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Abstract 

This survey paper delves into the realm of high-resolution and multiclass image synthesis leveraging 

Generative Adversarial Networks (GANs). It explores the evolution and advancements in GAN 

architectures tailored for generating high-quality, diverse images across multiple classes. Emphasizing the 

pivotal role of GANs in image synthesis, the paper discusses techniques for high-resolution image 

synthesis, including progressive GANs and attention mechanisms. Additionally, it covers strategies for 

multiclass image synthesis, encompassing conditional GANs and attribute manipulation. 

The survey scrutinizes evaluation metrics crucial for assessing the quality and diversity of synthesized 

images, elucidating their relevance in high-resolution and multiclass image synthesis scenarios. Real-world 

applications across diverse domains, such as medicine, art, and entertainment, underscore the practical 

significance of GAN-based image synthesis. 

Highlighting challenges and future directions, the paper underscores existing limitations in GAN-based 

synthesis while proposing potential research avenues and innovations. The synthesis of high-resolution 

and multiclass images through GANs holds substantial promise in various industries, signaling its pivotal 

role in reshaping image generation techniques. 

This summary encapsulates the core components and the significance of the survey paper, providing a 

glimpse into the detailed exploration of high-resolution and multiclass image synthesis using GANs. 

1. Introduction 

Generative Adversarial Networks (GANs) are a class of deep learning frameworks introduced by Ian 

Goodfellow and his colleagues in 2014. GANs consist of two neural networks, the generator and the 

discriminator, engaged in a competitive game framework. The generator is responsible for creating 

synthetic data that resembles real data. It takes random noise or a latent vector as input and generates 

data (e.g., images) that should ideally be indistinguishable from real samples. Often comprised of multiple 

layers using convolutional or deconvolution operations, the generator learns to map input noise to the 

output space, progressively refining the generated data to resemble the real distribution. Typically, the 

generator outputs images with pixel values in the desired range (e.g., [0, 1] for normalized images). The 

discriminator acts as a classifier, distinguishing between real and fake data. It evaluates the authenticity 

of the generated samples by the generator. Similar to a classifier, it consists of convolutional layers 
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followed by fully connected layers, aiming to classify the input as real or fake. Produces a single value 

(probability) indicating the likelihood that the input data is real. 

Training Process: 

a. Adversarial Training: The generator and discriminator are trained simultaneously in a minimax game 

scenario. 

b. Generator Training: Initially, the generator produces fake data from random noise. The generated data 

is fed into the discriminator, aiming to fool it by generating more realistic samples. 

c. Discriminator Training: The discriminator learns to differentiate between real and fake data. It 

improves its ability to correctly classify the generated (fake) and real data samples. 

d. Backpropagation: Both networks update their weights through backpropagation, adjusting their 

parameters to minimize their respective loss functions. 

 Loss Functions: 

a. Generator Loss: Measures how well the generator fools the discriminator. It aims to minimize the 

probability that the discriminator correctly identifies fake data as fake. Commonly, it uses the negative 

log likelihood or binary cross-entropy. 

b. Discriminator Loss: Measures the ability of the discriminator to distinguish between real and fake data. 

It tries to correctly classify real and fake samples. It's typically a binary cross-entropy loss. 

 

 

Fig1.1 Architecture of GAN 

The generator and discriminator operate in an adversarial manner. The generator aims to deceive the 

discriminator by generating increasingly realistic data, while the discriminator strives to correctly 

differentiate between real and fake data. 

Through an iterative training process, both networks improve their performance. The generator's goal is 

to produce data that is convincing enough to fool the discriminator, while the discriminator aims to 

become more adept at distinguishing real from generated data. 

Applications in Image Synthesis: 

• GANs have found widespread applications in image synthesis, enabling the generation of high-

quality, diverse images. 
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• From generating photorealistic images to creating art, altering image attributes, and even aiding 

in medical image synthesis, GANs have showcased their capability to produce novel and realistic 

visual content. 

Significance: 

• GANs have revolutionized the field of image synthesis by enabling the creation of data that 

mirrors real-world scenarios, thereby finding applications across various industries, including 

entertainment, fashion, healthcare, and more. 

Importance of high-resolution and multiclass image synthesis: High-resolution, diverse image 

synthesis is integral across multiple domains due to its impact on improving datasets, enabling 

realistic content creation, enhancing machine learning models, aiding medical diagnosis, fostering 

creativity, and supporting scientific research. Generating such images through advanced 

techniques like GANs plays a crucial role in addressing challenges and fueling innovations in these 

diverse fields. 

