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Abstract: 

In this research, we propose leveraging Artificial 

Intelligence (AI), specifically deep learning 

models, for the automated detection of various 

types of cancer, including lung, brain, breast, and 

cervical cancer. We employ Convolutional Neural 

Networks (CNNs) such as VGG16, VGG19, 

DenseNet201, MobileNetV3 (both small and large 

variants), Xception, and InceptionV3, utilizing 

transfer learning from pre-trained models like 

MobileNet, VGGNet, and DenseNet. Bayesian 

Optimization is employed to optimize 

hyperparameters, ensuring effective model 

performance. To address potential issues with 

transfer learning, we implement Learning without 

Forgetting (LwF), which preserves original 

network capabilities while enhancing classification 

accuracy on new datasets. Our experiments 

demonstrate superior accuracy compared to 

existing techniques, with MobileNet-V3 small 

achieving 86% accuracy on the Multi Cancer 

dataset. To further enhance performance, we 

explore prediction techniques using Xception and 

InceptionV3, aiming for an accuracy of 90% or 

higher. Additionally, we propose an extension to 

build a user-friendly front-end using the Flask 

framework, facilitating user testing with 

authentication. This research showcases the 

potential of AI-driven cancer detection, offering  

promising avenues for improved early diagnosis 

and treatment outcomes. 

INDEX TERMS Cancer, convolutional neural 

network (CNN), pretrained models, Bayesian 

optimization,transfer learning, learning without 

forgetting, VGG16, VGG19, DenseNet, mobile net. 

1. INTRODUCTION 

Cancer is a complex and pervasive disease that 

arises from abnormal cellular growth and 

proliferation, leading to potentially life-threatening 

consequences if left unchecked [1]. It stands as one 

of the most significant global health challenges, 

with its impact extending across all demographics 

and regions. According to recent statistics, cancer 

ranks as the leading cause of death worldwide, 

underscoring the urgent need for effective 

detection, diagnosis, and treatment strategies [2]. 

The origins of cancer are multifaceted, often 

stemming from a combination of genetic 

predisposition and environmental factors. 

Behavioral attributes such as high body mass index 

(BMI), tobacco and alcohol consumption, exposure 

to physical carcinogens like ultraviolet (UV) 

radiation, and ionizing radiation contribute 

significantly to cancer development [3]. 

Additionally, factors like chronic inflammation, 

infectious agents, and hormonal imbalances can 

influence carcinogenesis [4]. Consequently, the 
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spectrum of cancer types is vast, affecting various 

organs and tissues in the body [5]. 

Among the common sites for cancer development 

are the lungs, breasts, brain, colon, rectum, liver, 

stomach, skin, and prostate [6]. Each cancer type 

presents distinct clinical features and symptoms, 

ranging from discomfort and fatigue to respiratory 

issues, bleeding, and weight loss [7]. Given the 

diverse manifestations of cancer, early detection 

becomes paramount for timely intervention and 

improved prognosis [8]. 

Clinicians rely on a combination of diagnostic 

modalities to identify and characterize cancerous 

lesions, including physical examinations, 

laboratory tests, imaging techniques, and biopsies 

[9]. Among these, medical imaging plays a crucial 

role in visualizing internal structures and detecting 

abnormalities indicative of cancer [10]. 

Technologies such as Computed Tomography (CT) 

and Magnetic Resonance Imaging (MRI) offer 

comprehensive views of anatomical structures, 

facilitating the localization and assessment of 

tumors [11]. 

However, despite the advancements in medical 

imaging, the interpretation of imaging data can be 

subject to interpretation errors and variability 

among practitioners, leading to false-positive 

diagnoses [12]. Consequently, there is a growing 

interest in leveraging Artificial Intelligence (AI) 

and deep learning techniques to enhance the 

accuracy and reliability of cancer detection [13]. 

Deep learning models have emerged as powerful 

tools in medical image analysis, demonstrating 

capabilities comparable to or even surpassing those 

of human experts [14]. These models can 

effectively extract meaningful features from 

imaging data, enabling automated detection and 

classification of cancerous lesions [15]. In 

particular, Convolutional Neural Networks (CNNs) 

have shown exceptional performance in various 

computer vision tasks, including medical image 

analysis [16]. 

The objective of this study is to explore the 

application of CNNs in the detection of various 

cancer types using CT and MRI imaging data. 

Specifically, we aim to develop and evaluate deep 

learning strategies for accurately identifying 

cancerous lesions in images acquired from patients 

diagnosed with Acute Lymphoblastic Leukemia 

(ALL), Brain Cancer, Breast Cancer, Cervical 

Cancer, Kidney Cancer, Lung Cancer, Colon 

Cancer, Lymphoma, and Oral Cancer. By 

harnessing the potential of AI-driven approaches, 

we endeavor to contribute to the advancement of 

cancer diagnosis and ultimately improve patient 

outcomes. 

