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Abstract. Complex analysis is a branch of mathematics that studies the properties and behavior of 

functions of complex variables, where a complex variable is a quantity that has both a real part and an 

imaginary part. Complex analysis is important in many areas of science, including physics, 

engineering, and computer science. The importance of complex analysis lies in its ability to solve 

problems that are difficult or impossible to solve using only real variables alone. For example, because 

of the complicated integrals involved, many problems in fluid mechanics, electromagnetism and 

quantum mechanics can be solved using complex analysis. This paper introduces an important theorem 

in complex analysis, which is the residue theorem. By applying the residue theorem, several types of 

integrals are transformed into integrals with complex variables, simplifying complexity and difficulty. 

With the help of examples, the application of the residue theorem is demonstrated. This paper 

contributes to extending the idea of integral calculation and facilitates the efficient solution of    integral 

calculations in practical problems. 

 

Keywords: Definite integral, Residue’s theorem, Derivatives of high order formula, argument 

principle, Isolated singularities, Non- isolated singularities, Poles and Zeros of holomorphic functions, 

Analytic function, Complex variable function, essential singular point, single valued function, entire 

function, simple closed curve  Residue Theorem; Singularity; Definite Integral; Complex plane. 

 

 

1. Introduction 

Integrals are a pivotal element of advanced mathematics and an essential part of other interdisciplinary 

fields. In some practical disciplinary problems, scholars usually need to solve some real integrals. 

Some simple real integrals can be solved by some regular integration methods by finding the anti 

derivatives and then applying the Newton-Leibniz formula . However, there are many special forms of 

integrals whose anti derivatives cannot easily find by regular integral methods. This leads to the fact 

that scholars cannot use the Newton-Leibniz formula to solve them . If this particular integral cannot 

be solved, it will cause great difficulties for people conducting research in related fields. This is where 

an important theory in the field of complex functions is used as a tool for solving integrals, which is the 

Residue theorem . 

 

                             The concept of residues is essential in complex analysis. It is a complex number that 

represents the coefficient of the term with a negative power in the Laurent series expansion of a 

complex function . This concept calculates complex integrals with isolated singularities, such as poles 

or branch points, where the function becomes infinite or undefined. The residue theorem is a useful tool 

in complex analysis that allows to compute integrals by summing up the residues of the singularities 

within the contour of integration. By applying the residue theorem, the complex integration can be 
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converted into a simple calculation of the residues, greatly facilitating the overall computational 

difficulty . Thus, the residue theorem enables to solve integrals that were previously considered 

impossible to compute by using the regular method. It has pushed the method of solving the value of 

the definite integral to a new stage, allowing us to calculate integrals that were previously too complex or 

difficult to evaluate. Moreover, the residue theorem has an essential role in the development and 

application of complex variable functions, which are used in many branches of mathematics and 

physics, including electromagnetism, quantum mechanics, and fluid dynamics . 

 

                                        The basic idea of using the residue theorem for integral calculations is: first, 

to convert a function of a real variable into an integral of complex variable along a closed loop curve; 

then, to transform the problem into solving for the residue values at each isolated singular point inside 

the closed loop; finally, to apply the residue theorem to obtain the solution of the product function. 

This paper is intended to provide a systematic summary of the residue theorem and to understand the 

application of this important theorem to integral calculations. 

 

2)  Method 

 

2.1. Residues and Residue Theorem 

 

Let �(�) be a complex function that is analytic except for a finite number of isolated singularities  

within a closed and bounded region �. Let � be a simple, closed, and positively oriented contour  

that encloses all of the singularities of �(�) within �. Then, the residue theorem states that the value  

of the complex integral ∫�  �(�)
� is given by the sum of the residues of �(�) at its singularities within  �  . A contour integral of a holomorphic function � over a closed curve � is equal to the sum of  

Residues   Res��  �(�) of the function at all singularities �� inside the loop multiplies by 2�: 
 

                              ∫� �(�)
� =  2i∑ �������  �(�)��                                            

 

where the sum is taken over all singularities �� of �(�) inside �. If �� is an isolated singularity of a 

holomorphic function �(�) , often denoted as �������  �(�), �����  or Res(�,�� ). Residue ������(�)is 

defined as the contour integral around �� in a punctured disk divided by 2�: 
        

                                    ��������(�) = ����  ∫|����|�⋴ �(�)
�                                     
2.2. Laurent Series 

Let �(�) be a complex function that is holomorphic in an annular region between two concentric circles 

centered at ��. That is, �(�) is continuous and differentiable at every point within this region.  

