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Abstract

In this article we study a new subclass of analytic functions comprising Erdély-Kober type
fractional derivative operator and confer some significant geometric properties like necessary
and sufficient condition, growth and distortion bounds, convex combinations,integral means
inequality for this newely demarcated class.

Keywords and phrases: analytic, starlike, integral operator, convolution, convex combinations .
AMS Subject Classification: 30C45; 30C50.

1 Introduction

The theory of analytic function undermines a field that is still actively investigated today despite
being an old subject. Many studies on the privileged subject of inequalities in complex analysis have
been conducted using the classes of analytical functions. The interaction of geometry and analysis in
complex function theory is its most attractive characteristic. These connections between geometric
behaviour and analytical structure have been the key area of attention for rapid development. The
current work, which developed a new subclass of analytical functions related to the Erdély-Kober
Integral Operator, was motivated by this tactic. Several authors have investigated the characteristics
of analytic function subclasses and demonstrated how their findings have numerous applications in
engineering, hydrodynamics, and signal theory. The extremal difficulties are one of the main issues
with geometric function theory. Geometric function theory, the finding of coefficient bounds, sharp
estimates, and an extremal function all heavily rely on extremal problems. In the investigation of
numerous issues pertaining to the temporal evolution of the free boundary of a viscous fluid for
planar flows in Hele-Shaw cells under injection, the theory of analytic univalent functions plays a
significant role. The findings we came to in this study could potentially be applicable in other pure
and applied disciplines of mathematics.

Let A denote the class of all functions v(z) of the form

v(z) = z +
∞∑
n=2

anz
n, (1.1)

in the open unit disc U = {z ∈ C : |z| < 1}. Let S be the subclass of A consisting of univalent
functions and satisfy the following usual normalization condition v(0) = v′(0) − 1 = 0. We denote
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by S the subclass of A consisting of functions v(z) which are all univalent in U. A function v ∈ A is
a starlike function of the order ξ, 0 ≤ ξ < 1, if it fulfils

ℜ
{
zv′(z)

v(z)

}
> ξ, z ∈ U. (1.2)

We denote this class with S∗(ξ). A function u ∈ A is a convex function of the order ξ, 0 ≤ ξ < 1, if
it fulfils

ℜ
{
1 +

zv′′(z)

v′(z)

}
> ξ, z ∈ U. (1.3)

We denote this class with K(ξ). Note that S∗(0) = S∗ and K(0) = K are the usual classes of starlike
and convex functions in U respectively. For v ∈ A given by (1.1) and g(z) given by

g(z) = z +
∞∑
n=2

bnz
n (1.4)

their convolution (or Hadamard product), denoted by (v ∗ g), is defined as

(v ∗ g)(z) = z +
∞∑
n=2

anbnz
n = (g ∗ v)(z), (z ∈ U). (1.5)

Note that v ∗ g ∈ A.
Let T denotes the class of functions analytic in U that are of the form

v(z) = z −
∞∑
n=2

anz
n, an ≥ 0 (z ∈ U) (1.6)

and let T ∗(ξ) = T ∩ S∗(ξ), C(ξ) = T ∩ K(ξ). The class T ∗(ξ) and allied classes possess some
interesting properties and have been extensively studied by Silverman [17].
Now we recall the Erdély-Kober type ([8] Ch 5) integral operator definition which shall be used
throughout the paper as below:

Definition 1.1. Let for ϑ > 0, a, c ∈ C, be such that ℜ(c− a) ≥ 0, an Erdély- Kober type integral
operator I a,c

ϑ : A → A be defined for ℜ(c− a) > 0 and ℜ(a) > −ϑ by

I a,c
ϑ v(z) =

Γ(c+ ϑ)

Γ(a+ ϑ)

1

Γ(c− a)

∫ 1

0

(1− t)c−a−1u(ztϑ)dt, ϑ > 0. (1.7)

For ϑ > 0,ℜ(c− a) ≥ 0,ℜ(a) > −ϑ and v ∈ A of the form (1.1) we have

I a,c
ϑ v(z) = z +

∞∑
n=2

Ba,c
ϑ (n)anz

n. (1.8)

where

Ba,c
ϑ (n) =) =

Γ(c+ ϑ)Γ(a+ nϑ)

Γ(a+ ϑ)Γ(c+ nϑ)
and Ba,c

ϑ (2) =) =
Γ(c+ ϑ)Γ(a+ 2ϑ)

Γ(a+ ϑ)Γ(c+ 2ϑ)
(1.9)

Note that I a,a
ϑ v(z) = v(z).

