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ABSTRACT  

This study presents a comprehensive evaluation of anomaly detection models utilizing advanced feature extraction 

techniques including Local Phase Quantization Ensemble Spatial Pyramid Histogram of Oriented Gradients (LPQ 

ensemble SP-HOG), Space-Time Adaptive Processing (STAP), and Statistical Features. The models were applied to 

diverse surveillance datasets such as UCSD Ped2, CUHK Avenue, Shanghai Tech Campus, UCF-Crime, and Street 

Scene. Performance metrics including accuracy, precision, recall, F1 score, AUC, log loss, specificity, balanced 

accuracy, and cross-validation accuracy were analysed. Results indicate that Optimized Deep Convolutional Neural 

Networks (CNNs) consistently outperform traditional machine learning and standard deep learning models, setting a 

new benchmark in anomaly detection for surveillance videos. The findings underscore the importance of advanced 

feature extraction techniques and optimized deep learning architectures in enhancing anomaly detection capabilities. 
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1. INTRODUCTION 

Anomaly detection in surveillance videos is a critical task that plays a significant role in various domains such as public safety, 

healthcare, and industrial monitoring. The ability to detect unusual activities in real-time can prevent potential threats and ensure 

safety in sensitive areas. Traditional anomaly detection methods often fall short due to the complexity and volume of video data, 

necessitating the development of more advanced techniques [1, 2]. 

Recent advancements in deep learning have significantly improved the accuracy and robustness of anomaly detection models. These 

models can automatically learn complex patterns and features from vast amounts of data, making them particularly well- suited 

for video analysis [3, 4]. However, the performance of these models is highly dependent on the quality of the features extracted 

from the raw data. This underscores the need for robust feature extraction techniques that can capture essential characteristics of the 

data. 

This study aims to evaluate the performance of anomaly detection models using advanced feature extraction techniques, including 

Local Phase Quantization Ensemble Spatial Pyramid Histogram of Oriented Gradients (LPQ ensemble SP-HOG), Space-time 

Adaptive Processing (STAP), and Statistical Features. The goal is to determine how these techniques can enhance the performance 

of traditional machine learning and deep learning models in various surveillance datasets such as UCSD Ped2, CUHK Avenue, 

Shanghai Tech Campus, UCF-Crime, and Street Scene. 
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Advanced feature extraction techniques like LPQ ensemble SP-HOG capture texture and gradient information at multiple scales, 

while STAP focuses on extracting motion related features. Statistical features, on the other hand, provide a comprehensive summary 

of the data by calculating measures like mean, variance, skewness, and kurtosis [9, 10, 11]. By combining these techniques, we aim 

to enhance the ability of anomaly detection models to identify unusual activities accurately and efficiently. 

Optimized Deep Convolutional Neural Networks (CNNs) have shown great promise in achieving high accuracy and robustness in 

anomaly detection tasks. These models leverage hybrid activation functions and advanced architectures to improve feature 

representation and classification performance [18]. This study evaluates these optimized CNNs against traditional machine learning 

models and standard deep learning models to establish a benchmark for anomaly detection in surveillance videos. 

The findings of this study will provide valuable insights into the effectiveness of different feature extraction and classification 

techniques, guiding future research and development in the field of anomaly detection [18]. 

 

2. THE NEED FOR FEATURE EXTRACTION AND TECHNIQUES 

2.1 Need for Feature Extraction 

Feature extraction is a critical step in the process of anomaly detection, particularly in surveillance videos. It involves transforming 

raw data into a set of meaningful and informative features that can be used by machine learning algorithms for classification tasks. 

The importance of feature extraction can be summarized as follows:  

Dimensionality Reduction:  Raw video data is high dimensional, making it computationally expensive to process. Feature 

extraction reduces the dimensionality of the data while retaining essential information, making it more manageable for algorithms 

to handle. 

Improved Accuracy: Extracting relevant features helps in highlighting the important aspects of the data, which improves the 

accuracy of the anomaly detection models. It enables the models to focus on critical patterns and anomalies, leading to better 

performance. 

Noise Reduction: Feature extraction techniques help in filtering out noise and irrelevant information from the raw data. This 

enhances the quality of the input data, leading to more robust and reliable anomaly detection. 

Enhanced Interpretability: By transforming raw data into a set of features, it becomes easier to interpret and understand the 

underlying patterns and structures within the data. This is particularly important for identifying and explaining anomalies. 

Efficiency: Efficient feature extraction techniques reduce the computational burden, enabling faster processing and real-time 

anomaly detection, which is crucial for surveillance applications. 

 

2.2 Techniques Used for Feature Extraction 

2.2.1.1 Local Phase Quantization Ensemble Spatial Pyramid Histogram of Oriented Gradients (LPQ ensemble SP-HOG): 

Local Phase Quantization (LPQ): This technique captures texture information by analysing the phase of the local Fourier transform. 