Suppose the inner circle has radius �� and the outer circle has radius ��, such that �� < |��| < ��.  

Then, �(�) can be expressed as a Laurent Series expansion in terms of the variable (� − ��) as follows: 

 

                                 �(�) = ∑  !"!��" (� − ��)!                                                       
 

where the coefficients $! are given by the line integral:  

 

                                         �! = ��%�  ∮�   '(�)(����)()*  
�                                                 

 

Here, � is any closed contour that lies entirely within the annular region and encircles the point  �� in a counterclockwise direction. The integral � denotes the contour integral, which is evaluated  

by parameterizing the contour and then integrating the resulting expression with respect to the  

parameter. Furthermore, the residue can be defined by the coefficient for the term (� − ��)�� 

of  Laurent  series: ������� �(�) =  ��. 
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2.3. Types of Singularities 

A singularity of a complex function is a point at which the function fails to be analytic. An isolated  

singularity of a complex function �(�) is a point �� in the complex plane such that �(�) is not  

holomorphic in any neighborhood of ��, except possibly at �� itself. In other words, �(�) has a 

singularity at �� that is not a limit point of other singularities of �(�) . There are three types of isolated 

singularities: removable singularities, poles, and essential singularities. The first type is removable 

singularities. A singularity �� of a function �(�) is said to be removable if the function can be defined 

to be analytic at �� by assigning a value to �(��),  

                          which means lim�→�� �(�) =  � ( � is a complex constant). In other words, the singularity 

can be "removed" by defining the function appropriately. Removable singularities are characterized by 

thefact that the function can be extended to be analytic in a neighborhood of ��. The second type is 

poles. A singularity �� of a function �(�) is said to be a pole of order / if �(!)(��)  ≠  0 (2 =0,1,2, … , / −  1), �(6)(��) = 0. The third type is essential singularities. A singularity �� of a 

function �(�) is said to be an essential singularity if it is neither a removable singularity nor a pole. In 

other words, the function cannot be extended to be analytic in any neighborhood of ��. 

                                 Once the type of isolated singularity on a point has been determined, it is possible 

to calculate the residue at that point. The residue is equal to 0 for the removable singularities. Besides, 

the residues on the poles or essential singularities can be defined by the coefficient for the term (� − ��)�� of Laurent series: ����→���(�) =  �� . Particularly, the residues for the poles can be 

defined in a different way: if �� is a first order pole, then the residue at �� is defined as: 

 

                                 ���7�(�), ��8 = lim�→��(� − ��)�(�)                                     
 

By contrast, if �� is a /th order pole, then the residue at �� is defined as 

  

                                 ���7�(�), ��8 = �(6��)! lim�→��7(� − ��)6�(�)86��       

          . 
3.Applications of Residue Theorem in Definite Integrals 

 

3.1. Computing ;;;;(<<<<==== >>>> ???? , >>>>@@@@ AAAA ????)-type Integral 

 

 

Let �( B�C, ��2C) be a rational function with real variables. According to Euler’s formula                      ��D =  B�C +  ���2C, the integrals of the typical type ∫ �( B�C, ��2C)
C �%�    can be converted by 

noting � =  ��D(0 ≤ C ≤ 2),  B�C = �G�H*
� , ��2C = ���H*

�� , 
C = I��� , thus transforming this types of 

integral into the contour integral of a complex function for the following form: 

 

                                     J = ∮|�|��   � K�G�H*
� , ���H*

�� L I���                                   

 

Then the integral can be evaluated by applying the residue theorem 

 

                                    ∫ �( B�C, ��2C)
C =�%�  2� ∑ ���7�(�)8�                
 

This paper will illustrate the method for solving these types of integral through some examples.  

The first example is  

                                                   

                 .                                                 J = ∫ �MN�DIDO�P�MND�%�              
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For the � values lying on the unit circle �: {|�| = 1} on the complex plane, they can be defined  

as  � =  ��D , (0 ≤  C ≤  2) . According to Euler’s formula, it can be noted that,  ��  =   B�2C + ���22C, ��� =   B�2C −  ���22C.  B�2C = �QG�HQ
� , ��22C = �Q��HQ

�� , 
C = I��� .The 

integrand then be converted into the following form,  

  

                                              �(�) = �QG�HQ
���7O��(�G�H*)8 = (�RG�)���Q(���)(����)    . 

. 

 

The singularities of �(�) are the poles at the points ��  =  0 of the order two and ��  = �� and  �S  =  2, two simple poles. However, the point�S is not lying inside the unit circle C: {|z|=1}. Thus,  

it only has the requirement to compute the residues at �� and �� . 