Definition 1.2. Erdély-Kober fractional order derivative. For ϑ > 0,ℜ(c−a) ≥ 0,ℜ(a) > −ϑ
m ∈ Z = {0,±1,±2,±3, ...} ; ℓ > −1; ϱ > 0 and v ∈ A of the form (1.1) we have

I a,c
ϑ,mv(z) = z +

∞∑
n=2

Ba,c
ϑ,m(n)anz

n. (1.10)
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where

Ba,c
ϑ,m(n) =

[
1 +

ϱ(n− 1))

ℓ+ 1

]m
Γ(c+ ϑ)Γ(a+ nϑ)

Γ(a+ ϑ)Γ(c+ nϑ)
(1.11)

Particulary

Ba,c
ϑ,m(2) =

[
1 +

ϱ

ℓ+ 1

]m
Γ(c+ ϑ)Γ(a+ 2ϑ)

Γ(a+ ϑ)Γ(c+ 2ϑ)
. (1.12)

Remark 1.3. By fixing m = 0 and suitably choosing the parameters a, c, ϑ as mentioned below, the
operator I a,c

ϑ,m includes various operators studied in the literature as cited below:

(i). For a = κ; c = ς + κ and ϑ = 1, we obtain the operator Qς
κv(z)(ς ≥ 0;κ > 1) studied by Jung

et al. [7].

(ii). For a = ς − 1; c = κ − 1 and ϑ = 1, we obtain the operator Lς,κv(z) (ς;κ ∈ C ∈ Z0;Z0 =
{0;−1;−2; · · · }) studied by Carlson and Shafer [4].

(iii). For a = ς − 1; c = ℓ and ϑ = 1, we obtain the operator Iς,ℓ (ς > 0; ℓ > 0) studied by Choi et
al [6].

(iv). For a = ς; c = 0 and ϑ = 1, we obtain the operator D ς (ς > −1) studied by Ruschweyh [15].

(v). For a = 1; c = n and ϑ = 1, we obtain the operator In (n > N0 studied by Noor [13], Noor
and Noor [14].

(vi). For a = κ; c = κ+1 and ϑ = 1, we obtain the integral operator Iκ,1 which studied by Bernardi
[3].

(vii). For a = 1; c = 2 and ϑ = 1, we obtain the integral operator I1,1 = I which studied by Libera
[10] and Livingston [12].

Remark 1.4. By fixing parameters a, c, ϑ as mentioned below, the operator I a,c
ϑ,m includes various

operators studied in the literature as cited below:

(i). By fixing ℓ = 0 and I a,a
ϑ,m ≡ I ϱ

ϑ,m (m ∈ N0 = {0, 1, 2, 3, ...}) , Al-Oboudi operator [1].

(ii). Assuming ϱ = 1; ℓ = 0 and I a,a
ϑ,m ≡ I m

ϑ (m ∈ N0) , Salagean operator [16].

(iii). Assuming c = 0; ϑ = 1 and I a,0
1,m ≡ I a,ℓ

m,ϱ, (m ∈ N0) studied by Catas in [5].

(iv). By fixing ϱ = 1; ℓ = η and I a,a
ϑ,−m ≡ I η+1

−m (m ∈ N0, ρ ≥ 0) Komatu operator [9].

Now, by making use of the linear operator T S a,c
ϑ,mv(z), we define a new subclass of functions be-

longing to the class A.

