
Energy Quality Optimization through 

Reversible Adaptive Filtering in Reconfigurable 

Datapath Architectures 
 

Mr. Arun Raj S.R, Ph.D Research Scholar, Department of ECE, ACED, Alliance University, Bangalore, India. 

rarunPHD21@ced.alliance.edu.in 

Dr. G. Ramana Murthy, Professor, Department of ECE, ACED, Alliance University, Bangalore, India.  

ramana.murthy@alliance.edu.in 

 

Abstract— Reconfigurable adaptive filter is a revolutionary 

reconfigurable data route architecture that is presented in this 

work with the purpose of resolving the ever-changing trade-off 

between energy quality and adaptive filtering that takes place. 

The four adaptive filtering techniques that reconfigurable 

adaptive selects dynamically are Least Mean Squares (LMS), 

Partial Update Normalized LMS (PU-NLMS), Set-Membership 

Normalized LMS (SM-NLMS), and Normalized LMS (NLMS). 

This selection is based on the grading difficulty levels that are 

present during runtime. The design places an emphasis on 

reusing modules, which results in a compact implementation of 

VLSI hardware that functions via the use of reversible logic 

techniques. As part of this study, we came up with a plan for an 

8x8 multiplier circuit that uses a Feynman gate (FG) full adder 

along with a Press Gate (PG) design flow and can be turned 

around. This design resulted in a reduction in the depth of the 

multiplication module within the framework of a reconfigurable 

adaptive filter architecture. Synthesis assessments conducted by 

Xilinx have shown that this reversible design results in superior 

performance when compared to traditional architecture. There 

are several parts to a case study that looks at reconfigurable 

adaptive algorithms. These include an accurate resorting divider, 

a 5G input sequence with noise and the desired signal, and a link 

to the update control block of the LMS adaptive filter. The 

outcomes of synthesis research that compared two distinct 

multiplier designs on a Vertex-5 FPGA with four distinct filter 

algorithm levels gave information on power, latency, and area. In 

this study, it is shown how to use reconfigurable adaptive filters 

to get good adaptive filtering with changing energy quality using 

adaptive filters. 

 

Index Terms—LMS, PU-NLMS, SM-NLMS, NLMS, Wallace 

Tree Multiplier, Feynman gate, Press gate. 

 

I.  INTRODUCTION 

In signal processing applications, adaptive filtering is an 

extremely important component since it provides the power to 

dynamically alter filtering methods in response to different 

input circumstances. To solve the problem of quality being an 

explicit design requirement, energy-quality scalable (EQ- 

scalable) methods strike a balance between energy 

consumption and quality at different levels of computing 

abstraction. Many error-tolerant applications, including AI, 

digital signal processing, image computing, and video 

processing, make use of scalable equalization schemes that 

trade energy for quality loss. The EQ trade-off that is inherent 

in adaptive filtering is a substantial challenge, necessitating 

the development of creative methods in order to strike a 

balance between computational complexity and 

performance. In order to solve this difficulty, our research 

presents a reconfigurable adaptive filter that is based on a 

datapath architecture. The ever-changing energy-quality 

trade-off in real-time applications inspired the creation of 

this design. One of the most important tools for researching 

EQ-scalable VLSI systems in real time is adaptive filtering 

(AF) [1]. Audio and speech signal manipulation, 

communication over wireless networks, and medical signal 

processing are just a few of the many digital signal 

processing (DSP) domains that make use of AFs, which are 

well-established filtering methods. 

 

AF methods are crucial in scenarios where the input 

signals' characteristics change over time. On the other hand, 

the intrinsic trade-off that exists between the amount of 

computing energy used and the quality of filtering presents 

a hurdle. It may be difficult for traditional fixed designs to 

adjust adequately to dynamic situations, which may result 

in performance that is less than ideal and an increase in 

energy consumption [2]. The need for a flexible and 

dynamic solution that is capable of navigating the energy 

quality trade- off in AF in a smooth manner is what 

prompted the development of the reconfigurable adaptive 

filter architecture. The reconfigurable adaptive filter is 

designed to dynamically pick among a range of AF 

methods, with the goal of enhancing performance in 

response to changing needs. The introduction of a 

reconfigurable datapath and the use of data gating 

techniques enable this. 

 

The requirements of the application for filtering accuracy 

are highly dependent on the intensity of the signal and the 

noise environment and are not set throughout runtime. 