 Since ���70, �(�)8  = lim�→� II�  �� �(�)  = O�T   and  ���7�� , �(�)8  =  lim�→*Q
K� − ��L �(�)  =  − �U��P , the 

integral can be solved by applying the Residue theorem, i.e., 
                      

                                          J = ∫ �MN�� I�O�P�MN��%� = 2V� KO�T − �U��P L = %W                

 
The second example is 

                                  J = ∫  B��!�%� � 
�                                           

 

where 2 is an integer. By Euler’s formula, it can be noted that  B� C = �G�H*
� , then the above  

integral can be converted into the form 

                                           

                     J = ∫�   K�G�H*
� L�! I��� =  ���Q(  ∫� ( �QG��Q()*)�! 
�                             

 

The integrand �(�) = ( �QG��Q()*)�! has a singularity at � = 0 which has the order of 22 + 1. Now  

the  computation is available for the residue at this point as 

 

                     ���70, �(�)8 =  lim�→� X ��!!  IQ(
I�Q(  7( �� + 1)8�! Y  

The integral can be computed by applying the residue theorem: 

 

  J =  2� – ��Q(  ���70, �(�)8 = ��Q(H* lim�→� X �(�!!)  IQ(
I�Q(  7(�� + 1)8�!Y  

 

Thus, the answer can be obtained by expanding the formula to the  following form 

 

 

    J = %�Q(H*(�!)!  lim�→� IQ(
I�Q(  7  �!� (��)�! + ⋯ +  �!! (��)!8 + ⋯ +   �!�! = %�Q(H*   �!!                
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  3.2.     
\(])^(])    type Integral: 

 

           The first integral that belongs to this type is 

 

                                                                _ = ∫ ]`a](]`Gb)(]`Gc)`"d                                                                             

 

Firstly, since the integrand is an even function,  

 

                                                                      ∫ eQIe(eQGf)(eQGP)R = �� ∫ eQIe(eQGf)(eQGP)Q"�""�  .  

 

 Then, let the integrand be �(�)  = �Q
(�QGf)(�QGP)Q , which is along the whole real axis on the complex 

plane. The function here has the isolated singularities at � = ±3� which are single poles and � = ±2� 
which are double poles and the function is holomorphic everywhere else. Now set up a semicircle on 

the complex plane which have the radius greater than 3, the singular points � = 3� and � = 2� of �(�)is 

in the upper half plane in the interior of the semicircular region bounded by the segment [−g, g]of the 

upper half  h of the circle |�| = g from −g to g and the real axis. Thus, now the residue theorem can be 

applied by integrating f counterclockwise around the boundary of this semicircular region, the function 

is now be converted into the form: ∫ �(i)
i + ∫�j  �(�)
�h�h = 2�7���(2�, �(�))  +  ���(3�, �(�))8. 
The residues at the points are       

    

      ���72�, �(�)8 = lim���� II� (� − 2�)�  �Q(�QGf)(�QGP)Q = lim�→�� II�  ( �Q
(�QGf)(�G��)Q = ��S����     

 

                                                                     and           

    

 ���73�, �(�)8 = lim�→S�(� − 3�) �Q(��S�)(�GS�)(�QGP)Q  = S�O� ,                                                                                                          

 

              thus, the total integral                    

       

                    ∫ �(i)
i + ∫�j
h�h  �(�)
� = 2V� K��S���� + S�O�L =  %��� 

 

 

           Therefore, 

 

                                    ∫ �(i)
i =  %��� − ∫�j �(�)
�h�h          
                                                   

which is correct for all the values of g above 3.The value of the integral can be find on the right of the 

equation approaches 0 as g → ∞. If � is a point on the half circle �h  then |��|  =  |�| � =  g� 

and by the trangle inequality 

 

  |� + l| ≥ ||�| −|l||, then  |(�� + 9)(�� + 4)�| ≥  (||�|� − 9|)(||�| � − 4�|) =  (g� − 9)(g� − 4)� .  
 

Therefore, the required estimate is obtained as follows,  
 

             | ∫�j  �(�) | =   | ∫�j  
�QI�(�Q�f)(�Q�P)Q | ≤  hQ

(hQ�f)(hQ�P)Q  p( h)   
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 where p(�h)  =  g is the length of the semicircle �h 

 

. Then it infers that   |  ∫�j 
�QI�(�Q�f)(�Q�P)Q | ≤   %hQ

(hQ�f)(hQ�P)Q 

When g → ∞, the right hand side of the inequality goes to 0, thus, ∫�j  �(�)
� =  0  
.Now, the principal value is P. V. ∫  �(i)
i "�" =  limh→" ∫ �(i)
ih�h  = %���. Because the integrand is 

even, so the Cauchy principal value exists, i.e. ∫ eQIe(eQ�f)(hQ�P)Q =  %���"� . 