Definition 1.5. For 0 ≤ ~ < 1, 0 ≤ σ < 1, and 0 < ς < 1, we let T S a,c
ϑ,m(~, σ, ς) be the subclass

of v consisting of functions of the form (4) and its geometrical condition satisfy∣∣∣∣∣∣
~
(
(I a,c

ϑ,mv(z))
′ − I a,c

ϑ,mv(z)

z

)
σ(I a,c

ϑ,mv(z))
′ + (1− ~)I a,c

ϑ,mv(z)

z

∣∣∣∣∣∣ < ς, z ∈ U

where I a,c
ϑ,mv(z), is given by (1.10).
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2 Coefficient Inequality

In the following theorem, we obtain a necessary and sufficient condition for function to be in the
class T S a,c

ϑ,m(~, σ, ς).

Theorem 2.1. Let the function v be defined by (1.6). Then v ∈ T S a,c
ϑ,m(~, σ, ς) if and only if

∞∑
n=2

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)an ≤ ς(σ + (1− ~)), (2.1)

where 0 < ς < 1, 0 ≤ ~ < 1, and 0 ≤ σ < 1. The result (2.1) is sharp for the function

v(z) = z − ς(σ + (1− ~))
[~(n− 1) + ς(nσ + 1− ~)]Ba,c

ϑ,m(n)
zn, n ≥ 2.

Proof. Suppose that the inequality (2.1) holds true and |z| = 1. Then we obtain∣∣∣∣~((I a,c
ϑ,mv(z))

′ −
I a,c

ϑ,mv(z)

z

)∣∣∣∣− ς

∣∣∣∣σ(
I a,c

ϑ,mv(z))
′ + (1− ~)

I a,c
ϑ,mv(z)

z

)∣∣∣∣
=

∣∣∣∣∣−~
∞∑
n=2

(n− 1)Ba,c
ϑ,m(n)anz

n−1

∣∣∣∣∣
− ς

∣∣∣∣∣σ + (1− ~)−
∞∑
n=2

(nσ + 1− ~)Ba,c
ϑ,m(n)anz

n−1

∣∣∣∣∣
≤

∞∑
n=2

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)an − ς(σ + (1− ~))

≤0.

Hence, by maximum modulus principle,v ∈ T S a,c
ϑ,m(~, σ, ς). Now assume that v ∈ T S a,c

ϑ,m(~, σ, ς)
so that ∣∣∣∣∣∣

~
(
(I a,c

ϑ,mv(z))
′ − I a,c

ϑ,mv(z)

z

)
σ(I a,c

ϑ,mv(z))
′ + (1− ~)I a,c

ϑ,mv(z)

z

∣∣∣∣∣∣ < ς, z ∈ U

Hence ∣∣∣∣~((I a,c
ϑ,mv(z))

′ −
I a,c

ϑ,mv(z)

z

)∣∣∣∣ < ς

∣∣∣∣σ(
I a,c

ϑ,mv(z))
′ + (1− ~)

I a,c
ϑ,mv(z)

z

)∣∣∣∣ .
Therefore, we get ∣∣∣∣∣−

∞∑
n=2

~(n− 1)Ba,c
ϑ,m(n)anz

n−1

∣∣∣∣∣
< ς

∣∣∣∣∣σ + (1− ~)−
∞∑
n=2

(nσ + 1− ~)Ba,c
ϑ,m(n)anz

n−1

∣∣∣∣∣ .
Thus

∞∑
n=2

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)an ≤ ς(σ + (1− ~))

and this completes the proof.

Corollary 2.2. Let the function v ∈ T S a,c
ϑ,m(~, σ, ς).Then

an ≤ ς(σ + (1− ~))
[~(n− 1) + ς(nσ + 1− ~)]Ba,c

ϑ,m(n)
zn, n ≥ 2.
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3 Distortion and Covering Theorem

We introduce the growth and distortion theorems for the functions in the class T S a,c
ϑ,m(~, σ, ς)

Theorem 3.1. Let the function v ∈ T S a,c
ϑ,m(~, σ, ς). Then

|z| − ς(σ + (1− ~))
[~+ ς(2σ + 1− ~)]Ba,c

ϑ,m(2)
|z|2 ≤ |v(z)|

≤|z|+ ς(σ + (1− ~))
[~+ ς(2σ + 1− ~)]Ba,c

ϑ,m(2)
|z|2.