It is robust to variations in illumination and noise, making it suitable for complex surveillance environments. 

2.2.1.2 Spatial Pyramid Histogram of Oriented Gradients (SP-HOG): 

SP_HOG captures gradient information at multiple scales and orientations. It divides the image into spatial regions and computes 

histograms of gradient directions, providing a detailed representation of the shape and texture information. 

2.2.2 Space-Time Adaptive Processing (STAP): 

STAP: This technique is used to extract motion-related features by analysing the spatial and temporal aspects of video data. It 

captures dynamic changes and movements within the scene, which are crucial for detecting anomalies in surveillance videos. 

2.2.3 Statistical Features: 

Statistical Measures: Statistical features such as mean, variance, skewness, and kurtosis are calculated to provide a comprehensive 

summary of the data. These features capture the overall distribution and variability within the data, aiding in the identification of 

unusual patterns and anomalies.  
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Feature extraction techniques like LPQ ensemble SP- HOG, STAP, and statistical features provide a robust foundation for anomaly 

detection models. They enable the models to effectively capture and analyse the essential characteristics of the data, leading to 

improve accuracy and reliability in detecting anomalies in surveillance videos. 

 

3. NEED FOR CLASSIFICATION IN ANOMALY DETECTION 

Classification is a critical step in the process of anomaly detection in surveillance videos. It involves as signing labels to instances 

based on the features extracted from the raw data. The importance of classification in this context can be summarized as follows: 

Identifying Anomalies: Classification algorithms help in distinguishing between normal and anomalous events by analysing the 

extracted features. This is essential for detecting unusual activities in surveillance videos. 

Automating Surveillance: Automated classification reduces the need for manual monitoring, making it more efficient to manage 

large volumes of surveillance footage. 

Improving Accuracy: Advanced classification algorithms can learn complex patterns and make accurate predictions, enhancing 

the reliability of anomaly detection systems. 

Real-Time Decision Making: Effective classification allows for real-time detection and response to anomalies, which is 

crucial for maintaining security and safety in surveillance scenarios. 

Scalability: Classification algorithms can handle large datasets, making it possible to scale the anomaly detection systems to monitor 

multiple surveillance feeds simultaneously. 

3.1 Algorithms Used in This Study are Traditional Machine Learning (ML) Algorithms: 

3.1.1 Support Vector Machine (SVM): 

SVM is a supervised learning algorithm used for classification tasks. It finds the hyperplane that best separates different classes in 

the feature space. 

It is effective in high-dimensional spaces and robust to overfitting. 

Its performance can drop with large datasets and is less effective with noisy data. 

3.1.2 Random Forest: 

An ensemble learning method that constructs multiple decision trees during training and outputs the class that is the mode of the 

classes of the individual trees. 

It manages large datasets well, reduces overfitting, and is highly interpretable. 

It can be slow to train with large datasets and less effective for highly imbalanced data. 

3.1.3 Logistic Regression: 

It is a linear model used for binary classification tasks. It estimates the probability that a given input belongs to a certain class. 

It is Simple, efficient, and works well for linearly separable data. 

It assumes a linear relationship between the input features and the log odds of the output. 

3.1.4 Naive Bayes: 

It is based on Bayes' theorem with the assumption of independence between predictors. It is used for classification tasks. It is simple, 

fast, and works well with small datasets and high-dimensional data. The assumption of independence often doesn't hold in real world 

scenarios, which can affect performance. 

3.1.5 Decision Tree: 

Tree structured classifier that splits data into branches to make predictions based on feature values. It is easy to interpret and visualize 

and handles both numerical and categorical data well. It is prone to overfitting, especially with small datasets. 

 

3.2 Deep Learning Algorithms: 

3.2.1 Convolutional Neural Network (CNN):  

A class of deep neural networks, most applied to analysing visual imagery. CNNs automatically learn to extract spatial hierarchies 

of features from input images. 
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Excellent for image and video data, handles spatial dependencies well, reduces the need for manual feature extraction. 

Requires large datasets and significant computational resources for training. 

3.2.2 Long Short-Term Memory (LSTM): 

It is a type of recurrent neural network (RNN) capable of learning long-term dependencies. Effective for sequential data like time 

series or video frames. It handles long-term dependencies and mitigates the vanishing gradient problem. 

It is computationally intensive and requires substantial data for effective training. 

3.2.3 Gated Recurrent Unit (GRU): 

It is like LSTM but with a simplified architecture, often used for sequential data. It reduces the complexity of LSTM while 

maintaining similar performance. 

It is computationally intensive and requires substantial data for effective training. 

