide a benchmark for selecting appropriate solutions for various real-time applications. 

A. Performance Comparison Across Key Studies 

Authors / Framework Approach Model Type Accuracy 

(%) 

FPS Platform 

MediaPipe (Google) [1] Palm detection + 3D hand 

landmarking 

CNN + Regression 96.2 30–

35 

Mobile, Edge 

(TFLite) 

OpenPose (Cao et al.) 2D keypoint estimation 

using PAFs 

CNN + Affinity 

Fields 

89–92 10–

15 

Desktop GPU 

Zhang et al. [11] Lightweight CNN for real-

time detection 

Depthwise 

Separable CNN 

93.4 25 ARM-based 

Embedded Boards 

Wang et al. [9] MediaPipe for user 

guidance systems 

MediaPipe + Rule-

based 

94.1 30 Android Phones 

Verma & Sinha [15] Broad survey, optimized 

CNN variants 

CNN + MobileNet 91–94 22–

28 

Raspberry Pi, Jetson 

Nano 

GCN-based (Proposed in 

[Your Paper]) 

GCN on MediaPipe-

extracted landmarks 

MediaPipe + GCN 96.2 35 Jetson Xavier NX 

 

B. Observations 

 MediaPipe stands out for its optimized performance on mobile and embedded systems with minimal hardware 

requirements, achieving high frame rates (30+ FPS) and accuracy. 

 OpenPose provides strong multi-person support and skeletal analysis but suffers from lower speed and higher power 

consumption. 

 Lightweight CNNs like MobileNet and Zhang et al.'s model show promise for low-power deployments, though 

sometimes at the cost of minor accuracy trade-offs. 

 GCN-based hybrid models combine temporal awareness with spatial tracking, enhancing recognition of dynamic 

gestures like sign language or sequential commands. 

C. Use-Case Suitability 

Application Best-Fit Model/Framework Reason 

Sign Language Recognition MediaPipe + GCN Handles static and dynamic gestures with 

context 

Touchless Smart Interfaces 

(AR/VR) 

MediaPipe High FPS and ease of deployment 

Desktop Surveillance / Multi-

person 

OpenPose Multi-user skeletal mapping 
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Mobile Apps / Lightweight Devices Lightweight CNN (e.g., Zhang et 

al.) 

Optimized for embedded inference 

 

 

D. Limitations Identified Across Studies 

Challenge Notes 

Occlusion Handling Most models, including MediaPipe, underperform in hand-over-hand scenarios 

Lighting & Background Variability Performance drops in uncontrolled environments 

Cross-lingual Sign Language Models often trained on region-specific datasets 

Continuous Gesture Recognition Most studies focus on isolated gestures, not gesture sequences 

Security & Data Integrity Blockchain-based secure gesture systems are rarely explored 

This comparative analysis highlights that while MediaPipe and CNN-based architectures dominate real-time gesture 

recognition research, future advancements must tackle occlusion robustness, multilingual generalization, and energy-efficient 

processing for dynamic gesture streams. 

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS 

Despite the considerable progress in real-time hand gesture recognition (HGR), several unresolved challenges continue to 

hinder its widespread adoption in diverse real-world environments. This section highlights the key limitations encountered in 

current systems and outlines promising directions for future research. 

A.  Challenges 

a) Occlusion and Self-Occlusion 

Gesture recognition systems like MediaPipe and OpenPose often struggle when parts of the hand overlap (e.g., folded fingers, 

hand-over-hand gestures). These occlusions lead to loss of landmark visibility and reduced classification accuracy. 

b) Dynamic Lighting and Background Clutter 

Changes in ambient lighting or complex, noisy backgrounds can degrade gesture recognition performance. Most models are 

trained on controlled datasets and fail to generalize to real-world lighting conditions or outdoor scenarios. 

c) Generalization Across Users and Cultures 

Many models perform well on specific datasets but struggle with generalization across hand shapes, skin tones, and regional 

sign languages. For example, a model trained on American Sign Language (ASL) may not accurately interpret gestures in 

Indian Sign Language (ISL) or Japanese Fingerspelling. 

d) Real-Time Continuous Gesture Recognition 
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While isolated static gesture recognition has reached high accuracy, recognizing continuous gesture streams—especially in 

real-time video—is still a major challenge. Temporal modeling using RNNs or GCNs is promising but often limited by 

computational constraints on edge devices. 

e) Resource-Constrained Deployment 

Most high-accuracy models are too computationally intensive for real-time execution on embedded platforms. Although 

pruning, quantization, and knowledge distillation help, the trade-offs between performance, accuracy, and hardware 

limitations are not yet fully optimized. 

f) Security and Data Privacy 

Gesture data can be sensitive in applications like user authentication or medical assistive systems. However, the integration of 

secure data handling techniques, such as blockchain or federated learning, remains largely unexplored in the gesture 

recognition domain. 

B.  Future Research Directions 

a) Self-Evolving and Adaptive AI Models 

Incorporating meta-learning and continual learning frameworks can help gesture recognition systems adapt to new users, 

gestures, or environments without requiring complete retraining. 

b) Neuromorphic Vision Sensors 

Leveraging event-based cameras and neuromorphic computing (e.g., Intel Loihi, DVS sensors) could enable ultra-low-power, 

high-speed gesture recognition systems suitable for always-on applications. 

c) Multimodal Fusion 

Combining visual data with other sensor modalities—such as IMU, audio, or EMG signals—can improve robustness in 

complex environments. Multimodal learning helps overcome limitations of single-sensor systems under occlusion or lighting 

changes. 

d) Cross-Lingual and Multilingual Gesture Models 

Developing universal gesture recognition models that support multiple sign languages and hand postures will enable wider 

accessibility. Transfer learning and multilingual datasets will be essential in this pursuit. 

e) Blockchain and Federated AI Integration 

Incorporating blockchain for gesture data authentication and federated learning for on-device training without central data 

collection can enhance privacy and security in sensitive applications. 

f) Sentence-Level Gesture Understanding 
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Advancing from recognizing individual signs to interpreting full phrases or sentences in continuous gesture streams will 

require a blend of spatial-temporal modeling and language-level integration (e.g., gesture-to-text systems). 

By addressing these challenges and pursuing the suggested future directions, gesture recognition systems can become more 

intelligent, inclusive, secure, and scalable—meeting the needs of next-generation HCI applications in healthcare, education, 

automation, and beyond. 

VI. CONCLUSION 

 Hand gesture recognition has become a cornerstone of next-generation human-computer interaction, enabling 

intuitive, touchless communication across domains such as assistive technology, smart environments, and immersive AR/VR 

systems. This review paper presented a comprehensive analysis of real-time gesture recognition systems, with a focus on 

vision-based frameworks like MediaPipe, OpenPose, and lightweight deep learning models. We examined the underlying 

architectures, model optimization strategies, deployment platforms, and performance benchmarks across various approaches. 

MediaPipe’s palm detection and landmark regression architecture stood out for its real-time responsiveness and edge device 

compatibility, while hybrid methods combining graph convolution networks (GCNs) and transformer-based models showed 

promise for dynamic gesture and continuous sign language recognition. Despite notable progress, several challenges persist—

including occlusion handling, lighting variability, multilingual sign interpretation, and secure deployment on constrained 

hardware. This review also highlighted future research directions such as neuromorphic computing, adaptive AI, multimodal 

fusion, and secure on-device learning. while real-time gesture recognition has reached a high level of technical maturity, 

ongoing research must focus on improving robustness, adaptability, and inclusivity to enable truly seamless and intelligent 

gesture-based interaction in real-world settings. 
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