The result is sharp and attained

v(z) = z − ς(σ + (1− ~))
[~+ ς(2σ + 1− ~)]Ba,c

ϑ,m(2)
z2.

Proof.

|v(z)| =

∣∣∣∣∣z −
∞∑
n=2

anz
n

∣∣∣∣∣ ≤ |z|+
∞∑
n=2

an|z|n

≤ |z|+ |z|2
∞∑
n=2

an.

By Theorem 2.1, we get
∞∑
n=2

an ≤ ς(σ + (1− ~))
[~+ ς(2σ + 1− ~)]Ba,c

ϑ,m(n)
. (3.1)

Thus

|v(z)| ≤ |z|+ ς(σ + (1− ~))
[~+ ς(2σ + 1− ~)]Ba,c

ϑ,m(2)
|z|2.

Also

|v(z)| ≥ |z| −
∞∑
n=2

an|z|n

≥ |z| − |z|2
∞∑
n=2

an

≥ |z| − ς(σ + (1− ~))
[~+ ς(2σ + 1− ~)]Ba,c

ϑ,m(2)
|z|2.

Theorem 3.2. Let v ∈ T S a,c
ϑ,m(~, σ, ς). Then

1− 2ς(σ+(1−~))
[~+ς(2σ+1−~)]Ba,c

ϑ,m(2)
|z| ≤ |v′(z)| ≤ 1 + 2ς(σ+(1−~))

[~+ς(2σ+1−~)]Ba,c
ϑ,m(2)

|z|

with equality for

v(z) = z − 2ς(σ + (1− ~))
[~+ ς(2σ + 1− ~)]Ba,c

ϑ,m(2)
z2.
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Proof. Notice that

[~+ ς(2σ + 1− ~)]Ba,c
ϑ,m(2)

∞∑
n=2

nan

≤
∞∑
n=2

n[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)an

≤ς(σ + (1− ~)), (3.2)

from Theorem 2.1. Thus

|v′(z)| =

∣∣∣∣∣1−
∞∑
n=2

nanz
n−1

∣∣∣∣∣
≤ 1 +

∞∑
n=2

nan|z|n−1

≤ 1 + |z|
∞∑
n=2

nan

≤ 1 + |z| 2ς(σ + (1− ~))
[~+ ς(2σ + 1− ~)]Ba,c

ϑ,m(2)
. (3.3)

On the other hand

|v′(z)| =

∣∣∣∣∣1−
∞∑
n=2

nanz
n−1

∣∣∣∣∣
≥ 1−

∞∑
n=2

nan|z|n−1

≥ 1− |z|
∞∑
n=2

nan

≥ 1− |z| 2ς(σ + (1− ~))
[~+ ς(2σ + 1− ~)]Ba,c

ϑ,m(2)
. (3.4)

Combining (3.3) and (3.4), we get the result.

4 Radii of Starlikeness, Convexity and Close-to-Convexity

In the following theorems, we obtain the radii of starlikeness, convexity and close-to-convexity for
the class T S a,c

ϑ,m(~, σ, ς).

Theorem 4.1. Let v ∈ T S a,c
ϑ,m(~, σ, ς). Then v is starlike in |z| < R1 of order δ, 0 ≤ δ < 1, where

R1 = inf
n

{
(1− δ)(~(n− 1) + ς(nσ + 1− ~))Ba,c

ϑ,m(n)

(n− δ)ς(σ + (1− ~))

} 1
n−1

, n ≥ 2. (4.1)

Proof. v is starlike of order δ, 0 ≤ δ < 1 if

ℜ
{
zv′(z)

v(z)

}
> δ.