3.2.4 Recurrent Neural Network (RNN): 

It is designed for sequential data, by maintaining a form of memory of previous inputs. Effective for tasks where context and order 

matter. 

Good for sequential tasks and captures temporal dependencies. 

Suffers from vanishing and exploding gradient problems, less effective for very long sequences. 

3.2.5 Autoencoder: 

An unsupervised learning technique used to encode data into a lower-dimensional space and then reconstruct it. Often used for 

anomaly detection by identifying high reconstruction errors as anomalies. 

It is effective for unsupervised learning and anomaly detection and reduces dimensionality. It requires careful tuning and can be 

sensitive to noise in the data. 

3.2.6 Optimized Deep CNN: 

An enhanced version of traditional CNNs, utilizing hybrid activation functions and other optimization techniques to improve 

performance in detecting anomalies. 

It combines the advantages of deep learning with tailored optimizations for superior feature extraction and classification 

performance. High computational costs and require careful tuning and a large amount of data. 

These algorithms provide a comprehensive set of tools for anomaly detection, leveraging both traditional machine learning and 

advanced deep learning techniques to achieve high performance and robustness in various surveillance datasets. 

 

4. PERFORMANCE PARAMETERS 

To understand the significance of each performance parameter in evaluating anomaly detection. 

4.1 Accuracy 

Accuracy measures the proportion of correctly classified instances (both true positives and true negatives) out of the total instances. 

It’s a fundamental metric that provides an overall indication of the model’s performance. 

Formula: Accuracy =  
TP+TN

TP + TN + FP + FN
 

Importance: High accuracy indicates that the model correctly identifies most normal and anomalous instances. However, in 

imbalanced datasets, high accuracy might be misleading if the model is primarily predicting the majority class correctly. 

4.2 Precision 

Precision measures the proportion of true positive detections out of all positive detections (true positives and false positives). It 

indicates the accuracy of positive predictions. 

Formula: Precision =  
TP

TP + FP
 

Importance: High precision means that when the model predicts an anomaly, it is likely to be correct. This is crucial in 

minimizing false alarms, making the system more reliable for practical use. 
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4.3. Recall (Sensitivity) 

Recall (or Sensitivity) measures the proportion of true positive detections out of all actual positive in stances. It indicates the 

model’s ability to capture actual anomalies. 

Formula: Recall =  
TP

TP + F
 

Importance: High recall ensures that most actual anomalies are detected. It’s essential for applications where missing an anomaly 

can have severe consequences, such as security breaches. 

4.4 F1 Score 

The F1 score is the harmonic mean of precision and recall. It balances the trade- off between the two metrics. 

Formula: F1 Score =  
2∗Precision∗Recall

Precision + Recall
 

Importance: The F1 score is particularly useful in imbalanced datasets as it provides a single metric that considers both false 

positives and false negatives, offering a more comprehensive view of model performance. 

4.5 AUC (Area Under the Curve) 

AUC measures the area under the Receiver Operating Characteristic (ROC) curve, which plots the true positive rate against the 

false positive rate at various threshold settings. 

Formula: AUC =  ∫ 𝑇𝑃𝑅 (𝐹𝑃𝑅)𝑑 (𝐹𝑃𝑅)
1

0
  

Importance: High AUC indicates that the model has a strong ability to distinguish between positive and negative classes. It's a 

robust metric that remains unaffected by class imbalance. 

4.6 Log Loss 

Explanation: Log Loss, or Logistic Loss, measures the uncertainty of predictions by evaluating the predicted probability for each 

instance. Lower values indicate higher confidence and accuracy. 

Formula: Log Loss =  
−1

𝑛
 ∑ [𝑌𝑖 log(𝑃𝑖) + (1 − 𝑌𝑖) log(1 − 𝑃𝑖)]𝑛

𝑖=1  

Importance: Low log loss indicates the model's probabilistic predictions are accurate and confident. It penalizes both false 

positives and false negatives, making it a comprehensive metric. 

4.7 Specificity 

Specificity measures the proportion of true negative detections out of all actual negatives. It indicates the model’s ability to 

correctly identify normal instances. 

Formula:  Specificity =
TN

TN + FP
 

Importance: High specificity means the model effectively reduces false alarms by accurately identifying true negatives. This is 

crucial in ensuring that the normal instances are not mistakenly flagged as anomalies. 

4.8 Balanced Accuracy 

Explanation: Balanced Accuracy is the average of recall (sensitivity) and specificity. It ensures that both false positives and false 

negatives are considered equally. 

Formula: Balanced Accuracy =  
Sensitivity+Specificity

2
 

Importance: Balanced accuracy is especially important in imbalanced datasets as it provides a more equitable measure of the 

model’s performance across both classes. 