Depending on the runtime environment and the magnitude 

of the signal, each AF technique may provide a unique set 

of benefits. In high-level noise scenarios, AFs with greater 

complexity are often the best choice. Worst-case energy use 

derives from the system designers' decision-making process 

based on worst-case noise scenarios [3]. Switching to a 

more complicated AF to lead in a low-noise environment, 

on the other hand, is a power-consuming decision. 

Furthermore, in a situation with low noise, picking an AF 

that is less complicated results in a less inaccuracy due to 

the inherent filtering noise, but getting an AF that is more 

complex results in a higher cost per unit of time. It is 

possible that
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considerably increasing energy efficiency may be 

accomplished by scaling the AF algorithm of VLSI designs 

in a dynamic way. Developing a flexible data processing unit 

that is capable of dynamically selecting algorithms is the 

primary objective of this study, which aims to overcome the 

challenge of creating such a unit. The goal is to maximize 

energy consumption while also managing and limiting noise 

during runtime. Using shared common blocks can help 

achieve adaptive filtering blocks, which have similarities. 

This work introduces reconfigurable AF, a VLSI design for 

an EQ-scalable adaptive filter with a customizable datapath. 

The reconfigurable AF design concept shows how to 

effectively use a flexible architecture that can handle four 

different adaptive algorithms by making good use of the parts 

that they share [4].  

 

In order to provide real-time EQ scalability, reconfigurable 

AF utilizes the data-gating approach to selectively activate or 

disable blocks based on the specific needs of each filtering 

architecture. By changing the datapath operation flow, the 

customizable AF structure allows the user to change the 

algorithms' complexity while the system is running. The 

LMS, NLMS, PU-NLMS, and SM-NLMS are the four 

distinct algorithms that may be selectively implemented as a 

result of this. In order to offer a condensed hardware 

implementation, each of the reconfigurable AF architecture's 

LMS-based filters shares modules [5]. When the data from 

the dormant modules is gated, the reconfigurable AF is able 

to achieve energy savings. This is accomplished by 

eliminating the switching activity of the modules, which in 

turn reduces the amount of dynamic power consumption 

across all of the various operating modes. The reconfigurable 

AF operation uses two distinct coefficients in the context of a 

case study that focuses on reducing interference in 

electroencephalogram (EEG) data. 

 

The fundamental goal of this study is to create a 

reconfigurable adaptive filter that not only adjusts to 

changing data processing needs but also optimizes hardware 

resources. The four alternative datapath topologies provide 

flexibility in managing a wide range of data types and 

processing situations. However, flexibility comes at the 

expense of larger logic sizes, longer critical route delays, and 

greater power consumption, demanding a creative solution. 

The heart of the proposed structure is the use of reversible 

logic approaches, notably a reversible Wallace tree 

multiplier. This multiplier design makes use of the Feynman 

Gate (FG), Toffoli Gate (TG), and Peres Gate (PG), with the 

goal of reducing logic size, critical path delays, and power 

consumption [6]. The reversible nature of these logic units 

offers promise for delivering efficient and dynamic signal 

processing capabilities in a small physical footprint. Because 

adaptive filters play an important role in real-time 

applications, high-speed processes become critical. The 

inclusion of the reversible Wallace tree multiplier not only 

overcomes the aforementioned difficulties but also offers 

faster processing rates, making the proposed architecture 

ideal for applications that need real-time adaptation and 

responsiveness. This introduction lays the groundwork for a 

detailed examination of the proposed reconfigurable adaptive 

filter architecture. The next parts will go into the complexities 

of the four datapath designs, the use of reversible logic, and 

the benefits of the reversible Wallace tree multiplier. This 

study will use detailed analysis and testing to determine the 

efficacy and efficiency of the proposed architecture in 

addressing the needs of modern signal processing 

applications. 

 

As of right now, the following are our most recent thoughts 

for this research: 1) In order to construct a VLSI filtering 

system that is both energy-efficient and scalable, we make 

use of a reconfigurable datapath. This datapath has a 

reversible wallace tree multiplier and changeable complexity 

at runtime, and it allows us to choose four adaptive filter 

algorithms. We also compare the standard design of four 

alternative adaptive filter architectures to our proposed 

design. 2) We show that the reconfigurable adaptive filter 

approach can continuously scale in terms of energy quality, 

logic size, and critical path latency at runtime [7]. 