Thus it is enough to show that

∣∣∣∣zv′(z)v(z)
− 1

∣∣∣∣ =
∣∣∣∣∣∣∣∣
−

∞∑
n=2

(n− 1)anz
n−1

1−
∞∑
n=2

anzn−1

∣∣∣∣∣∣∣∣ ≤
∞∑
n=2

(n− 1)an|z|n−1

1−
∞∑
n=2

an|z|n−1

.
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Thus ∣∣∣∣zv′(z)v(z)
− 1

∣∣∣∣ ≤ 1− δ if
∞∑
n=2

(n− δ)

(1− δ)
an|z|n−1 ≤ 1. (4.2)

Hence by Theorem 2.1, (4.2) will be true if

n− δ

1− δ
|z|n−1 ≤

(~(n− 1) + ς(nσ + 1− ~))Ba,c
ϑ,m(n)

ς(σ + (1− ~)

or if

|z| ≤
[
(1− δ)(~(n− 1) + ς(nσ + 1− ~))Ba,c

ϑ,m(n)

(n− δ)ς(σ + (1− ~))

] 1
n−1

, n ≥ 2. (4.3)

The theorem follows easily from (4.3).

Theorem 4.2. Let v ∈ T S a,c
ϑ,m(~, σ, ς). Then v is convex in |z| < R2 of order δ, 0 ≤ δ < 1, where

R2 = inf
n

{
(1− δ)(~(n− 1) + ς(nσ + 1− ~))Ba,c

ϑ,m(n)

n(n− δ)ς(σ + (1− ~))

} 1
n−1

, n ≥ 2. (4.4)

Proof. v is convex of order δ, 0 ≤ δ < 1 if

ℜ
{
1 +

zu′′(z)

v′(z)

}
> δ.

Thus it is enough to show that

∣∣∣∣zv′′(z)v′(z)

∣∣∣∣ =
∣∣∣∣∣∣∣∣
−

∞∑
n=2

n(n− 1)anz
n−1

1−
∞∑
n=2

nanzn−1

∣∣∣∣∣∣∣∣ ≤
∞∑
n=2

n(n− 1)an|z|n−1

1−
∞∑
n=2

nan|z|n−1

.

Thus ∣∣∣∣zv′′(z)v′(z)

∣∣∣∣ ≤ 1− δ if

∞∑
n=2

n(n− δ)

(1− δ)
an|z|n−1 ≤ 1. (4.5)

Hence by Theorem 2.1, (4.5) will be true if

n(n− δ)

1− δ
|z|n−1 ≤

(~(n− 1) + ς(nσ + 1− ~))Ba,c
ϑ,m(n)

ς(σ + (1− ~)

or if

|z| ≤
[
(1− δ)(~(n− 1) + ς(nσ + 1− ~))Ba,c

ϑ,m(n)

n(n− δ)ς(σ + (1− ~))

] 1
n−1

, n ≥ 2. (4.6)

The theorem follows easily from (4.6).

Theorem 4.3. Let v ∈ T S a,c
ϑ,m(~, σ, ς). Then v is close-to-convex in |z| < R3 of order δ, 0 ≤ δ < 1,

where

R3 = inf
n

{
(1− δ)(~(n− 1) + ς(nσ + 1− ~))Ba,c

ϑ,m(n)

nς(σ + (1− ~))

} 1
n−1

, n ≥ 2. (4.7)

Proof. v is close-to-convex of order δ, 0 ≤ δ < 1 if

ℜ{v′(z)} > δ.
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Thus it is enough to show that

|v′(z)− 1| =

∣∣∣∣∣−
∞∑
n=2

nanz
n−1

∣∣∣∣∣ ≤
∞∑
n=2

nan|z|n−1.

Thus

|v′(z)− 1| ≤ 1− δ if
∞∑
n=2

n

(1− δ)
an|z|n−1 ≤ 1. (4.8)

Hence by Theorem 2.1, (4.8) will be true if

n

1− δ
|z|n−1 ≤

(~(n− 1) + ς(nσ + 1− ~))Ba,c
ϑ,m(n)

ς(σ + (1− ~)

or if

|z| ≤
[
(1− δ)(~(n− 1) + ς(nσ + 1− ~))Ba,c

ϑ,m(n)

nς(σ + (1− ~))

] 1
n−1

, n ≥ 2. (4.9)

The theorem follows easily from (4.9).

5 Extreme Points

In the following theorem, we obtain extreme points for the class T S a,c
ϑ,m(~, σ, ς).

