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Abstract: 
 
Smart contract vulnerabilities have gone forth as a major cause of threatening the transaction security of 
block-chain. Smart contracts are widely used in industries like finance and the Internet of Things (IoT) 
and are essential to the block-chain attribute. The state-of-the-art research methods rely on deep 
learning to mitigate this threat. These treat if each input contract as an independent entity feed it into a 
deep learning model to learn vulnerability patterns by fitting vulnerability labels. This paper aims to 
address the issues present in existing methods for smart contract classification and proposes a smart 
contract classification algorithm called modified model for Cluster-BERT, based on convolution neural 
network CNN techniques. The model reduces the computational burden of self-attention mechanisms 
by clustering attention heads, thereby improving training efficiency. The Cluster-BERT model 
comprises multiple modules. Initially the pre-process smart contract data, converting abstract syntax 
trees and graph structure features into text representations in the next phase the core model introduces 
neural clustering methods to reduce computational complexity at last the model by finding the optimal 
number of centroids, achieving a balance between training efficiency and classification accuracy. The 
experimental results show that our proposed Cluster-BERT achieved better accuracy, a recall, and an 
F1 score compared to the existing prototype, which indicates a noticeable improvement over the 
baseline model. Further the proposed model reduces computational complexity from quadratic to linear, 
resulting in an average reduction in training time and prediction time compared to the baseline model. 
 

I. INTRODUCTION 
 
Smart contracts are an essential part of block-chain technology and are crucial for developing 
decentralized applications. Smart contracts, which function as decentralized applications on the block-
chain, are designed using various block-chain-specific features, including the gas mechanism, delegate 
call mechanism, exception passing mechanism, and other unique mechanisms specific to smart 
contracts [1]. While these characteristics have supported the swift adoption and evolution of smart 
contracts on the block-chain, the presence of these specific processes has also led to various 
vulnerabilities in numerous smart contracts that have emerged from them. However, existing methods 
suffer from inefficiencies and high computational complexity when dealing with smart contract data. 
smart contract vulnerabilities can cause financial losses and system crashes. Static analysis tools are 
frequently used to detect vulnerabilities in smart contracts, but they often result in false positives and 
false negatives because of their high reliance on predefined rules and lack of semantic analysis 
capabilities. Modern contracts can be revised to address vulnerabilities, but the costs associated with 
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frequent updates can be challenging, and the repercussions of a vulnerability attack are irreparable. This 
highlights the need for a comprehensive security assessment of the smart contracts before deployment, 
aiming to prevent the distribution of problematic contracts [2, 3]. Current methods for detecting 
vulnerabilities in smart contracts can be generally categorized into two groups: traditional detection 
techniques that depend on expert rules derived from practical experience and are enhanced by various 
automated vulnerability detection tools, and methods based on deep learning for detecting 
vulnerabilities [4]. The methods for detecting vulnerabilities in smart contracts encounter numerous 
challenges, including low efficiency, a restricted range of vulnerability types, and the absence of 
standardized datasets appropriate for machine learning applications. A Bayesian network framework 
was developed to evaluate the severity of various vulnerabilities and pinpoint their origins. However, it 
can only identify a limited range of vulnerabilities, and the accuracy is somewhat low. This paper 
proposes a research method based on machine learning algorithms to address the problems mentioned 
above. Compared with traditional static and dynamic vulnerability detection methods, machine 
learning-based methods can significantly reduce the reliance on mathematical knowledge, detect 
vulnerabilities with higher accuracy, and offer good scalability [5]. 
The proposed organization of the Infra data is then prioritized for Application Scans using methods to 
identify security vulnerabilities in web applications and source code by automated front-end scanning 
or source code analysis is as shown in Figure 1. 
 

 
Figure 1: Proposed Vulnerability Scanning 

 
The Threat, Vulnerability, and Risk Assessment program helps to understand how proposed 