Additionally, we contrast a static method with a dynamic one 

that makes decision adjustments during execution based on 

the input signal-to-noise ratio (SNR). 3) We test the AF 

approach in different noise scenarios to find the compromise 

between power consumption, hardware size, bandwidth, 

maximum clock frequency range, accuracy, and other 

parameters for different circuit modes of operation. The 

following sections of this work are grouped as follows: 

Section 2 describes the review of related work on the 

reconfigurable adaptive filter, and Section 3 includes an in-

depth discussion and comparison of the proposed reversible 

Wallace tree multiplier to traditional multiplier designs. 

Section 4 describes the proposed four distinct reconfigurable 

AF architectures, including their design ideas and 

functionality. Section 5 covers the synthesis results and 

performance indicators. Finally, Section 6 finishes the work 

with a summary of the results and recommendations for 

further research. 

II. REVIEW OF RELATED WORK TO THE RECONFIGURABLE 

ADAPTIVE FILTER 

 

Methods for developing accurate and high-performance 

DSP systems have been detailed in a number of publications 

throughout the years. One interesting way to get a clean signal 

is to use an adaptive filter, in this case, the LMS family filter, 

to remove artifacts from medical data. The study investigated 

the efficacy of several LMS-based filters in mitigating power 

line interference in ECG data. These filters included NLMS, 

SM, and signed families. The authors continue to assess the 

filters' authority even when they only reveal their algorithmic 

actions. There is also a comparison of the adaptive LMS filter 

method with the LPF Butterworth filter and the wavelet 

function. In order to eliminate artifacts, the analysis was 

performed on the 5G signal [8]. Surpassing the LPF 

Butterworth filter, the LMS filter demonstrated superior 

efficiency with MSE and peak signal-to-noise ratio (PSNR) 

metrics centered around wavelet values. 

 

These filters are used in a system that removes artifacts 

from electrocardiogram (ECG) data. To build a circuit using 

as little power and space as possible, the writers provided 

simplified designs. The system's filter efficiency was tested 
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as part of the endeavor, which included building and 

synthesizing the ASIC designs utilizing ST 65nm technology. 

Indicators of quality, including RMSE, SAR, and MAE, were 

part of the hardware findings that were examined. Despite 

some intriguing suggestions for simplifying hardware, the 

study is entirely concerned with design time. Because of their 

great effectiveness and low complexity, as shown in the 

research. 

 

The FC-HBF receiver, detailed in this paper, is capable of 

switching between two entirely connected two-stream multi-

input-multi-output (MIMO) modes at either 28 or 37 GHz, 

and it also has an inter-band carrier-aggregation (CA) mode 

that enables simultaneous single-stream operation at both 28 

and 37 GHz. We create a new architecture for image-reject 

(IR) heterodyne beamforming that is easily reconfigurable. 

The front end of the Beamformer uses current-mode dual-

band active combiners and coupled-resonator-based dual-

band gain stages to accomplish concurrent dual-band 

operation [9]. This design is based on RF-domain complex-

weighting and is inherently wideband. A sequence of 

complex-quadrature mixing steps combining Cartesian 

complex-weighting with image rejection makes up the down 

conversion phase. To further improve the suggested 

architecture's picture rejection, a new quadrature error 

detection and calibration method is also created. First 

implemented in RF or hybrid Beamformer, a minimum mean-

square error (MMSE) beam adaptation method allows main 

lobe and null adaptation without requiring particular access 

to the Beamformer inputs of a traditional least mean-square 

(LMS) scheme. 

 

Noncontiguous transmission networks and high power-

efficiency requirements are obstacles to radio transmitter and 

power amplifier (PA) design and implementation. The 

nonlinear PA design makes it more likely that there will be 

large amounts of unwanted emissions. These emissions could 

make the receiver less sensitive or stop transmissions on 

nearby channels [10]. In order to mitigate these unwanted 

emissions, this research suggests a sub band digital 

predistortion method that is specifically tailored for low-cost 

devices using spectrally noncontiguous transmission 

methods. The suggested method aims to lower unwanted 

intermodulation distortions at the PA output by having a lot 

less processing complexity than traditional linearization 

methods. Also, new decorrelation-based parameter learning 

methods are shown and talked about. These allow adaptive 

monitoring of features that change over time and make 

parameter estimation easier to compute. The presentation of 

extensive simulation and RF measurement data obtained 

using a commercial LTE-Advanced mobile PA serves to 

validate the effectiveness of the proposed method. The results 

demonstrate that the proposed methods have the potential to 

provide very effective spurious component suppression. 