Theorem 5.1. Let v1(z) = z and

vn(z) = z − ς(σ + (1− ~))
[~(n− 1) + ς(nσ + 1− ~)]Ba,c

ϑ,m(n)
zn, for n = 2, 3, · · · .

Then v ∈ T S a,c
ϑ,m(~, σ, ς) if and only if it can be expressed in the form

v(z) =
∞∑
n=1

θnvn(z), where θn ≥ 0 and
∞∑
n=1

θn = 1.

Proof. Assume that v(z) =
∞∑
n=1

θnvn(z), hence we get

v(z) = z −
∞∑
n=2

ς(σ + (1− ~))θn
[~(n− 1) + ς(nσ + 1− ~)]Ba,c

ϑ,m(n)
zn.

Now, v ∈ T S a,c
ϑ,m(~, σ, ς), since

∞∑
n=2

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)

ς(σ + (1− ~))

× ς(σ + (1− ~))θn
[~(n− 1) + ς(nσ + 1− ~)]Ba,c

ϑ,m(n)

=
∞∑
n=2

θn = 1− θ1 ≤ 1.

Conversely, suppose v ∈ T S a,c
ϑ,m(~, σ, ς). Then we show that v can be written in the form

∞∑
n=1

θnvn(z).

Now v ∈ T S a,c
ϑ,m(~, σ, ς) implies from Theorem 2.1

an ≤ ς(σ + (1− ~))
[~(n− 1) + ς(nσ + 1− ~)]Ba,c

ϑ,m(n)
.
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Setting θn =
[~(n−1)+ς(nσ+1−~)]Ba,c

ϑ,m(n)

ς(σ+(1−~)) an, n = 2, 3, · · ·

and θ1 = 1−
∞∑
n=2

θn, we obtain v(z) =
∞∑
n=1

θnvn(z).

6 Hadamard product

In the following theorem, we obtain the convolution result for functions belongs to the class T S a,c
ϑ,m(~, σ, ς).

Theorem 6.1. Let v, g ∈ TS(~, σ, ς). Then v ∗ g ∈ TS(~, σ, ζ) for

v(z) = z −
∞∑
n=2

anz
n, g(z) = z −

∞∑
n=2

bnz
n and (v ∗ g)(z) = z −

∞∑
n=2

anbnz
n,

where

ζ ≥ ς2(σ + (1− ~))~(n− 1)

[~(n− 1) + ς(nσ + 1− ~)]2Ba,c
ϑ,m(n)− ς2(σ + (1− ~))(nσ + 1− ~)

.

Proof. v ∈ T S a,c
ϑ,m(~, σ, ς) and so

∞∑
n=2

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)

ς(σ + (1− ~))
an ≤ 1, (6.1)

and
∞∑
n=2

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)

ς(σ + (1− ~))
bn ≤ 1. (6.2)

We have to find the smallest number ζ such that
∞∑
n=2

[~(n− 1) + ζ(nσ + 1− ~)]Ba,c
ϑ,m(n)

ζ(σ + (1− ~))
anbn ≤ 1. (6.3)

By Cauchy-Schwarz inequality
∞∑
n=2

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)

ς(σ + (1− ~))
√

anbn ≤ 1. (6.4)

Therefore it is enough to show that

[~(n− 1) + ζ(nσ + 1− ~)]Ba,c
ϑ,m(n)

ζ(σ + (1− ~))
anbn

≤
[~(n− 1) + ς(nσ + 1− ~)]Ba,c

ϑ,m(n)

ς(σ + (1− ~))
√
anbn.

That is √
anbn ≤ [~(n− 1) + ς(nσ + 1− ~)]ζ

[~(n− 1) + ζ(nσ + 1− ~)]ς
. (6.5)

From (6.4) √
anbn ≤ ς(σ + (1− ~))

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)

.