Generating high-resolution, diverse images holds immense significance across diverse domains due to 

several compelling reasons: 

1. Data Augmentation and Realism: High-resolution images with diverse characteristics contribute 

to enhancing datasets used for training machine learning models. Realistic and varied images help 

improve model robustness and generalization, enabling better performance tasks. 

2. Visual Content Generation: In fields such as entertainment, advertising, and design, high-

quality, diverse images are pivotal. They fuel content creation for movies, advertisements, video 

games, and virtual/augmented reality, enriching visual experiences for consumers. 

3. Medical Imaging and Diagnosis: In healthcare, synthesizing high-resolution, multiclass images 

aids in generating synthetic medical images for research, training medical professionals, and 

assisting in disease diagnosis. Diverse images help in simulating various conditions and scenarios. 

4. Object Detection and Recognition: High-resolution, diverse image datasets are fundamental for 

training computer vision models. They enable accurate object detection, segmentation, and 

recognition in real-world environments, benefiting fields like autonomous vehicles, surveillance 

systems, and robotics. 

5. Artistic Expression and Creativity: For artists and creators, access to diverse and high-resolution 

images fosters creativity. It fuels artistic expression by offering a wide range of visual elements 

and inspirations for new creations. 

6. Scientific Research and Simulation: Various scientific disciplines utilize image synthesis for 

simulations, experiments, and data generation. High-resolution, multiclass images facilitate 

research in astronomy, climate modeling, and material sciences. 

Advancements and improvements in GAN architectures have been pivotal for handling high-resolution 

and multiclass image synthesis, addressing challenges and enhancing the quality and diversity of 

generated images. Several key advancements have contributed significantly. 

2. High-Resolution Image Synthesis with GANs 

several techniques have been developed to tackle high-resolution image synthesis within the framework 

of Generative Adversarial Networks (GANs). Here are some prominent techniques: 
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1. Progressive GANs (ProGANs): Progressive Growing: ProGANs gradually increase the image resolution 

during training, starting from low resolution and incrementally adding details. This step-by-step growth 

allows for stable training and generation of high-resolution images (e.g., from 4x4 to 8x8, 16x16 etc..). 

2. Super-Resolution GANs (SRGANs): Single Image Super-Resolution: SRGANs aim to generate high-

resolution images from low-resolution inputs. They employ adversarial loss along with content loss to 

enhance image details and produce higher-resolution outputs. 

3. Attention Mechanisms: Self-Attention: Inspired by transformer architectures, self-attention 

mechanisms in GANs enable the model to focus on specific regions or features of an image, capturing 

long-range dependencies and enhancing detail preservation in high-resolution synthesis. 

4. Enhanced Architectures (StyleGAN, StyleGAN2): Fine-Grained Control: StyleGAN and its iterations focus 

on controlling specific attributes in synthesized images. They allow for manipulation of features, 

improving image quality while maintaining high resolution. Techniques like adaptive instance 

normalization (AdaIN) and style mixing regularization contribute to these enhancements. 

5. Hierarchical Architectures: Hierarchical GANs: These architectures organize image synthesis in a 

hierarchical manner, generating images by focusing on multiple scales or levels of detail. This hierarchical 

approach aids in synthesizing high-resolution images with fine details. 

6. Upsampling Techniques: Transposed Convolutional Layers: These layers aid in upsampling images, 

reconstructing higher-resolution representations from lower-resolution inputs. GANs often employ 

transposed convolutions or deconvolutional layers for this purpose. 

7. Multi-Scale Discriminators: Feature Pyramid Networks (FPNs): Employing multi-scale discriminators 

allows the GAN to analyze images at multiple resolutions simultaneously, enhancing the perception of 

both global and local details. 

8. Data Augmentation and Preprocessing: Augmented Training Data: Techniques like data augmentation, 

where the network is trained on both original and augmented versions of the dataset, can aid in learning 

more intricate features and details. 

9. Self-Supervised Learning: Self-Supervision: By employing self-supervised learning techniques, GANs can 

leverage additional information or constraints to guide the generation process, improving the fidelity of 

high-resolution synthesis. 

These techniques and advancements contribute to the generation of high-resolution images with 

improved quality, realism, and fine details, addressing challenges and limitations in high-resolution image 

synthesis using GANs. Integration of these techniques continues to refine GAN-based image synthesis in 

various domains.  