 

Using wireless communication is an integral aspect of 

everyone's daily lives. A greater demand for wireless 

communication systems with more capacity, higher bit rates, 

and fast performance has emerged as a result of the rapid 

development of wireless technology. These networks can 

manage wireless data, video, and phone services. One 

efficient method to overcome this obstacle is to use a 

multicarrier modulation technology such as orthogonal 

frequency division multiplexing (OFDM). In this study, 

grayscale image processing is carried out using an LMS 

approach with a wavelet-based OFDM system. In a SISO 

setting, the AWGN and Rayleigh channels use the QPSK 

modulation methods. We compare the outcomes of this 

processing to those of a standard adaptive FFT-based OFDM 

system. In both setups, an adaptive filter is used to reduce the 

error and reconstruct the broadcast signal at the receiver. The 

computational cost of the FFT-based system is larger than 

that of the DWT-based system, more than [11]. If we look at 

the findings in terms of BER and signal-to-noise ratio (SNR), 

we can see that the adaptive DWT-based OFDM system 

outperforms the conventional adaptive FFT OFDM system. 

III. REVERSIBLE WALLACE TREE MULTIPLIER DESIGN 

 

It is becoming more important to have reversible 

computing architectures as the need for energy-efficient and 

quantum computing systems continues to increase. Due to the 

quantity of partial products and partial product reduction 

techniques, a typical Wallace tree multiplier will need more 

logic space and fan-out. In this proposal, we provide a unique 

technique for designing a reversible Wallace tree multiplier 

(RWTM) that is utilized to minimize circuit depth. The 

proposed approach designs the partial product circuit utilizing 

TG and FG gates, with TG producing the partial products and 

FG for fan-out. In addition, we employed a PG gate and a 

Feynman's block as reversible half-adders (HA) and full-

adders (FA) in the adding network [12]. The major goal of 

this proposed strategy is to reduce circuit depth while 

increasing circuit speed, and the assessment results 

demonstrate that the proposed design is the most rapid in 

terms of latency. 

A. Reversible logic Gates 

 

The evaluation of reversible circuits involves assessing 

many criteria, including the number of gates, the quantity of 

constant inputs, the number of garbage outputs, the latency, 

and the hardware complexity. Outputs that are not used for 

further calculations are referred to as garbage outputs. A 

digital logic system typically includes common logic gates 

such as AND, OR, NAND, NOR, EXOR, and EX-NOR 

gates. However, these gates do not possess the functionality 

of reversible logic. Reversible logic, on the other hand, 

employs logic gates such as PERES Gate, HNG Gate, 

TOFFOLI Gate, FEYNMAN Gate, FREDKIN Gate, TSG 

Gate, and SGG Gate. These reversible logic gates are capable 

of performing multiple operations. In the context of 

arithmetic operations like full addition and full subtraction, 

reversible logic gates are utilized. Although the structures of 

these addition and subtraction operations may differ, their 

functionality remains the same. Examples of reversible gate-

based full adders include PERES Gate Full Adder, HNG Gate 

Full Adder, TOFFOLI and FEYNMAN Gate Full Adder, 

FREDKIN Gate Full Adder, FREDKIN and FEYNMAN 

Gate Full Adder, TSG Gate Full Adder, and SGG Gate Full 

Adder [13]. This study will implement and overcome all the 

reversible logic full adders and identify the most efficient full 
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adders in the reversible logic architecture. Fig. 1 illustrates 

the proposed design of a reversible logic full adder using FG 

and PG gates, and the truth table for the proposed full adder 

architecture is shown in Table 1. 

 

  
Proposed Reversible 

 Full Adder

 

A P=A 

B Q=A        B  
C 

 
R=A         B C
S=(A         B)C AB

 
 

Figure 1 : Block diagram of Proposed Reversible Full Adder 

 

Table 1 : Truth table for Proposed Reversible Full Adder 

 

Input Output 

A B C P Q R S 

0 0 0 0 0 0 0 

0 0 1 0 0 1 0 

0 1 0 0 1 1 0 

0 1 1 0 1 0 1 

1 0 0 1 1 1 0 

1 0 1 1 1 0 1 

1 1 0 1 0 0 1 

1 1 1 1 0 1 1 

 

 

Table 2 : Comparisons of Reversible logic Full Adders 

 

 PERES 

Gate Full 

Adder 

HNG 

Gate Full 

Adder 

FREDKIN 

Gate Full 

Adder 

FEYNMAN 

and PERES 

Gate Full 

Adder 

Slice 

LUT 

2 1 1 2 

IOB 7 7 6 7 

Delay 

(ns) 

6.150 6.150 6.150 6.110 

 

 

Table 2 provides a comparison of the performance of three 

distinct reversible full adders; the proposed reversible FG and 

PG full adders will require a much smaller number of LUT 

and have a significantly lesser delay. 