This introduction sets the stage for the subsequent 

sections, which will delve into the methodology, 

results, discussion, and conclusion of the study, 

elucidating the potential impact of AI in 

revolutionizing cancer detection and management. 

2. LITERATURE SURVEY 

Artificial Intelligence (AI) has emerged as a 

transformative tool in cancer care, offering 

innovative solutions to improve diagnosis, 

treatment, and patient outcomes. This literature 

survey explores recent advancements in AI-driven 

approaches for cancer detection and management, 

drawing insights from a range of studies and 

research papers. 

One of the top opportunities identified for AI in 

cancer care is its potential to enhance diagnostic 

accuracy and efficiency [1]. Deep learning models, 

in particular, have demonstrated promising results 

in disease identification across various domains, 
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including agriculture [2], medical imaging [3], and 

ophthalmology [4]. Subramanian et al. utilized 

transfer learning and hyperparameter optimization 

to fine-tune deep learning models for disease 

identification in maize leaves [2], showcasing the 

effectiveness of AI-driven techniques in 

agriculture. 

In the healthcare sector, AI-powered models have 

revolutionized diagnostic medicine, enabling 

precise and timely disease detection [5]. 

Krishnamoorthy et al. proposed regression model-

based feature filtering to improve hemorrhage 

detection accuracy in diabetic retinopathy treatment 

[4], highlighting the potential of AI to enhance 

medical imaging analysis. 

Moreover, supervised learning algorithms have 

gained traction in healthcare 4.0, offering new 

possibilities for transforming diagnostic medicine 

[5]. Roy et al. elucidated the principles of 

supervised learning in healthcare and its 

implications for diagnostic accuracy and 

personalized treatment [5], underscoring the 

importance of AI in advancing healthcare delivery. 

In the context of neuroimaging, AI-driven 

frameworks have been developed for segmenting 

and evaluating multiple sclerosis lesions in MRI 

slices [6]. Krishnamoorthy et al. proposed a 

framework based on VGG-UNet for segmenting 

multiple sclerosis lesions, demonstrating the utility 

of deep learning in neuroimaging analysis [6]. 

Furthermore, AI-oriented deep learning methods 

have been applied to achieve timely diagnosis of 

acute lymphoblastic leukemia (ALL), a critical 

aspect of cancer care [7]. Rezayi et al. proposed AI-

oriented deep learning methods for timely 

diagnosis of ALL, showcasing the potential of AI 

in improving cancer diagnostics [7]. 

In the domain of MRI-based brain tumor 

localization and segmentation, AI-driven 

approaches have shown promise in facilitating 

accurate and efficient diagnosis [8]. Gunasekara et 

al. presented a systematic approach for MRI brain 

tumor localization and segmentation using deep 

learning and active contouring techniques [8], 

highlighting the potential of AI in improving 

diagnostic accuracy and clinical decision-making. 

Overall, the literature survey underscores the 

transformative impact of AI-driven approaches in 

cancer care, spanning various domains such as 

agriculture, medical imaging, ophthalmology, 

neuroimaging, and oncology. From disease 

identification to diagnostic medicine and 

personalized treatment, AI offers unprecedented 

opportunities to revolutionize healthcare delivery 

and improve patient outcomes. 

3. METHODLOGY 

a) Proposed work: 

The proposed research aims to develop AI-based 

deep learning models for the classification of eight 

types of cancer, including lung, brain, breast, and 

cervical cancer, using CT/MRI images. The study 

evaluates the efficacy of various pre-trained CNN 

variants, such as MobileNet, VGGNet, and 

DenseNet, through transfer learning to detect 

cancer cells. Bayesian Optimization is employed to 

determine optimal hyperparameters for model 

performance. To mitigate the risk of transfer 

learning causing forgetting of initial datasets, the 

research employs Learning without Forgetting 

(LwF) methodology. LwF ensures that the network 

retains its original capabilities while learning from 

new task data. By combining these techniques, the 

study seeks to enhance the accuracy and robustness 

of cancer detection models, ultimately contributing 
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to improved diagnostic capabilities and patient 

outcomes in oncology. 

b) System Architecture: 

The proposed system architecture involves several 

key components for developing and evaluating AI-

based deep learning models for cancer detection 

using CT/MRI images. Initially, the architecture 

includes data set creation from sources such as 

Kaggle or Figshare, followed by preprocessing and 

image function implementation to prepare the data 

for model training. The architecture incorporates 

various pre-trained CNN models like VGG16, 

VGG19, DenseNet201, and MobileNetV3, which 

are fine-tuned using transfer learning techniques. 