Generating high-resolution images using Generative Adversarial Networks (GANs) comes with several 

challenges, but there are strategies and techniques to address these hurdles: 

1. Computational Complexity: 

• Challenge: Handling high-resolution images demands significant computational resources, 

increasing training time and memory requirements. 

• Strategy: Optimizing network architectures, leveraging parallelization, and utilizing hardware 

accelerators (like GPUs or TPUs) can mitigate computational demands. 

2. Mode Collapse: 

• Challenge: GANs might suffer from mode collapse, where the generator produces limited 

diversity, resulting in repetitive or limited variations in generated images. 
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• Strategy: Employing regularization techniques (like spectral normalization, gradient penalties) or 

incorporating diversity-promoting loss terms can mitigate mode collapse and encourage diverse 

output. 

3. Training Stability: 

• Challenge: Training GANs for high-resolution images can be unstable, leading to convergence 

issues, oscillating losses, or vanishing gradients. 

• Strategy: Variants like Wasserstein GAN (WGAN) and its improvements (WGAN-GP) offer more 

stable training by modifying the loss function or adding gradient penalties, enhancing 

convergence and stability. 

4. Preserving Fine Details: 

• Challenge: GANs may struggle to maintain fine-grained details in high-resolution synthesis, 

resulting in loss of intricate features. 

• Strategy: Techniques like attention mechanisms, progressive growing, or hierarchical 

architectures focus on preserving and enhancing fine details by allowing the model to attend to 

specific regions or progressively add finer features. 

5. Dataset Quality and Diversity: 

• Challenge: Insufficient or biased training datasets for high-resolution images can limit model 

performance and diversity in synthesized outputs. 

• Strategy: Curating diverse and high-quality datasets, employing data augmentation, or leveraging 

transfer learning from pre-trained models can enhance dataset diversity and quality. 

6. Memory Constraints: 

• Challenge: GANs operating on high-resolution images often encounter memory constraints, 

restricting batch sizes or model complexity. 

• Strategy: Utilizing memory-efficient architectures, employing gradient accumulation, or 

leveraging mixed precision training can alleviate memory limitations. 

7. Evaluation Metrics: 

• Challenge: Standard evaluation metrics may not effectively measure the quality and realism of 

high-resolution images. 

• Strategy: Developing new evaluation metrics or combining multiple metrics (e.g., Frechet 

Inception Distance, Structural Similarity Index) tailored for high-resolution images can better 

assess image quality. 

8. Latent Space Disentanglement: 

• Challenge: Controlling specific attributes or features in high-resolution image synthesis requires 

disentangled representations in the latent space. 

• Strategy: Techniques focusing on disentangled representation learning or attribute manipulation 

facilitate better control over synthesized images, enabling attribute-specific generation. 

Addressing these challenges involves a combination of architectural improvements, regularization 

techniques, dataset curation, and innovative approaches that collectively contribute to enhancing the 

quality and diversity of high-resolution image synthesis using GANs. 

3. Multiclass Image Synthesis with GANs 

Multiple methods and strategies have been developed to facilitate multiclass image synthesis within the 

framework of Generative Adversarial Networks (GANs). Here are some prominent techniques: 
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1. Conditional GANs (cGANs): 

• Purpose: cGANs extend the basic GAN framework by conditioning both the generator and the 

discriminator on additional information, such as class labels. 

• Usage: By providing class labels as conditioning information, cGANs allow controlled generation 

of images belonging to specific classes. 

2. Class-Conditional Generation: 

• Purpose: Similar to cGANs, this technique conditions the GAN model on specific classes during 

training and generation. 

• Usage: It enables the model to synthesize images corresponding to different classes, facilitating 

multiclass image generation. 

3. Attribute Manipulation: 

• Purpose: GAN architectures incorporating attribute manipulation techniques allow for the 

modification of specific attributes or features in generated images. 

• Usage: By controlling and manipulating attributes (e.g., age, gender, pose) within the latent space, 

GANs can generate diverse images across multiple attribute variations. 

4. Disentangled Representation Learning: 

• Purpose: Disentangled representation learning aims to learn separate and independent factors of 

variation within the latent space. 

• Usage: By disentangling different attributes (e.g., shape, color, style) in the latent space, GANs 

can generate images with varied attributes independently, facilitating multiclass synthesis. 