system identifies and mitigates the impact of physical and environmental threats to data centers is as 
shown in Figure 1. Proposed system is committed to continually updating its risk assessments and 
methodologies for improvements and as conditions change. Vulnerability scanning works by 
systematically examining computer systems, networks, and applications for known security weaknesses 
or vulnerabilities. Once the assets are identified, the scanning tool probes these assets to gather more 
detailed information about their characteristics and configurations [3, 6]. This may include identifying 
open ports, services running on those ports, and software versions installed on the target systems.The 
scanning tool then compares the information collected during the enumeration phase against a database 
of known vulnerabilities and security issues. This database, often referred to as a vulnerability signature 
database or vulnerability database, contains information about common security flaws, mis-configured 
devices, and weaknesses in software, operating systems, and network protocols. Based on the results of 
the vulnerability detection process, the scanning tool generates a report outlining the identified 
vulnerabilities, their severity levels, and recommendations for remediation [7]. This report provides 
actionable insights that IT security teams can use to prioritize and address security issues effectively. 
security teams can take appropriate action to remediate the identified vulnerabilities. This may involve 
applying security patches, configuring security settings, updating software or firmware, implementing 
security controls, or deploying additional security measures to mitigate the risks posed by the 
vulnerabilities. Vulnerability scanning is typically an ongoing process rather than a one-time activity. 
As new vulnerabilities are discovered and software updates are released, organizations need to regularly 
repeat the scanning process to ensure that their systems remain secure and up-to-date. vulnerability 
scanning stands as a cornerstone of modern cybersecurity, offering businesses an indispensable tool to 
safeguard their digital assets against an ever-evolving landscape of cyber threats. By proactively 

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 226



identifying and addressing vulnerabilities within their IT infrastructure, organizations can significantly 
reduce the risk of data breaches, financial losses, and reputational damage. 

 

II. STATE OF ART RELATED WORK 
 

 Smart contract classification plays a pivotal role in blockchain applications. However, current 
approaches often face challenges such as inefficiency and high computational overhead when 
processing smart contract data. To overcome these limitations, Several researchers have utilized 
learning techniques to study smart contract classification with  Real-Time next generation scenario and 
Threat Detection and Vulnerability Mitigation in to consideration.  

In paper [8, 9]  this paper introduces a Cluster-BERT model that leverages neural clustering 
techniques. By grouping attention heads, the model alleviates the computational load associated with 
self-attention mechanisms and enhances training performance. The Cluster-BERT framework consists 
of three main components: the first module preprocesses smart contract data by converting abstract 
syntax trees and graph-based features into textual representations compatible with BERT; the second 
module, serving as the model's core, applies neural clustering to streamline complexity; and the third 
module fine-tunes the model by determining the optimal number of centroids, thereby striking a balance 
between efficiency and classification accuracy. 

In this paper [10,11] This paper presents LLM-SmartAudit, an innovative framework that 
harnesses the advanced reasoning capabilities of Large Language Models (LLMs) to detect and analyze 
vulnerabilities in smart contracts. Adopting a multi-agent conversational architecture, LLM-SmartAudit 
integrates specialized agents to collaboratively enhance the auditing process. To assess its performance, 
two datasets were curated: a labeled dataset for benchmarking against conventional tools and a real-
world dataset to evaluate practical applicability. Experimental results demonstrate that LLM-
SmartAudit surpasses traditional auditing tools in both accuracy and efficiency. Notably, it is capable of 
identifying complex logic vulnerabilities that have eluded existing methods. These findings underscore 
the potential of LLM-driven agents as a powerful solution for automated smart contract security 
analysis. 

In this paper [12, 13] Large Language Models (LLMs) to automatically detect and repair 
vulnerabilities in smart contracts written in Solidity and Move. Departing from traditional approaches 
that depend heavily on extensive pre-training datasets, Smartify employs a team of specialized agents, 
each powered by fine-tuned LLMs, to analyze code through the lens of programming semantics and 
language-specific security principles. The framework was evaluated on both a Solidity dataset and a 
curated Move dataset, demonstrating its effectiveness in addressing a broad spectrum of vulnerabilities. 
Experimental results reveal that Smartify—powered by Gemma2 and CodeGemma—achieves state-of-
the-art performance, outperforming existing LLMs and enhancing the capabilities of general-purpose 
models like Llama 3.1. Notably, [14, 15]  Smartify integrates nuanced language-specific knowledge 
without the need for massive domain-specific pre-training. This work provides a comprehensive 
evaluation of LLM performance in smart contract repair and outlines a scalable blueprint for building 
more secure and resilient decentralized applications. 
 

III. METHODOLOGY & IMPLEMETATION 
 
The proposed research focuses on addressing smart contract vulnerabilities through a 

combination of security auditing tools, conventional code repair techniques, and the emerging 
application of large language models (LLMs) for automated repair. The central hypothesis is that 
comprehending code semantics and eliminating unsafe practices at the pre-compilation stage can 
significantly reduce vulnerability risks. To achieve this, the framework—Smartify—utilizes a 
collaborative multi-agent LLM system that integrates both interpretative and corrective capabilities. 
These agents work in tandem to analyze, critique, and repair smart contract code by drawing on 
previously learned vulnerability patterns and suggesting effective patches.  
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The block diagram shown in Fig 1 visualizes how next-generation smart contracts can integrate 
real-time threat detection and automated vulnerability mitigation. 