B. Proposed Wallace Tree Multiplier 

 

It will be necessary to make more use of the hardware in 

order to implement the partial product reduction method in 

the multiplier. Within the framework of the Wallace Tree 

multiplier, the method of partial product reduction is a crucial 

component. However, in the Wallace tree technique, which 

performs better with 4:2, 5:2, and 7:2 compressors, it will 

occupy a lesser number of stages, have a low logic size, and 

consume less power. This is in contrast to the conventional 

binary multiplier design, which achieves a partial product 

reduction by increasing the number of full adder (FA) and 

half adder (HA) circuits. Despite the fact that this proposed 

novelty-based architecture designs a Wallace Tree multiplier 

with reversible logic rather than a full adder, half adder, and 

compressor, this proposed reversible 8x8 Wallace Tree 

multiplication partial product generation done with FG 

followed by TG gate also takes exactly 64 partial products. 

However, because it uses TG and FG gate interconnection, it 

will require less critical path delay and have lower power 

consumption [14]. To illustrate the architecture of the 

development of partial products, Figure 2 will be shown. 
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Figure 2 : Partial Product generation using Reversible logic 

gates of FG and TG 

 

Once we have completed the calculation of the bits that 

generate the partial product, we should proceed to compute 

their reduction of the partial product for sum outputs. In the 

circuit that has been presented, reversible HA and FA blocks 

have been built by using the PG gate and the FG gate, 

respectively. Figure 3 shows the simulation results, and 

Figure 4 is a visual depiction of the proposed Wallace tree-

based multiplier.
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Figure 3 : Simulation results of 8x8 Wallace Tree  Multiplier

 

 
 

Figure 4 : The proposed 8x8 Wallace Tree Multiplier using 

Reversible full adder and reversible logic gates 

 

Table 3 : Comparisons analysis of Wallace Tree Multiplier 

 
 Conventional 

Binary 

Multiplier 

Wallace Tree 

Multiplier with 

4:2 compressor 

and PPA 

Proposed 

Wallace Tree 

Multiplier 

using 

Reversible full 

adders 

Number of 

Slice LUTs 

218 201 121 

Number of 

occupied 

Slices 

88 73 65 

Number of 

IOBs 

33 32 32 

Delay(ns) 24.745 11.514 9.946 

 

 

 
 

Figure 5 : Xilinx results analysis graph of proposed, existing 

wallace tree multiplier with conventional binary multiplier 

 

It was analyzed how the proposed multiplier stacks up 

against the standard binary multiplier and the standard 

Wallace tree multiplier design with 4:2 compressors. The 

comparisons and analyses of three multipliers are shown in 

Table 3, and the chart illustrating the Xilinx performance 

analysis is presented in Figure 5. 

IV. PROPOSED RECONFIGURABLE DATAPATH 

ARCHITECTURE OF EQ-SCALABLE AF 

 

Here we will detail the adaptive filter structure that has 

been suggested and the reconfigurable datapath that has been 

developed for adaptive filters that can scale up to EQ. All four 

of these modes—LMS, NLMS, PU-NLMS, and SM-

NLMS—are possible with our reconfigurable adaptive filter 

design. Each mode makes use of a different adaptive filter 

technology based on LMS [15]. You can see the proposed 

datapath design in action in Figure 6. In this layout, you can 

see three control inputs denoted as Selector, γ, and Step, along 

with two signal inputs, which represent the reference signal 

x(k) and the desired signal d(k). Inputs γ and Step define the 

variables that are used for the SM-NLMS and PUNLMS 

filters, respectively. The Select input determines the filter 

mode. The SM-NLMS comparison block is also responsible 

for determining the optimal value of v(k) for the SM-NLMS 

filters [16]. The input value d(k) and output value y(k) from 

the filter are used by the error block to compute the filter 

error.

a7b7 a6b7 a5b7 a4b7 a3b7 a2b7 a1b7 a0b7 a0b6 a0b5 a0b4 a0b3 a0b2 a0b1 a0b0
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Figure 6 :  The reconfigurable Adaptive filter datapath proposed architecture using Wallace tree Multiplier 