5. Multi-Modal Generation: 

• Purpose: Facilitating the generation of images belonging to different classes or modes within the 

same model. 

• Usage: Models capable of multimodal generation can produce diverse outputs corresponding to 

various classes, promoting multiclass synthesis. 

6. Hierarchical Attribute Representation: 

• Purpose: Hierarchical representations in GAN architectures enable the modeling of attributes at 

different levels of abstraction. 

• Usage: This technique allows for the generation of images with diverse attributes, controlled at 

different hierarchical levels. 

7. Attribute-Conditional Synthesis: 

• Purpose: Conditioning the generation process on specific attributes or features. 

• Usage: It enables the model to synthesize images with desired attribute combinations, allowing 

for precise control over multiclass image synthesis. 

8. Attention-Guided Multiclass Synthesis: 

• Purpose: Incorporating attention mechanisms within conditional GANs facilitates better handling 

of multiclass synthesis. 

• Usage: Attention mechanisms help the model focus on specific class-related details, improving 

the generation process for diverse classes. 

These methods and techniques collectively enable GANs to generate diverse images across multiple 

classes or attributes, allowing for controlled and precise multiclass image synthesis. Integration of these 

strategies contributes to the generation of high-quality, diverse, and realistic images across various classes 

within the GAN framework. 
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4. Evaluation Metrics for Image Synthesis 

Several metrics are used to assess the quality and diversity of generated images produced by Generative 

Adversarial Networks (GANs). Here's a discussion on some commonly used metrics: 

1. Peak Signal-to-Noise Ratio (PSNR): 

• Purpose: Measures the quality of generated images by calculating the ratio between the 

maximum possible power of an image and the power of corrupting noise. 

• Limitation: PSNR tends to correlate poorly with human perception, as it doesn't consider 

perceptual differences. 

2. Structural Similarity Index (SSIM): 

• Purpose: Evaluates the similarity between the generated and real images based on luminance, 

contrast, and structural similarity. 

• Limitation: SSIM might not capture higher-level perceptual differences or nuances. 

3. Frechet Inception Distance (FID): 

• Purpose: Compares feature distributions between real and generated images using statistics from 

an Inception Network. 

• Advantages: FID captures both quality and diversity, offering a more reliable assessment of image 

generation performance. 

4. Inception Score (IS): 

• Purpose: Measures the quality and diversity of generated images based on class probability and 

entropy using the Inception Network. 

• Limitation: IS is susceptible to mode dropping, where it might favor high-confidence predictions 

for a limited set of classes. 

5. Fréchet ResNet Distance (FRD): 

• Purpose: Similar to FID, FRD measures the distance between feature distributions of real and 

generated images using ResNet features. 

• Advantages: FRD offers an alternative to FID, potentially capturing finer details in image 

generation. 

6. Precision and Recall for Diverse Subsets (PRDS): 

• Purpose: Evaluates diversity by calculating precision (how relevant generated images are) and 

recall (how many diverse images are generated). 

• Advantages: PRDS considers both diversity and relevance in assessing the generated images. 

7. Kernel Inception Distance (KID): 

• Purpose: Measures the distance between feature distributions using kernel embeddings. 

• Advantages: KID provides a more accurate assessment of the visual quality and diversity of 

generated images. 

8. Learned Perceptual Image Patch Similarity (LPIPS): 

• Purpose: Evaluates perceptual similarity between real and generated images based on learned 

representations. 

• Advantages: LPIPS considers perceptual differences, offering a more human-like evaluation of 

image quality. 

Each metric has its strengths and limitations in assessing the quality, diversity, and perceptual fidelity of 

generated images. Combining multiple metrics or selecting metrics based on specific evaluation objectives 

can provide a more comprehensive assessment of GAN-generated images. Researchers often use a 
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combination of these metrics to capture different aspects of image quality and diversity when evaluating 

the performance of GANs. 

PSNR and SSIM are inadequate for high-resolution images as they focus on pixel-wise similarity, ignoring 

higher-level perceptual differences crucial in high-resolution synthesis. While FID and Inception Score are 

widely used, they might not adequately represent perceptual quality or diverse high-resolution image 

features, leading to potential inaccuracies.  FRD, KID, and LPIPS offer more promising prospects in 

assessing high-resolution images by considering feature distributions or learned perceptual differences. 