 

 

3.3.  q(])rst] - type Integral: 

 

 

                    Here, the first example is 

                                                                _ = ∫ ]r`s]
]`�u  a]"�"  

 

By partial fraction, it is observed that the integral has singularities i = ±1. Hence, 

 

                                 J = limv→"h*hQ→�)
(∫ ewQxy

eQ��  
i + ∫ ewQxy
eQ��  
i + ∫ ewQxy

eQ��  
iv�GhQ
��hQ��Gh*

���h*�v )  

 

 

 Let    J� = ∫Nj*
�wQxz�Q��  
� ,   J� = ∫NjQ

�wQxz�Q��  
�   and    Jv = ∫�{
�wQxz�Q��  
�.  Now  �(�) = �wQxz�Q��      

 

is  holomorphic inside the above closed contour. By applying the Cauchy integral theorem, 

 

      ∫ ewQxyeQ��  
i + ∫ ewQxyeQ��  
i��hQ��Gh* + ∫ ewQxyeQ��  
i + J� + J� + Jv = 0v�GhQ
���h*�v  

 

By the Jordan Lemma, it follows that when    � → 0,    
��Q��  → 0 .  

 

 So ,  limv→" Jv = 0  .  Since � has simple poles on � = ±1,  

 

limh*→�) J� =  − ����(�, −1) =  −� lim�→��(� +  1)�(�) = ���wHQx�   

 

  Besides,            limhQ→�) J� = −����(�, 1) = ���wQx
�   

 

                                                        P. V .   ∫ ewQxy
eQ��  
i = ��wHQx

�"�" +  ��wQx
� =  � B�(2)  . 
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The second example is about the Fourier integral 

                                                                                             ∫ |s}`]]`G]Gu"�"  a] 

It is impossible to do the partial fraction for the integrand �, and it can be easy to find that �(�)  = ��QG�G� 

has no singularity along the real axis.  Besides ,  lim�→" ��QG�G� = 0 . However, the integrand does  

have simple poles on the complex plane which are ��  =  �Q~x�  and  ��  =  �HQ~x�  .  

By virtue of the Jordan Lemma, it can be noted that, 

 

                                  J = J/ ∫ wQxy
eQGeG�"�"  
i = J/ ∮� wQxz

�QG�G�  
� 

where � is noted as the union of the infinitely large upper semi-circle and its diameter along the real axis. Thus, 

it only requires people to compute the residue at ��.  

By applying the residue theorem, the integral can be converted to the form     

                   ∮� wQxz�QG�G�  
� =   2���� K wQxz�QG�G�  , ��L  =  2� wQx�Q~x�
�wQ~x� G�  

Therefore, it follows that 

                                         J = �2� wQx�Q~x�
�wQ~x� G�� =  �√S  ��√S��21 

 

The third example is of the form 

                                                             _ = ∫ ��|](]`G�`)(]`G�`)"�"  a] 

where $ > � > 0. 

Let  �(i) = 1 and �(i)  =  (i�  +  $�)(i�  +  ��) . Clearly, deg(�) = 4 > 1 + deg (�).      

 All the zeros of �(i) are i = ±$�, ±��. It can be noted that �(i) ≠ 0 for all the real i and i = $�, �� are the zeros 

of �(i) that lie in the upper half plane 

 

    Consider the function, 

                      �(�) = �(�)�(�)  ��� =  wxz
(�QG�Q)(�QG�Q)  , (� = 1 > 0). The function �(�) has the simple poles at � = $� 

and � = �� that lie in the upper half plane. Thus, the residues at these points  need to be computed. 

 

���7$�, �(�)8  =  lim�→���� –  $�� wxz(�QG�Q)(�QG�Q) =  lim�→��(� + $�) wxz(�G��)(�QG�Q)) = ��wH���(�Q��Q)  , 
    .         .                        and    

  .                     ���7��, �(�)8  = ��wH�
��(�Q��Q)) . 

Thus, 

                                 J =  −2 J/ K ��wH�
��(�Q��Q) + ��wH�

��(�Q��Q)L =  �(�Q��Q)  KwH�
�  – wH�

� L 
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