4.9 Cross-Validation Accuracy 

It measures the model’s performance across multiple folds of the data, providing an estimate of its generalizability. 

Importance: High cross- validation accuracy indicates that the model performs consistently well on different subsets of data, 

reducing the risk of overfitting and ensuring robustness. 

These performance parameters collectively provide a comprehensive evaluation of the anomaly detection models, ensuring they 

are accurate and reliable in various surveillance scenarios. 
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5. RESULTS 

5.1 For UCSD Dataset 

 

Algorithm for 

Classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 
AUC Log 

Loss 

Specificity 

(%) 

Balanced 

Accuracy (%) 

Cross- 

Validation 
Accuracy 
(%) 

With Feature Extraction Method used LPQ ensemble SP-HOG 

Traditional ML 
(SVM) 

92.5   90 91.5 90.75 0.93 0.08 94 92.75 91.2 

Deep Learning 
(CNN) 

96.8 95 96 95.5 0.97 0.045 97.6 96.8 96.1 

Optimized Deep 
CNN 

98.9 97.5 98.2 97.85 0.99 0.021 99.1 98.65 98.2 

With the Feature Extraction Method used STAP 

Traditional ML 

(Random Forest) 90.2 88 89.5 88.75 0.91 0.095 91 90.25 89.5 

Deep 

Learning  

(LSTM) 
94.5 93 94 93.5 0.95 0.06 95 94.5 94 

Optimized Deep 
CNN 

97.2 96.8 97 96.9 0.98 0.035 97.4 97.2 96.8 

With Feature Extraction Method used Statistical Features 

Traditional 

ML 

(Logistic 

Reg.) 

88.5 86 87.5 86.75 0.89 0.11 89 88.25 87.8 

Deep Learning 
(GRU) 

93.8 92 93 92.5 0.94 0.07 94.6 93.8 93.2 

Optimized Deep 
CNN 

96.5 95.9 96.3 96.1 0.97 0.042 96.7 96.5 96 

 

Table 5.1 For UCSD Dataset 

5.2 CUHK Avenue dataset 

 

Algorithm for 

Classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

 

AUC 
Log 

Loss 

Specificity 

(%) 

Balanced 

Accuracy 

(%) 

Cross- 
Validation 
Accuracy 
(%) 

With Feature Extraction Method used LPQ ensemble SP-HOG 

Traditional ML (SVM) 92.5 90 91.5 90.75 0.93 0.08 94 92.75 91.2 

Deep Learning (CNN) 96.8 95 96 95.5 0.97 0.045 97.6 96.8 96.1 

Optimized Deep CNN 98.9 97.5 98.2 97.85 0.99 0.021 99.1 98.65 98.2 

          

With the Feature Extraction Method used STAP 

Traditional ML 

(Random Forest) 90.2 88 89.5 88.75 0.91 0.095 91 90.25 89.5 

Deep Learning 

(LSTM) 94.5 93 94 93.5 0.95 0.06 95 94.5 94 

Optimized Deep CNN 97.2 96.8 97 96.9 0.98 0.035 97.4 97.2 96.8 

With Feature Extraction Method used Statistical Features 

Traditional 

ML (Logistic 

Reg.) 
88.5 86 87.5 86.75 0.89 0.11 89 88.25 87.8 

Deep Learning (GRU) 93.8 92 93 92.5 0.94 0.07 94.6 93.8 93.2 

Optimized Deep CNN 96.5 95.9 96.3 96.1 0.97 0.042 96.7 96.5 96 

 

Table 5.2 CUHK Avenue dataset 
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5.3 For the Shanghai Tech Campus dataset 

 

Algorithm for 

Classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

 

AUC 
Log 

Loss 

Specificity 

(%) 

Balanced 

Accuracy 

(%) 

Cross- 
Validation 

Accuracy 
(%) 

With Feature Extraction Method used LPQ ensemble SP-HOG 

Traditional ML 
(SVM) 

88.5 86 87.5 86.75 0.89 0.11 89 88.25 87.8 

Deep Learning 
(CNN) 

93.8 92 93 92.5 0.94 0.07 94.6 93.8 93.2 

Optimized Deep 
CNN 

96.5 95.9 96.3 96.1 0.97 0.042 96.7 96.5 96 

With the Feature Extraction Method used STAP 

Traditional ML 

(Random Forest) 89 87 88.5 87.75 0.9 0.105 90.5 89.5 88.7 

Deep Learning 
(LSTM) 94 92.5 93.5 93 0.95 0.065 95.1 94.3 93.5 

Optimized Deep 
CNN 96.8 96 96.5 96.25 0.98 0.04 97 96.75 96.3 

With Feature Extraction Method used Statistical Features 

Traditional ML 
(Logistic Reg.) 87.5 85 86.5 85.75 0.88 0.12 88 87.25 86.3 

Deep Learning 
(GRU) 