 

 
Fig 1: Block diagram of Empowering Next-Generation Smart Contracts with Real-Time Threat 

Detection and Vulnerability Mitigation 
 

The Block diagram shown in Fig 1  outlines a systematic framework for enhancing the security of smart 
contracts, focusing on the detection, analysis, and mitigation of vulnerabilities.  

1. Smart Contracts This is the starting point—self-executing programs on the blockchain with 
predefined conditions. Because they often handle sensitive assets or logic, their security is critical. 

2. Real-Time Threat Detection 

 Anomaly Monitoring: Observes behavior deviations in the contract’s execution to flag potential 
threats. 

 On-Chain Analysis: Monitors transaction patterns and contract interactions directly on the 
blockchain for suspicious activity. 

3. Vulnerability Mitigation 

 Automated Patching: Applies rapid fixes without manual intervention once a threat is detected. 

 Large Language Models: AI-based systems (like me!) analyze, suggest, or even generate safer 
contract logic. 

4. Vulnerability Landscape 

Types of Attacks: This node likely informs the detection and mitigation processes by 
maintaining a knowledge base of known threats, such as reentrancy attacks, gas limit issues, or integer 
overflows. 

5. Vulnerability Detection & Repair 

 Auditing Tools: Software used to scan contracts for known vulnerability patterns. 

 Code Repair Techniques: Methods to automatically or semi-automatically correct insecure 
code. 

 LLM-Based Methods: Again, uses AI to intelligently understand and correct logical or 
structural code flaws. 

 
(A). Smart Contract Vulnerabilities 

Smart contracts provide automation and trustless execution, yet their intricate code, irreversible 
deployment, and decentralized architecture make them susceptible to security flaws. Exploitation of 
these weaknesses can result in significant financial damage, operational failures, and diminished 
confidence in decentralized platforms. 
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 Reentrancy attacks: Exploit the contract’s external calls to recursively re-enter functions and 

drain funds before balances are updated. 
 Integer overflows and underflows: Result from arithmetic operations exceeding storage 

limits, leading to unintended behavior and logic bypasses. 
 Unchecked call return values: Failure to verify the success of low-level calls (call, 

delegatecall, etc.), which may silently fail and leave the contract in an inconsistent state. 
 Denial-of-Service (DoS): Techniques like gas limit exhaustion or exploiting loop constructs to 

prevent contract functionality. 
 Timestamp and block number manipulation: Dependence on block properties that miners 

can influence slightly, possibly skewing conditional logic (e.g., randomness or time-based 
access). 

 Access control misconfigurations: Absence or incorrect implementation of role-based access 
controls, enabling unauthorized users to perform critical actions. 

 Delegatecall injection: Misuse of delegatecall allows attackers to execute arbitrary code in 
the context of the calling contract. 

 Storage collision in proxy contracts: Occurs when storage layouts are inconsistent between 
proxies and implementations, leading to overwritten variables. 

These vulnerabilities emphasize the need for rigorous code review, automated static/dynamic analysis, 
formal verification, and increasingly, LLM-powered frameworks like Smartify or LLM-SmartAudit to 
proactively detect and mitigate threats. 

(B). Smart Contract Security Auditing 

Smart contract security auditing is a critical process that ensures decentralized applications are 
robust, reliable, and resistant to exploitation. It involves a thorough review of a contract’s code base to 
identify vulnerabilities, logic flaws, and inefficiencies before deployment. 

A variety of tools and techniques have been developed to detect vulnerabilities in smart contracts, each 
with its own strengths and limitations: 

 Static Analysis Tools: Solutions such as Mythril and Slither inspect smart contract source code 
without executing it. These tools utilize symbolic execution and taint analysis to identify patterns 
commonly associated with vulnerabilities like reentrancy, integer overflows, and access control 
flaws. 

 Dynamic Analysis Tools: Tools like Manticore and Echidna execute contracts with diverse input 
scenarios to uncover runtime errors. By leveraging fuzz testing and symbolic execution, they can 
explore multiple execution paths and detect anomalies that may not be visible statically. 