 

After the input selector determines the appropriate updating 

factor, the Update Control is tasked with providing it. The 

functions that control the SM-NLMS updating condition are 

a comparator block (>), two multipliers (X), two adders (+), 

one divider (/), and one shift operator [17]. The control of the 

blocks is carried out using a four-clock-cycle FSM. The 

procedures use a fixed-point representation due to the fact 

that the K least significant bits (LSBs) stand in for the 

fractional component. The sign value is shown as the most 

significant bit (MSB), and the integer component of the value 

is represented by the n−K MSBs that follow it. 
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Figure 7 : Operation of Reconfigurable LMS datapath 

architecture. The shaded blocks are un-used. 

 

As shown in Figure 7, which illustrates the architecture's 

functions, the SM-NLMS contrast and revision in LMS 

mode, control blocks are not visible. As a recursive Wiener 

solution, the LMS technique decreases complexity and 

simplifies implementation by needing just sequential 

operations for multiplication and addition. With regard to the 

extent of the mathematical complexity they use, the FIR filter 

and the LMS algorithm blocks are both equivalent. Along 

with the FIR structure, the LMS also has an adaptive method 

to make sure the filter weights are updated correctly [18]. 

This property of the algorithm is a major factor in its 

extensive adoption. The formula used to construct the output 

LMS filter is y(k) = WT(k) X(k). Equation w(k) represents the 

filter coefficients vector, input signal x(k) is the input signal 

vector, and k is the discrete time order of the signal sample. 

By reducing the system's mean square error (MSE), which is 

the discrepancy between the intended signal d(k) and the filter 

output y(k), the filter weight coefficients may be determined. 

The filter update may be determined by using equation (1). 

According to [19], the adaptive algorithm step is represented 

by the variable μ. A ratio of 0 to 1 divided by the greatest 

eigenvalue of the noise signal x(k)'s correlation matrix R, 

where λ(max) is the highest eigenvalue, guarantees filter 

stability. 

)()()()1( . kkkk Xeww            (1) 

 

In order to get the estimate error, which is indicated as e(k), 

one must first subtract the desired signal, which is denoted as 

d(k), from the filter output, which is represented as y(k). 

Therefore, e(k) is equal to d(k) minus y(k), to put it another 

way. The Learning Management System (LMS) filter has a 

few limitations that might potentially make its 

implementation challenging, despite the fact that it is widely 

used for a wide range of solutions. There are a number of 

downsides, the most notable of which include a delayed 

resolution time, a high level of sensitivity to the noise signal 

intensity, and fixed coefficient updating. These are the most 

serious of the negatives. The low convergence speed is 

characterized by the fixed adaptation constant μ, which is not 

subject to fluctuations in the system. As a result, it offers a 

consistent adaption pace regardless of the changes that occur 

inside the system [20]. When there is insufficient 

conditioning of the input noise signals, the LMS filter has a 

discriminating sensitivity to the power level of the input 

signal. This is because the LMS filter does not have adequate 

conditioning. As a consequence, the system's functionality 

can be overwhelmed by the input signal's high amplitude or 

large changes among samples. The adaptive algorithm 

updates the coefficients continuously and calculates the 

weight of the coefficients without applying any control. as it 

goes through the filter convergence process, which often 

results in unnecessary actions. The result of this was that 

further derivations from the LMS algorithm were devised in 

order to improve the efficiency of the technique [21]. 

 

With the exception of the design NLMS and PU-NLMS 

modes is shown in Fig. 8. In order to enhance the LMS filter, 

the NLMS changes the step-size μ according to the input 

power signal (xT
(k)x(k)). Because of this, the filter will work 

flawlessly even when fed signals with a lot of power. We use 

the formula (2) to get the weight coefficients. 
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To guarantee stability, β must be a minimum number. 

Reducing the NLMS technique's hardware-related 

complexity is the goal of the limited update NLMS filter. This 

filter maintains the consistency of past results with future 

updates while reducing the newly calculated coefficient 

weight [22]. Similar to the NLMS, the weight coefficients 

calculation (3) takes into account a particular factor M that 

indicates when the coefficients need to be updated. 
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Considerations such as accuracy level, system 

requirements, and implementation dictate the factor M value. 

Therefore, the correct factor M has to be found for every 

possible case. 
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Figure 8 : Operation of reconfigurable NLMS and PU-

NLMS modes. The shaded blocks are un-used. 