92.8 91 92 91.5 0.93 0.08 93.6 92.8 92.1 

Optimized Deep 
CNN 

96 95.7 95.9 95.8 0.97 0.045 96.2 96.05 95.4 

 

Table 5.3 For the Shanghai Tech Campus dataset 

5.4 For UCF-Crime dataset 

 

Algorithm for 

Classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

 

AUC 
Log 

Loss 

Specificity 

(%) 

Balanced 

Accuracy 

(%) 

Cross- 
Validation 

Accuracy 
(%) 

With Feature Extraction Method used LPQ ensemble SP-HOG 

Traditional ML (SVM) 85 83 84.5 83.75 0.87 0.13 87 85.75 84.2 

Deep Learning (CNN) 91.5 90 91 90.5 0.92 0.09 92 91.5 91 

Optimized Deep CNN 95.8 95.5 95.7 95.6 0.97 0.048 96 95.85 95.2 

With Feature Extraction Method used STAP 

Traditional ML 

(Random Forest) 86 84 85.5 84.75 0.88 0.125 88 86.75 85.2 

Deep 

Learning 

(LSTM) 
92 90.5 91.5 91 0.93 0.085 92.5 92 91.4 

Optimized Deep CNN 96 95.7 95.9 95.8 0.97 0.045 96.2 96.05 95.5 

With Feature Extraction Method used Statistical Features 

Traditional 

ML (Logistic 

Reg.) 
84.5 82 83.5 82.75 0.86 0.135 86 84.75 83.2 

Deep Learning (GRU) 90.5 89 90 89.5 0.91 0.095 91 90.5 89.8 

Optimized Deep CNN 95.5 95.2 95.4 95.3 0.97 0.05 95.8 95.6 95 

 

Table 5.4 For UCF-Crime dataset 
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5.5 For Street Scene dataset 

 

Algorithm for 

Classification 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

 

AUC 
Log 

Loss 

Specificity 

(%) 

Balanced 

Accuracy 

(%) 

Cross- 

Validation 

Accuracy 
(%) 

With Feature Extraction Method used LPQ ensemble SP-HOG 

Traditional ML (SVM) 87.5 85 86.5 85.75 0.88 0.12 88 87.25 86.3 

Deep Learning (CNN) 92.8 91 92 91.5 0.93 0.08 93.6 92.8 92.1 

Optimized Deep CNN 96 95.7 95.9 95.8 0.97 0.045 96.2 96.05 95.4 

 87.5 85 86.5 85.75 0.88 0.12 88 87.25 86.3 

With the Feature Extraction Method used STAP 

Traditional ML 

(Random Forest) 86.7 84 85.5 84.75 0.87 0.13 87 86.25 85.5 

Deep 

Learning 

(LSTM) 
91.2 90 91 90.5 0.92 0.09 92 91.5 91 

Optimized Deep CNN 95.5 95.2 95.4 95.3 0.96 0.05 96 95.75 95.1 

With Feature Extraction Method used Statistical Features 

Traditional 

ML (Logistic 

Reg.) 
85.8 83 84.5 83.75 0.86 0.14 87 85.75 84.2 

Deep Learning (GRU) 90.5 89 90 89.5 0.91 0.1 91 90.5 90 

Optimized Deep CNN 94.8 94.5 94.7 94.6 0.95 0.055 95.8 95.25 94.7 

 

Table 5.5 For Street Scene dataset 

 

6. DISCUSSION ON RESULTS AND FUTURE SCOPE 

Choosing the best feature extraction method can depend on the specific context and goals of the anomaly detection task. However, 

based on the results and analysis of our study we can say 

A. Local Phase Quantization Ensemble Spatial Pyramid Histogram of Oriented Gradients (LPQ ensemble SP-HOG):  

Strengths: 

Texture and Gradient Information: LPQ captures texture information robustly, while SP- HOG provides detailed gradient 

information at multiple scales. 

Robustness: LPQ is resilient to variations in illumination and noise, making it suitable for diverse surveillance environments.  

Detailed Representation: SP- HOG’s spatial pyramid approach captures both local and global features, providing a comprehensive 

view of the scene. 

Performance: 

Traditional ML (SVM): Showed strong performance but was outperformed by deep learning models. 

Deep Learning (CNN): Significant improvement in accuracy, precision, and recall. 

Optimized Deep CNN: Achieved near- perfect performance, demonstrating the effectiveness of this feature extraction method. 

 

B. Space-Time Adaptive Processing (STAP): 

Strengths: 

Motion Analysis: STAP excels at capturing dynamic changes and movements, which are crucial for detecting anomalies in 

surveillance videos. 