Thus it is enough to show that

ς(σ + (1− ~))
[~(n− 1) + ς(nσ + 1− ~)]Ba,c

ϑ,m(n)
≤ [~(n− 1) + ς(nσ + 1− ~)]ζ

[~(n− 1) + ζ(nσ + 1− ~)]ς
,

which simplifies to

ζ ≥ ς2(σ + (1− ~))~(n− 1)

[~(n− 1) + ς(nσ + 1− ~)]2Ba,c
ϑ,m(n)− ς2(σ + (1− ~))(nσ + 1− ~)

.
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7 Closure Theorems

We shall prove the following closure theorems for the class T S a,c
ϑ,m(~, σ, ς).

Theorem 7.1. Let vj ∈ T S a,c
ϑ,m(~, σ, ς), j = 1, 2, . . . , s. Then

g(z) =
s∑

j=1

cjvj(z) ∈ T S a,c
ϑ,m(~, σ, ς)

For vj(z) = z −
∞∑
n=2

an,jz
n, where

s∑
j=1

cj = 1.

Proof.

g(z) =
s∑

j=1

cjvj(z)

= z −
∞∑
n=2

s∑
j=1

cjan,jz
n

= z −
∞∑
n=2

enz
n,

where en =
s∑

j=1

cjan,j. Thus g(z) ∈ T S a,c
ϑ,m(~, σ, ς) if

∞∑
n=2

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)

ς(σ + (1− ~))
en ≤ 1,

that is, if

∞∑
n=2

s∑
j=1

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)

ς(σ + (1− ~))
cjan,j

=
s∑

j=1

cj

∞∑
n=2

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)

ς(σ + (1− ~))
an,j

≤
s∑

j=1

cj = 1.

Theorem 7.2. Let v, g ∈ T S a,c
ϑ,m(~, σ, ς). Then

h(z) = z −
∞∑
n=2

(a2n + b2n)z
n ∈ T S a,c

ϑ,m(~, σ, ς), where

ζ ≥ 2~(n− 1)ς2(σ + (1− ~))
[~(n− 1) + ς(nσ + 1− ~)]2Ba,c

ϑ,m(n)− 2ς2(σ + (1− ~))(nσ + 1− ~)
.

Proof. Since v, g ∈ T S a,c
ϑ,m(~, σ, ς), so Theorem 2.1 yields

∞∑
n=2

[
(~(n− 1) + ς(nσ + 1− ~))Ba,c

ϑ,m(n)

ς(σ + (1− ~))
an

]2
≤ 1
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and
∞∑
n=2

[
(~(n− 1) + ς(nσ + 1− ~))Ba,c

ϑ,m(n)

ς(σ + (1− ~))
bn

]2
≤ 1.

We obtain from the last two inequalities

∞∑
n=2

1

2

[
(~(n− 1) + ς(nσ + 1− ~))Ba,c

ϑ,m(n)

ς(σ + (1− ~))

]2
(a2n + b2n) ≤ 1. (7.1)

But h(z) ∈ TS(~, σ, ζ), if and only if

∞∑
n=2

[~(n− 1) + ζ(nσ + 1− ~)]Ba,c
ϑ,m(n)

ζ(σ + (1− ~))
(a2n + b2n) ≤ 1, (7.2)

where 0 < ζ < 1, however (7.1) implies (7.2) if

[~(n− 1) + ζ(nσ + 1− ~)]Ba,c
ϑ,m(n)

ζ(σ + (1− ~))

≤1

2

[
(~(n− 1) + ς(nσ + 1− ~))Ba,c

ϑ,m(n)

ς(σ + (1− ~))

]2
.

Simplifying, we get

ζ ≥ 2~(n− 1)ς2(σ + (1− ~))
[~(n− 1) + ς(nσ + 1− ~)]2Ba,c

ϑ,m(n)− 2ς2(σ + (1− ~))(nσ + 1− ~)
.

8 Integral Means Inequality

To find the integral means inequality and to verify the Silverman Conjecture [18], v ∈ T S a,c
ϑ,m(~, σ, ς)

we use the following subordination result due to Littlewood [11].

Lemma 8.1. If v(z) and u(z) are analytic in U with v(z) ≺ u(z), then for η > 0, and z = reiθ, (0 <
r < 1), ∫ 2π

0

∣∣v(reiθ)∣∣η dθ ≤
∫ 2π

0

∣∣u(reiθ)∣∣η dθ.
Application of lemma 8.1 to v(z) in the class T S a,c

ϑ,m(~, σ, ς) gives the proof of the following
theorem.