5. Future Directions 

The field of high-resolution and multiclass image synthesis using Generative Adversarial Networks (GANs) 

is continually evolving. Future research directions, potential improvements, and emerging trends could 

focus on several key areas: 

5.1 Architectural Innovations: 

a. Attention Mechanisms: Further integrating attention mechanisms within GAN architectures to 

focus on specific regions or attributes in high-resolution and multiclass synthesis. 

b. Hierarchical Models: Developing hierarchical GAN architectures to capture multiple levels of 

detail and attributes for diverse image generation. 

c. Memory-Efficient Designs: Designing more memory-efficient architectures to handle high-

resolution images, enabling larger batch sizes and complex models. 

5.2 Improved Training Strategies: 

a. Stability Enhancements: Innovating training methods to mitigate instability issues, including mode 

collapse, vanishing gradients, and oscillating losses in high-resolution synthesis. 

b. Transfer Learning and Few-Shot Learning: Exploring techniques to leverage transfer learning or 

few-shot learning to adapt pre-trained models for diverse high-resolution synthesis tasks. 

5.3 Disentangled Representation Learning: 

a. Attribute Manipulation: Advancing methods for disentangled representation learning to enable 

precise attribute control and manipulation across diverse classes. 

b. Fairness and Bias Mitigation: Researching methods to mitigate biases in synthesized images across 

multiple classes, ensuring fairness and accuracy. 

5.4 Evaluation Metrics and Benchmarking: 

a. Novel Evaluation Metrics: Developing comprehensive evaluation metrics tailored for high-

resolution and multiclass image synthesis to better capture diversity, quality, and perceptual 

fidelity. 

b. Benchmark Datasets: Curating benchmark datasets specifically designed for high-resolution and 

multiclass synthesis tasks, enabling standardized evaluation across various models. 

5.5 Ethical Considerations and Robustness: 

a. Ethical Guidelines: Addressing ethical concerns related to GAN-generated images, ensuring 

responsible use in domains like healthcare, criminal justice, and media. 

b. Robustness Enhancements: Investigating techniques to enhance the robustness of GANs against 

adversarial attacks and ensuring the integrity of synthesized images. 

5.6 Cross-Domain and Multi-Modal Synthesis: 

a. Cross-Domain Translation: Exploring methods for high-resolution and multiclass synthesis across 

different domains, enabling translation between diverse datasets (e.g., art to photography, 

sketches to photos). 
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b. Multi-Modal Generation: Advancing models capable of generating diverse outputs, including 

images, text, and other modalities, enriching the spectrum of synthesized content. 

5.7. Continual Learning and Adaptive Synthesis: 

a. Continual Learning: Researching continual learning techniques to allow GANs to adapt and learn 

continuously from new data, enhancing adaptability in diverse synthesis tasks. 

b. Adaptive Synthesis: Developing models capable of adaptive synthesis, dynamically adjusting to 

different attributes or classes based on changing conditions or requirements. 

6. Conclusion 

GANs revolutionize image synthesis, enabling the generation of high-resolution, diverse, and realistic 

images across multiple classes or attributes. Computational complexity, training instability, mode 

collapse, and the quality-diversity trade-off are major challenges in generating high-resolution images 

using GANs. Mode collapse, dataset limitations, perceptual fidelity, and the difficulty in disentangled 

representation learning pose challenges in generating diverse images across multiple classes. Progressive 

GANs, attention mechanisms, hierarchical architectures, and memory-efficient designs show promise in 

handling high-resolution and multiclass synthesis challenges. Existing evaluation metrics like FID, 

Inception Score, and SSIM have limitations in capturing both quality and diversity in high-resolution and 

multiclass synthesis. Emerging trends focus on architectural innovations, stability enhancements, 

disentangled representation learning, novel evaluation metrics, ethical considerations, and cross-domain 

synthesis for GANs. GANs find applications in medicine, art, entertainment, fashion, robotics, climate 

modeling, and more, impacting various industries with diverse synthesized outputs. Ethical 

considerations, fairness, and robustness are crucial in GAN-based image synthesis, ensuring responsible 

usage and integrity of synthesized images. 

High-resolution and multiclass image synthesis using GANs stand at the forefront of innovation, promising 

transformative impact across diverse industries. The ability to generate diverse, realistic, and high-quality 

images across multiple classes addresses challenges, enhances creativity, improves diagnostics, and drives 

advancements in various domains, shaping the future of image synthesis and its applications. 
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