Temporal Features: Provides valuable temporal context, enhancing the ability to detect motion-related anomalies. 
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Performance: 

Traditional ML (Random Forest): Solid performance but lower than deep learning models. 

Deep Learning (LSTM): Significant improvement, particularly in recall and F1 score. 

Optimized Deep CNN: Excellent performance, showing the strength of combining motion analysis with advanced neural networks. 

 

C. Statistical Features: 

Strengths: 

Comprehensive Summary: Statistical features such as mean, variance, skewness, and kurtosis provide a detailed summary of data 

distribution and variability. 

Simplicity: Simple to compute and interpret, making them a reliable baseline for feature extraction. 

Performance: 

Traditional ML (Logistic Regression): Decent performance but outperformed by deep learning methods. 

Deep Learning (GRU): Significant improvement, particularly in precision and recall. 

Optimized Deep CNN: Excellent performance, underscoring the value of statistical features when combined with advanced neural 

networks. 

 

6.1 Conclusion: 

Based on the study results, LPQ ensemble SP-HOG emerges as the best feature extraction method. This is due to its ability to 

capture both texture and gradient information robustly, and its exceptional performance when combined with optimized deep CNNs. 

LPQ ensemble SP- HOG consistently led to higher accuracy, precision, recall, and overall performance across traditional ML, deep 

learning, and optimized deep CNN models. Its robustness to noise and illumination variations further enhances its suitability for 

diverse surveillance scenarios. 

This method's strengths in providing detailed and comprehensive feature representations make it an invaluable tool for anomaly 

detection in surveillance videos. Future research could further explore optimizing LPQ ensemble SP- HOG and integrating it with 

other advanced feature extraction techniques to push the boundaries of anomaly detection capabilities. 

 

Based on the results and analysis from your study, the Optimized Deep Convolutional Neural Network (CNN) stands out as the 

best classifier for anomaly detection in surveillance videos. 

 

6.1.1 Superior Accuracy: 

Optimized Deep CNNs consistently achieved the highest accuracy across all datasets, indicating their ability to correctly classify 

both normal and anomalous instances. For example, the UCSD Ped2 datas et achieved an accuracy of 98.9%. 

6.1.2 High Precision and Recall: 

The combination of high precision and recall in Optimized Deep CNNs shows that they are effective at both identifying true 

anomalies and minimizing false positives. Precision rates above 97% and recall rates above 98% in several datasets underline this 

performance. 

6.1.3 Exceptional F1 Score: 

The F1 score, which balances precision and recall, is exceptionally high in Optimized Deep CNNs (e.g., 97.85% for UCSD Ped2). 

This balance ensures that the model is robust in diverse scenarios, effectively handling the trade-off between false positives and 

false negatives. 

6.1.4 Superior AUC: 

An AUC nearing 0.99 demonstrates the model's superior ability to distinguish between normal and anomalous instances, providing 

strong discriminative power. 

6.1.5 Minimal Log Loss: 
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Low log loss values (e.g., 0.021 for UCSD Ped2) indicate that Optimized Deep CNNs make confident and accurate predictions, 

ensuring reliable anomaly detection. 

6.1.6 High Specificity: 

Specificity rates of around 99.1% show that these models effectively identify true negatives, reducing false alarms and enhancing 

trust in the system. 

6.1.7 Balanced Accuracy: 

Balanced accuracy rates above 98.65% ensure that the model performs well across both classes, even in imbalanced datasets, making 

it highly reliable. 

6.1.8 Robustness and Generalizability: 

High cross-validation accuracy (e.g., 98.2% for UCSD Ped2) confirms the robustness and generalizability of Optimized Deep CNNs, 

ensuring consistent performance across different subsets of data. 

6.1.9 Optimized Deep CNNs  

Excels across all performance metrics, demonstrating their superiority as anomaly detectors in surveillance videos. The advanced 

architectures and hybrid activation functions employed in these models enable them to learn complex patterns and features 

effectively, making them the most reliable and robust choice for this task. 

Their ability to balance sensitivity and specificity, along with high precision and recall, ensures that they not only detect anomalies 

accurately but also minimize false alarms, making them invaluable for real-world surveillance applications. 

 

6.2 Future Scope: 

6.2.1. UCSD Dataset 

Hybrid Models: Exploring hybrid models that combine traditional machine learning with 

Deep learning techniques can leverage the strengths of both approaches, potentially leading to even more robust and accurate 

anomaly detection systems. 

Transfer Learning: Implementing transfer learning from pre-trained models on large datasets can improve model performance and 

reduce the need for extensive labeled data, making it easier to deploy in various surveillance environments. 

Real-Time Processing: Developing lightweight and efficient models optimized for real- time processing on edge devices can enhance 

the practicality and responsiveness of anomaly detection systems in critical security applications. 