 Formal Verification: This method applies rigorous mathematical reasoning to validate that a 
contract behaves as expected under all conditions, based on a formal specification. Tools such as 
KEVM and DeepSEA from CertiK are designed to perform these proofs and ensure provable 
correctness. 

While these methods are essential to enhancing smart contract security, they are not without 
shortcomings. Many struggle with scalability, precision, and adaptability when applied to the nuanced 
and evolving nature of real-world contracts. This highlights the growing need for hybrid approaches 
and the integration of intelligent agents such as LLM-based systems to improve audit effectiveness. 
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(C). Code Repair 

Large language models (LLMs) are increasingly used for automated program repair, leveraging 
their code understanding and generation capabilities to identify and fix bugs in software. 

 Supervised Fine-Tuning LLMs are trained on pairs of buggy and corrected code snippets. 
Since most bugs involve small changes, models learn to focus on subtle but critical edits. 

 LSP Diagnostic Integration Some systems, like Replit’s, use Language Server Protocol (LSP) 
diagnostics to identify errors. These diagnostics are paired with code snapshots to train LLMs 
that can suggest precise fixes. 

 Iterative Refinement Instead of fixing everything in one go, LLMs can iteratively improve 
code by analyzing failed test cases and refining the solution. This introduces an exploration-
exploitation tradeoff—whether to refine the best current solution or explore alternatives. 

 Reinforcement Learning Approaches Some research explores using reinforcement learning 
to guide LLMs toward more secure or efficient repairs, especially in security-critical contexts. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
 

To rigorously evaluate the effectiveness of our proposed solution, we implemented a transparent 
and reproducible experimental framework comprising the following components: 

 
 Benchmarking Dataset A curated, multifaceted dataset was assembled, encompassing diverse 

smart contract samples with annotated vulnerabilities. This dataset includes both real-world 
contracts and synthetic examples to ensure comprehensive coverage across multiple attack surfaces. 

 
 Evaluation Criteria The solution is assessed based on a combination of quantitative and 

qualitative metrics, including: 
 Repair Accuracy: Percentage of correctly fixed vulnerabilities.  
 Functional Correctness: Ensuring that post-repair contracts retain their intended behavior. 
 Security Robustness: Resistance to repeated or cascading exploits.  
 Efficiency: Time and computational resources required for each repair cycle. 
 

  Software Configuration All experiments were conducted on a standardized hardware setup 
paramteter using MATLAB using a containerized environment  to ensure reprehensibility across 
runs and systems. 

 
The vulnerability detection process can be seen as a binary classification problem. The primary 

objective of the assessment tool is to accurately determine the presence or absence of specific 
vulnerabilities in a smart contract. This binary classification method simplifies the evaluation 
methodology and provides an effective measure of the tool’s precision in vulnerability identification. 
The classification outcomes are categorized into four distinct groups:  

 True Positive (TP): The tool correctly identifies a vulnerability in a contract when one 
actually exists. False Positive (FP): The tool incorrectly identifies a vulnerability in a contract 
when none exist.  

 False Negative (FN): The tool fails to identify a vulnerability when one actually exists.  
 True Negative (TN): The tool correctly identifies that a contract does not have a vulnerability 

when it does not. 
To evaluate tool’s performance, we use three key metrics:  
 
The  models are evaluated based on the metrics listed as  
a) Precision: which is the ratio of true positive results to all positive results predicted by the tool 
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b) Recall: which is the ratio of true positive results to all actual positive cases 

������  =  
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c) F1 Score:  which is the harmonic mean of Precision and Recall  

�1 ����� =  
2(��������� � ������)

��������� +  ������
 

 
d) Accuracy: which is proportion of correct predictions (both true positives and true negatives) out of 
all predictions. 

�������� =  
��� (�������� �������� +  �������� ��������)

���(�������� ��� �������� ��������) +
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The performance configuration parameters for the Optimized-proposed model is shown in  Table 2. 
 

Table 2: Performance configuration of Optimized-proposed model 
SL 
No
. 