Hyperparameter optimization is performed to 

enhance model performance, considering 

parameters such as optimizer, learning rate, and 

activation functions. The system evaluates model 

performance using a validation set and 

subsequently tests model predictions and 

performance on a separate test dataset. 

Furthermore, the architecture assesses model 

adaptability to new tasks both with and without 

Learning without Forgetting (LwF) methodology, 

enabling a comparative analysis to determine the 

most suitable models for cancer detection. 

 

Fig 1 Proposed Architecture 

c) Dataset collection: 

The data set collection process involves gathering 

diverse sets of medical imaging data representing 

different types of cancer for training and evaluation 

purposes. Specifically, data sets for Acute 

Lymphoblastic Leukemia (ALL), Brain Cancer, 

Breast Cancer, Cervical Cancer, Kidney Cancer, 

Lung and Colon Cancer, Lymphoma, and Oral 

Cancer are acquired. These data sets may be 

sourced from various repositories, research 

institutions, or collaborations with medical centers. 

The collected data sets consist of CT and MRI 

images depicting cancerous lesions across different 

anatomical locations. Each data set is meticulously 

curated to ensure quality and diversity, 

encompassing variations in tumor size, shape, and 

tissue characteristics. Additionally, metadata such 

as patient demographics, clinical history, and 

pathology reports may accompany the image data 

to facilitate comprehensive analysis and model 

development. By aggregating these multi-cancer 

data sets, the research aims to develop robust and 

generalizable deep learning models for accurate 

cancer detection and classification. 

d) Image processing: 

Image processing techniques are employed using 

ImageDataGenerator to augment the training data 

and enhance the robustness of the deep learning 

models for cancer detection. Firstly, the images are 

rescaled to ensure consistency in pixel values 

across the dataset. Shear transformation introduces 

deformation by shifting parts of the image in a 

fixed direction, contributing to variation in object 

shape. Zooming alters the scale of the image, 

simulating different viewing distances and 

perspectives. Horizontal flip mirrors the image 

horizontally, diversifying the orientation of 

cancerous lesions. Additionally, reshaping the 
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image allows for standardization of image 

dimensions, ensuring compatibility with the model 

architecture. By applying these image processing 

techniques, the training dataset is augmented with a 

wider range of variations, enabling the model to 

learn from diverse representations of cancerous 

lesions and improve its generalization performance 

on unseen data. 

e) Algorithms: 

VGG16: VGG16 is a deep convolutional neural 

network architecture consisting of 16 weight layers, 

including 13 convolutional layers and 3 fully 

connected layers. It is widely used in various 

computer vision tasks, including image 

classification, object detection, and feature 

extraction. In projects, VGG16 [8]  is often 

employed as a feature extractor or as a pre-trained 

model for transfer learning, where it offers strong 

performance in tasks such as image recognition and 

medical image analysis. 

VGG19: VGG19 is an extension of the VGG16 

architecture, featuring 19 weight layers with a 

deeper network structure. Like VGG16, it is 

commonly utilized in image classification tasks, 

particularly in projects requiring more complex 

feature extraction and deeper network architectures. 

VGG19 [9]  offers improved performance over 

VGG16 in certain applications, making it a 

preferred choice for tasks demanding higher 

accuracy and deeper representation learning. 

DenseNet201: DenseNet201 is a deep neural 

network architecture characterized by densely 

connected layers, where each layer receives direct 

input from all preceding layers. This dense 

connectivity pattern fosters feature reuse and 

encourages feature propagation throughout the 

network. DenseNet201[10] is utilized in various 

projects, particularly those involving medical 

image analysis, object detection, and image 

segmentation tasks. Its efficient use of parameters 

and feature aggregation capabilities make it well-

suited for tasks requiring detailed feature extraction 

and robust representation learning. 

MobileNetV3 - Small: MobileNetV3 is a 

lightweight convolutional neural network 

architecture optimized for mobile and embedded 

devices. It features efficient depthwise separable 

convolutions and utilizes inverted residuals with 

linear bottlenecks to minimize computational 

complexity while maintaining high performance. 

MobileNetV3 –Small[11]  is particularly suitable 

for projects with resource constraints or real-time 

inference requirements, such as mobile 

applications, edge computing, and IoT devices, 

where compact model size and low latency are 

crucial. 

MobileNetV3 - Large: MobileNetV3 - Large is a 

variant of the MobileNetV3 architecture designed 

for higher accuracy and performance. While 

maintaining the efficiency of its smaller 

counterpart, MobileNetV3 –Large[12] incorporates 

additional layers and parameters to achieve 

superior accuracy in tasks such as image 

classification, object detection, and semantic 

segmentation. It is commonly used in projects 

where higher computational resources are available 

and where achieving state-of-the-art performance is 

a priority. 