 

Using the whole design and the appropriate control signals, 

the architecture is configured for SM-NLMS mode, as shown 

in Fig. 9. Each mode makes advantage of the data-gating 

technique to stop the unused architecture—shown as shaded 

blocks in Figures 7–9—from switching on and off, thereby 

reducing their dynamic power. The goal of the set-

membership normalized LMS filter is to simplify the NLMS 

mathematically by modifying its filter weights according to 

an estimate error on a specified bound, χ. If the estimated 

error is less than the boundary value, then any parameters and 

restrictions may be used [23]. When an error occurs outside 

of the boundary, the weights are updated by modifying the 

filter stages as specified in (4). 

otherwisekeifkek ,|)(||,)(|/
,0

1
)(  





 (4) 

 

The NLMS filter process is identical to the error and filter 

output calculation procedures. Each of these processes is 

identical.
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Figure 9 : Operation of reconfigurable SM-NLMS mode. 

The shaded blocks are un-used.   

 

Table 4 details every property associated with each 

operating mode of the reconfigurable adaptive filter. 

Definition of the control signal Select, as well as stages, 

operations, and blocks, are all part of these aspects. Note that 

the design prioritizes the Select indication and that you may 

swap modes at any moment without involving the FSM. Two 

multiplications and one sum are required for each mode when 

dealing with 2-tap to calculate the filter output y(k) in all 

modes and α for LMS datapath architecture, respectively 

[24]. Results show that compared to other systems, the LMS 

has less mathematical complexity due to the division 

operation. The arithmetic operations in PU-NLMS and SM-

NLMS are larger in logic size than in the NLMS, however the 

additional adder units are used to decrease the switching 

activity of the multipliers. To do this, the system's coefficients 

must remain constant across a significant number of cycles. 

 

Table 4 : Operating Mode of Reconfigurable Adaptive Filter 
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Table 5: Comparisons of Reconfigurable Adaptive filter which using Conventional Binary Multiplier and Reversible 

Wallace Tree Multiplier 

 
 SM-NLMS PU-NLMS NLMS LMS 

Binary 

Multiplier 

Reversible 

Wallace Tree 

Multiplier 

Binary 

Multiplier 

Reversible 

Wallace Tree 

Multiplier 

Binary 

Multiplier 

Reversible 

Wallace 

Tree 

Multiplier 

Binary 

Multiplier 

Reversible 

Wallace Tree 

Multiplier 

Number of Slice 

Registers 

56 88 56 89 40 39 40 39 

Number of Slice LUTs 606 387 595 400 62 55 62 55 

Number of Occupied 

Slice Registers 

260 135 243 131 19 15 19 15 

Number of Bonded IOBs 26 26 26 26 18 18 18 18 

Delay (ns) 24.183 7.696 22.103 6.388 7.557 3.036 7.557 3.036 

Power (w) 0.513 0.531 0.531 0.531 0.529 0.529 0.529 0.529 

 

 
 

Figure 10: Comparisons analysis results of Reconfigurable 

Adaptive filter  

V. IMPLEMENTATION REPORT OF OVERALL DESIGN 

ARCHITECTURE 

 

The rest of this section details the outcomes of the idea 

synthesis for the reconfigurable adaptive filter architecture 

and how well the reconfigurable part of the implementation 

worked. In Table 5, a comparison was made between the four 

different kinds of reconfigurable adaptive filters: (a) SM-

NLMS, (b) PU-NLMS, (c) NLMS, and (d) LMS. In this 

comparison, Verilog HDL was used for the design, Modelsim 

was used for simulation, and Xilinx Vertex-5 FPGA 

(XC5VLX50-2ff676) was used for synthesis. The creation of 

these filters was accomplished via the use of either a standard 

binary multiplier or the reversible Wallace tree multiplier 

proposal. Following a comparison of the two multipliers 

shown in Table 3, we decided to apply this multiplier to the 

architecture of the filter design that incorporates 

reconfigurable four datapaths. In this instance, the proposed 

multiplier by SM-NLMS will use more slice registers than the 

conventional technique does, but it will use less power, 

latency, occupied slices, LUTs, and overall efficiency [25]. 