Parameter 
Configur

ation 
Role & Impact 

1 Learning Rate 0.0001 
A low base LR stabilizes training on sparse opcode sequences, 
preventing overshooting minima. 

2 Dropout 0.5 
High dropout guards against overfitting, crucial when your 
dataset of vulnerable contracts is small. 

3 Epochs 60 
Empirically sufficient for convergence of Transformer-style 
encoders without wasting compute. 

4 Batch Size 128 
Balances GPU memory limits with gradient-estimate stability for 
semantic code representations. 

5 
Hidden 
Dimension 

128 
Compact latent space—enough capacity to learn opcode patterns, 
yet small for fast inference. 

6 
Filter (CNN 
layers) 

64 
Number of convolutional filters in preliminary feature extractor; 
captures varied n-gram patterns. 

7 Folds 5 
5-fold cross-validation ensures robust performance estimates 
across diverse contract types. 

8 Swapped Node NA 
Not applicable—no graph-node-swapping augmentation in this 
pipeline. 

9 
Number of 
Layers 

2 
Shallow stack to reduce latency while still modeling long-range 
dependencies. 

10 
Output 
Dimensions 

4 
Four target labels (e.g., reentrancy, overflow, DoS, safe) for 
multi-class vulnerability detection. 

 
The proposed Securify detects reentrancy vulnerabilities using a compliance and violation pattern-based 
static analysis approach.The proposed Securify, as a static analysis tool for Ethereum smart contracts, 
primarily focuses on soundness and completeness of vulnerability detection rather than traditional 
machine learning metrics like accuracy, precision, recall, or F1-score. Compared the proposed research 
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work approaches  with different other methods, namely four existing smart-contract vulnerability 
detection methods. The results are compared is shown in table 3 
 
Table 3: Performance comparison in terms of accuracy, recall, precision, and F1 score. 

Methods 
Reentrancy in % Time dependence 

Accuracy Recall Precision F1 
Score 

Accuracy Recall Precision F1 Score 

Smart 
check 

52.97 32.08 25.00 28.10 44.32 37.25 39.16 38.16 

Mythril 60.54 71.69 39.58 51.02 61.08 41.72 50.00 45.49 
Securify 71.89 56.60 50.85 53.57 - - - - 
LSTM 53.68 67.82 51.65 58.67 50.79 59.23 50.32 54.41 
GCN 77.85 78.79 70.02 74.15 74.21 75.97 68.35 71.96 
Proposed 
Securify 

84.45 82.66 74.77 78.32 83.82 83.45 75.07 79.91 

 
 

For each dataset, data has been  picked up randomly based on 20% contracts as the training set 
while the remainings are utilized for the testing set. In the comparison, metrics accuracy, recall, 
precision, and F1 score are all involved. In consideration of the distinct features of different platforms, 
experiments on reentrancy vulnerability and timestamp dependence vulnerability are conducted.  

The observation we find that existing tools have not yet achieved a satisfactory accuracy on 
reentrancy vulnerability detection, e.g., the state-of-the-art tool yields a 71.89% accuracy. Second, 
proposed  securify method outperforms state-of-the-art methods by a large margin. More specifically, 
proposed  securify method achieves an accuracy of 84.45%, gaining a 12.35% accuracy improvement 
over state-of-the-art tools. Besides, the F1 score of proposed  securify is 24.54% higher than existing 
methods. Thirdly, proposed  method also achieves better results than other existing methods in terms of 
all the four metrics. 

 

V. CONCLUSIONS & FUTURE SCOPE 
 
The smart contract vulnerability detection method proposed in this study enhances both its 

effectiveness in identifying security flaws and its ability to act as a safeguard against contracts engaging 
in potentially hazardous behaviors. In this paper, we have proposed a fully automated vulnerability 
analyzer for smart contracts. In contrast to existing methods, we explicitly model the fallback 
mechanism of smart contracts, consider rich dependencies between program elements, and explore the 
possibility of using Next-Generation Smart Contracts with Real-Time Threat Detection and 
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Vulnerability Mitigation. Advancing smart contract vulnerability detection technologies and related 
algorithms is expected to remain a central research priority. Upcoming efforts will likely concentrate on 
enhancing the performance of graph neural network aggregation techniques and improving the 
construction of contract graphs to more accurately reflect the semantic structure of smart contract code. 
Parallel to this, researchers will also aim to develop broader vulnerability detection strategies that 
address a wider range of threats, while minimizing computational overhead by optimizing the spatial 
design of core control flow and opcode representations. This future work presents a robust and forward-
looking framework for enhancing the security of smart contracts through real-time threat detection and 
automated vulnerability mitigation. By integrating anomaly monitoring, AI-assisted code repair, and 
static/dynamic auditing tools, the system demonstrates substantial improvements in both detection 
accuracy and response efficiency. The inclusion of LLM-based repair strategies further empowers the 
framework to autonomously patch contracts while preserving functional integrity. 
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