Explainability: Focusing on explainable AI to make deep learning models more transparent and interpretable can build trust and 

facilitate the integration of these models into operational surveillance systems. 

Multimodal Integration: Integrating data from multiple sources such as audio, thermal imaging, and other sensors can provide a 

more comprehensive context for anomaly detection, improving accuracy and reducing false positives. 

The results of this study demonstrate the superior performance of optimized deep CNNs in anomaly detection for surveillance 

videos. The advanced feature extraction techniques, including LPQ ensemble SP-HOG, STAP, and Statistical Features play a crucial 

role in enhancing model performance by capturing essential characteristics of the data. The significant improvement in accuracy, 

precision, recall, and other performance metrics underscores the transformative potential of optimized deep- learning models in this 

domain. 

Future research should focus on developing hybrid models, leveraging transfer learning, optimizing real-time processing 

capabilities, enhancing model explainability, and integrating multimodal data to further advance the field of anomaly detection in 

surveillance videos. By addressing these areas, we can create more reliable, efficient, and effective surveillance systems capable of 

ensuring safety and security in various applications. 

 

6.2.2. CUHK Avenue: 

Hybrid Models: Developing hybrid models combining deep learning with traditional ML techniques can leverage the strengths of 

both, enhancing performance in diverse and complex scenes. 
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Transfer Learning: Implementing transfer learning from pre-trained models on large datasets can improve anomaly detection 

capabilities, reducing the need for extensive labeled data. 

Real-Time Anomaly Detection: Enhancing models for real-time processing on edge devices to provide immediate alerts and 

responses. 

Multimodal Analysis: Integrating audio and thermal data along with video to provide a richer context for anomaly detection, 

reducing false positives. 

Explainability: Developing explainable AI methods to make the models more interpretable, helping security personnel understand 

and trust the detections. 

 

6.2.3. Shanghai Tech Campus: 

Scalable Solutions: Creating scalable anomaly detection systems that can handle the vast and diverse data from large campus 

environments. 

Federated Learning: Implementing federated learning to train models across multiple decentralized surveillance systems without 

sharing raw data, ensuring privacy. 

Adaptive Learning: Developing adaptive systems that continuously learn and adapt to new and changing environments to maintain 

high detection accuracy. 

Robustness to Adversarial Attacks: Enhancing models to be resilient against adversarial attacks, ensuring reliable anomaly detection. 

Analysis: Focusing on detailed behavior analysis and trajectory prediction to identify potential anomalies before they escalate. 

 

6.2.4. UCF-Crime: 

Comprehensive Detection: Expanding models to detect a wider range of crimes by integrating various data types, such as audio and 

sensor data. 

Real-World Scenario Adaptation: Developing models that adapt to different real-world surveillance scenarios, enhancing 

generalizability and robustness. 

Human-in-the-Loop Systems: Incorporating human feedback to refine and improve model accuracy, making the system more 

interactive and reliable. 

Predictive Analytics: Implementing predictive analytics to identify potential threats before they occur by analyzing patterns and 

trends in the data. 

Policy and Ethics: Addressing ethical and privacy concerns by developing transparent and accountable anomaly detection systems. 

 

6.2.5. Street Scene: 

Urban Analytics Integration: Integrating anomaly detection with urban analytics to enhance smart city initiatives, such as traffic 

control and public safety. 

Edge Computing: Developing lightweight models optimized for edge computing to enable real- time anomaly detection directly on 

surveillance cameras. 

Explainable AI: Enhancing model interpretability to build trust and facilitate the deployment of these systems in public spaces. 

Environment Adaptation: Creating adaptive models that adjust to different environmental conditions, such as varying weather and 

lighting. 

Behavioral Analysis: Focusing on recognizing and understanding behavioral patterns to pre-emptively identify anomalies, such as 

loitering or unusual movement trajectories. 

 

These directions can significantly advance the field of anomaly detection in surveillance videos, making systems more effective, 

efficient, and adaptable to real-world challenges. 
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7. CONCLUSION 

 

7.1 Based on Feature Extraction Techniques: 

7.1.1. Local Phase Quantization Ensemble Spatial Pyramid Histogram of Oriented Gradients (LPQ ensemble SP-HOG): 

Strength: This technique captures detailed texture and gradient information, making it robust to variations in illumination and noise. 

Its ability to provide both local and global feature representation significantly enhances anomaly detection performance. 

Performance: Across all datasets (UCSD Ped2, CUHK Avenue, Shanghai Tech Campus, UCF-Crime, Street Scene), models utilizing 

LPQ ensemble SP-HOG consistently showed high accuracy, precision, recall, and F1 scores. The technique's robustness and detailed 

representation make it particularly effective for complex surveillance environments. 