Theorem 8.2. Let η > 0, if v ∈ T S a,c
ϑ,m(~, σ, ς), then∫ 2π

0

∣∣v(reiθ)∣∣η dθ ≤
∫ 2π

0

∣∣u(reiθ)∣∣η dθ, z = reiθand (0 < r < 1),

where v2(z) = z − ς(σ+(1−~))
[~(n−1)+ς(nσ+1−~)]Ba,c

ϑ,m(n)
z2.

Proof. Let v(z) be of the form (1.6) and v2(z) = z − ς(σ+(1−~))
[~(n−1)+ς(nσ+1−~)]Ba,c

ϑ,m(n)
z2. then we show that∫ 2π

0

∣∣∣∣∣1−
∞∑
n=2

anz
n−1

∣∣∣∣∣
η

dθ ≤
∫ 2π

0

∣∣∣∣∣1− ς(σ + (1− ~))
[~(n− 1) + ς(nσ + 1− ~)]Ba,c

ϑ,m(n)

∣∣∣∣∣
η

dθ.
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By Lemma 8.1, it suffices to show that

1−
∞∑
n=2

anz
n−1 < 1− ς(σ + (1− ~))

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)

z

setting

1−
∞∑
n=2

anz
n−1 < 1− ς(σ + (1− ~))

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)

w(z) (8.1)

using (2.1) and (8.1) we obtain,

|w(z) =

∣∣∣∣∣
∞∑
n=2

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ,m(n)

1− γ
anz

n−1

∣∣∣∣∣
≤ |z|

∞∑
n=2

[~(n− 1) + ς(nσ + 1− ~)]Ba,c
ϑ (2)

1− γ
|an|

≤ |z|.
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ciated with Erdély-Kober integral operator, Int. J. Nonlinear Anal. Appl. (2023), 1 - 13.

[3] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969),
429–446.

[4] B.C. Carlson and D.B. Shafer, Starlike and prestarlike hypergeometric functions, J. Math. Anal.
15 (1984), no4, 737–745.

[5] A. Catas, On a certain differential sandwich theorem associated with a new generalized derivative
operator, Gen. Math. 17 (4) (2009) 8395

[6] J.H. Choi, M. Saigo and H.M. Srivastava, Some inclusion properties of a certain family of integral
operators, J. Math. Anal. Appl. 276 (2002), 432–445.

[7] I.B. Jung, Y.C. Kim and H.M. Srivastava, The Hardy space of analytic functions associated with
certain one parameter families of integral operators, J. Math. Anal. Appl. 176,(1993), 138–147.

[8] V. Kiryakova, Generalized fractional calculus and applications, Pitman Research Notes in Math-
ematics Series, 301, John Willey and Sons, Inc. New York, 1994.

[9] Y. Komatu, On analytical prolongation of a family of operators, Math. (Cluj) 32 (55) (1990)
141145.

[10] R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965),
755-7 58.

[11] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23 (7)
(1925), 481–519.

12

Journal of Engineering and Technology Management 72 (2024)

Page No: 2190



[12] A.E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math.
Soc. 17 (1966),352– 357.

[13] K.I. Noor, On new classes of integral operators, J. Natural Geometry 16 (1999), 71–80.

[14] K.I. Noor and M.A. Noor, On integral operators, J. Math. Anal. Appl. 238 (1999), 341–352.

[15] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109–115.

[16] G.S. Salagean, Subclasses of univalent functions, in: Complex Analysis: Fifth Romanian-
Finnish Seminar, PartI (Bucharest, 1981), in: Lecture Notes in Mathematics, vol. 1013, Springer-
Verlag, Berlinand New York, 1983.

[17] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51,(1975),
109 - 116.

[18] H. Silverman, Integral means for univalent functions with negative coefficients, Houston Journal
of Mathematics, vol. 23, 1997, 169-174.

13

Journal of Engineering and Technology Management 72 (2024)

Page No: 2191