Xception: Xception is an extreme version of the 

inception architecture, which replaces the standard 

convolutional layers with depthwise separable 

convolutions. It aims to capture both spatial and 

channel-wise correlations in the input data. 

Xception[13] has been utilized in various projects, 

especially in image recognition and classification 

tasks, where it offers competitive performance and 

efficient computation. Its modular design and 
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efficient parameter usage make it suitable for 

applications requiring high accuracy and 

computational efficiency. 

 InceptionV3: InceptionV3 is a convolutional 

neural network architecture that employs a multi-

branch structure with parallel convolutional layers 

of different kernel sizes. It is known for its 

effectiveness in feature extraction and its ability to 

capture both local and global spatial information. 

InceptionV3[14] has been widely used in projects 

involving image classification, object detection, 

and image segmentation, where it demonstrates 

strong performance and robustness. Its versatility 

and scalability make it a popular choice for various 

computer vision tasks, particularly those requiring 

detailed feature representation and hierarchical 

feature learning. 

4. EXPERIMENTAL RESULTS 

Accuracy: The accuracy of a test is its ability to 

differentiate the patient and healthy cases correctly. 

To estimate the accuracy of a test, we should 

calculate the proportion of true positive and true 

negative in all evaluated cases. Mathematically, 

this can be stated as: 

 Accuracy = TP + TN TP + TN + FP + FN. 

 

 

Fig 2  ACCURACYCOMPARISON GRAPH 

Precision: Precision evaluates the fraction of 

correctly classified instances or samples among the 

ones classified as positives. Thus, the formula to 

calculate the precision is given by: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 

Fig 3   PRECISION COMPARISON GRAPH 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all 

relevant instances of a particular class. It is the ratio 

of correctly predicted positive observations to the 

total actual positives, providing insights into a 

model's completeness in capturing instances of a 

given class. 
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Fig 4 RECALL COMPARISON GRAPH 

F1-Score: F1 score is a machine learning 

evaluation metric that measures a model's accuracy. 

It combines the precision and recall scores of a 

model. The accuracy metric computes how many 

times a model made a correct prediction across the 

entire dataset. 

Fig 5  F1 COMPARISON GRAPH 

 

Fig 6  Performance Evaluation Table. 

 

Fig 7 Home page 

Fig 8 sign up page 

Fig 9 sign in page 
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Fig 10 upload input images 

Fig 11 predicted result  

 

Fig 12 upload input images 

 

Fig 13 predicted result  

 

Fig 14 upload input images 

 

Fig 15 predicted result  

Fig 16 upload input images 

 

Fig 17 predicted result  

5. CONCLUSION 

In conclusion, this project underscores the 

remarkable effectiveness of AI-driven 

Convolutional Neural Networks (CNNs) in 

accurately detecting cancer traits from CT/MRI 

images. Through comprehensive evaluation, it 

establishes the superiority of VGG16, VGG19, 

DenseNet201, MobileNetV3-Small, and 

MobileNetV3-Large models over existing methods, 

showcasing their potential in cancer classification 

tasks. Leveraging transfer learning and Learning 

without Forgetting (LwF) techniques enhances 

model adaptability and mitigates knowledge 
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transfer issues, ensuring robust performance across 

different datasets. The extension of the Xception 

model further improves prediction accuracy, 

highlighting the value of model refinement. The 

integration of a user-friendly Flask interface 

facilitates seamless interaction with medical 

images, empowering healthcare professionals with 

a swift and precise tool for cancer classifications. 

Ultimately, this project contributes to advancing 

equitable healthcare access and enhancing patient 

outcomes through the application of cutting-edge 

AI technologies in cancer diagnosis and 

management. 

6. FUTURE SCOPE 

In the realm of cancer classification using CT/MRI 

images, the application of Learning Without 

Forgetting (LwF) powered deep learning models 

opens avenues for several future developments. 

Firstly, continued research into novel architectures 

and optimization techniques could further improve 

the performance and efficiency of existing models. 

Additionally, exploring ensemble learning 

approaches that combine multiple models could 

enhance classification accuracy and robustness. 

Moreover, the integration of multimodal data 

sources, such as genetic information or clinical 

data, could provide comprehensive insights into 

cancer characteristics and improve diagnostic 

accuracy. Furthermore, extending the application of 

deep learning models beyond classification to 

include tasks like segmentation and prediction of 

treatment response holds promise for more 

personalized and effective cancer care. Lastly, 

efforts to address challenges related to model 

interpretability, data privacy, and deployment in 

real-world clinical settings will be crucial for 

translating research advancements into impactful 

clinical practice. 
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