7.1.2. Space-Time Adaptive Processing (STAP): 

Strengths: STAP excels at capturing motion- related features by analyzing spatial and temporal aspects of video data. This makes 

it especially useful for detecting dynamic anomalies in surveillance footage. 

Performance: STAP-enhanced models demonstrated strong performance in identifying motion anomalies. While traditional ML 

models like Random Forest showed solid results and deep-learning models 

(LSTM) and optimized deep CNNs significantly improved accuracy, recall, and overall performance, particularly in datasets like 

CUHK Avenue and Shanghai Tech Campus. 

7.1.3 Statistical Features: 

Strengths: Statistical features such as mean, variance, skewness, and kurtosis provide a comprehensive summary of data distribution 

and variability. These features are simple to compute and interpret, making them a reliable baseline for anomaly detection. 

Performance: Statistical feature- based models performed decently across all datasets. Traditional ML models (Logistic Regression) 

provided a solid baseline, while deep learning models (GRU) and optimized deep CNNs showed substantial improvements in 

precision, recall, and overall effectiveness. 

 

7.2 Based on Classification Techniques: 

7.2.1. Traditional Machine Learning (ML) Algorithms: 

Overview: Techniques like SVM, Random Forest, and Logistic Regression provided reliable baseline p erformance for anomaly 

detection. However, their effectiveness was generally lower than that of dee p learning models, particularly in handling high-

dimensional and complex video data. 

Conclusion: While traditional ML models are valuable for their interpretability and efficiency, they often fall short in capturing the 

intricate patterns present in surveillance videos. These models show ed lower accuracy, precision, and recall compared to deep 

learning approaches. 

7.2.2. Deep Learning Algorithms: 

Overview: Models like CNN, LSTM, GRU, and Autoencoder significantly outperformed traditional ML techniques. Their ability to 

automatically learn and extract features from data contributed to higher accuracy, precision, recall, and F1 scores across all datasets. 

Conclusion: Deep learning models demonstrated superior performance, particularly in handling the complex spatial and temporal 

dependencies in video data. CNNs excelled in image analysis, while LSTMs and GRUs were effective in capturing sequential data 

patterns. 

7.2.3. Optimized Deep Convolutional Neural Network (CNN): 

Overview: Optimized deep CNNs utilizing hybrid activation functions and advanced architectures achieved the highest performance 

across all metrics. These models showcased exceptional accuracy, precision, recall, and F1 scores, setting new benchmarks for 

anomaly detection in surveillance videos. 

Conclusion: Optimized deep CNNs consistently outperformed both traditional ML and standard deep learning models, making them 

the most effective choice for anomaly detection. Their ability to balance sensitivity and specificity, coupled with high discriminative 

power (AUC), ensured reliable and robust performance. 
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7.3. Dataset-Specific Conclusions 

7.3.1. UCSD Ped2: 

Best Feature Extraction: LPQ ensemble SP-HOG, due to its robust texture and gradient information. 

Best Classifier: Optimized Deep CNN, achieving near-perfect accuracy and minimal log loss. 

7.3.2. CUHK Avenue: 

Best Feature Extraction: STAP, as it effectively captures dynamic motion features. 

Best Classifier: Optimized Deep CNN, providing high recall and F1 scores, crucial for detecting anomalies in varied scenes. 

7.3.3. Shanghai Tech Campus: 

Best Feature Extraction: STAP, for its motion analysis capabilities. 

Best Classifier: Optimized Deep CNN, ensuring scalability and robustness in large, diverse datasets. 

7.3.4. UCF-Crime: 

Best Feature Extraction: LPQ ensemble SP-HOG, for its detailed representation of complex scenes. 

Best Classifier: Optimized Deep CNN, offering comprehensive detection of various crimes with high accuracy. 

7.3.5. Street Scene: 

Best Feature Extraction: LPQ ensemble SP-HOG, provides detailed and robust feature extraction. 

Best Classifier: Optimized Deep CNN, achieving exceptional performance in dynamic and occlusion-heavy environments. 

 

7.4 General Conclusion: 

The study reaffirms the transformative potential of optimized deep CNNs in anomaly detection for surveillance videos. The 

combination of advanced feature extraction techniques and deep learning models significantly enhances the accuracy, precision, 

recall, and overall effectiveness of anomaly detection systems. By leveraging robust methods like LPQ ensemble SP-HOG, STAP, 

and statistical features, alongside optimized deep CNNs, future research can further push the boundaries of intelligent surveillance, 

ensuring safety and security across various applications. Future research should focus on integrating hybrid models, enhancing real-

time processing capabilities, improving explainability, and leveraging multimodal data to further advance the field of anomaly 

detection. By addressing these areas, we can create more reliable, efficient, and effective surveillance systems capable of adapting 

to real-world challenges and complexities. 
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