In a similar manner, the PU-NLMS makes use of an 89-slice 

register, while the conventional approach only makes use of 

56 slices. In order to complete the LUT, it will take 400, the 

occupied slice will take 131, and the delay will end up 

performing 6.388. In both the NLMS and LMS mode setups, 

there will be a reduction in the number of LUTs, occupied 

slice registers, delays, and power consumption. Presented in 

Figure 10 are the findings that were obtained from the 

examination of the reconfigurable adaptive filter. 

 

 
 

Figure 11 : RLT Schematic of Reconfigurable datapath 

adaptive filter architecture 

 

 
 

Figure 12 : The Core architecture of RTL Schematic which 

using reversible Wallace Tree Multiplier 

 

Figure 11 shows the RTL Schematic of the reconfigurable 

datapath adaptive filter architecture, which demonstrates a 

novel approach. Additionally, the core architecture of the 

RTL Schematic, which includes a reversible wallace tree 

multiplier, can be found in Figure 12. Furthermore, the 

simulation module input sequence of this reconfigurable top 

module architecture, which is given with a 5G input 

sequence, is expected to provide the highest data rates, lower 

latency, and enhanced connectivity. The input sequence of 

5G, which encapsulates the signal that is being conveyed, sets 

off on a voyage that encounters difficulties brought about by 

the wireless channel. These difficulties include interference, 

distortion, and noise. 

Journal of Engineering and Technology Management 72 (2024)

Page No: 1704



                                                                               

9 

 

 

Figure 13 :  Simulation result analyzes of reconfigurable adaptive filter 

 

It becomes clear that the adaptive filter is a crucial 

component in this current scenario because it dynamically 

modifies its parameters in response to the differences that 

exist between the signal that is received and a signal that has 

been established as being desired. A simulation of the 

proposed reconfigurable adaptive filter was performed, and 

the results are shown in Figure 13. 

 

The present investigation changes LMS filters such that 

they use standard binary multiplications, Wallace trees, and 

carry look-ahead adders instead of their original multipliers 

and adders. Approximate distributed arithmetic circuits may 

be used in LMS filters after this. Using a previously published 

design—a parallel version of an LMS filter—the authors 

drew heavily on computational operators and registers to 

construct the circuit. The design calls for 2*W registers, 

3*W-1 adders, and 2*W multipliers when a W-tap filter is 

considered. It was also suggested that LMS, NLMS, and RLS 

filters work in tandem, with the LMS application being 

considered in the background. 2*W adders, 2*N memory 

locations, and 2*W+1 multipliers would be the bare 

minimum of components for this application. The writers 

presented two multipliers, an adder, and a divider in relation 

to the NLMS example. Noteworthy is the fact that the 

endeavor executes every program independently. Meanwhile, 

we proposed an entirely sequential architecture for the 

FPGA-based LMS algorithm. The authors neglected to 

account for the much larger components of the FIR filter 

design and the number of clock cycles, even though the 

adaptive method only required a single multiplier, adder, 

register, and divider. Therefore, it is difficult to directly 

compare our work to theirs in this regard. The reconfigurable 

adaptive filter uses fewer components and clock cycles than 

a single-filter, specialized design. This is because four filters 

are used. If the other assessed layouts had been implemented 

in the Xilinx Vertex-5 FPGA with the same frequency and 

input vectors, our design would have achieved the greatest 

results in terms of processing speed, logic size, and energy 

savings, according to these data. 

VI. CONCLUSION 

 

A reconfigurable adaptive filter, an energy-quality-with-

data-path architecture, is proposed here. This filter may 

dynamically pick between four different adaptive filters, such 

as LMS, normal architecture design of NLMS, parallel 

architecture design of PU-NLMS, and SM-NLMS, based on 

the system's requirements. In addition to reducing latency, 

power consumption, and system requirements, the 

reconfigurable adaptive filter also offers several benefits. 

This is on top of the fact that the proposed architecture, which 

employs a reversible Wallace tree design with FG and PG 

reversible gates, would reduce additional logic sizes. The 

proposed reconfigurable learning management system (LMS) 

design allows for statically or dynamically reconfiguring the 

adaptive filtering system's complexity during runtime 

according to the circumstances. The beginning of battery 

level information or the input SNR level are two examples of 

the kinds of system data that could serve as references for this 

purpose. We found that the reconfigurable adaptive filter 

design is beneficial since it allows us to dynamically 

reconfigure the modes during runtime, which reduces energy 

usage while simultaneously reducing error. Numerous fields 

have found use for the reversible reconfigurable adaptive 

filter design that was suggested. These fields include 

biomedical signal processing, audio processing, and 

communication systems. 
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