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Abstract 

Electromyography (EMG) is a diagnostic procedure for evaluating the health of muscles and the nerve cells that 

control them. Proper analysis of the results of EMG can reveal muscle dysfunction, nerve dysfunction, or issues 

with the transmission of nerve-to-muscle signals. This project aims to apply digital filters to a raw sEMG signal, 

extract time and frequency features and use it to predict the presence of any abnormalities using the sliding 

window method. This input can assist in training a machine-learning model to distinguish muscular patterns. The 

frequency range of the acquired data is used to predict if the tremors are in normal or abnormal condition. This 

project can classify the sEMG data based on frequency to indicate the patient’s muscular response or electrical 

activity. This can help distinguish healthy conditions from Myopathy and Neuropathy. With a refined approach, 

this model can be used for Real-time detection of Parkinson’s disease, ADHD, and other syndromes, providing a 

ballpark diagnosis for a quick approach to treatment or more refined testing or diagnostic procedures. 
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Introduction 

EMG Pattern Recognition involves detecting human movements through surface electromyographic (sEMG) 

signals, generated by muscle contractions. It has been deployed in various applications including powered upper-

limb prostheses, electric power wheelchairs, human-computer interactions, and diagnoses in clinical 

applications[1-4]. Compared to other eminent bioelectrical signals (e.g. ECG, EOG, GSR), the study of surface 

EMG signal is arduous due to its random outcome probability [5].  

Existing EMG pattern recognition approaches can be mainly classified into two types:  

1. Feature engineering  

2. Feature extraction  

Machine Learning (ML) algorithms involve significant models like feature engineering and extraction. In EMG 

analysis, short time windows of the raw EMG signal are used to extract time and frequency features, improving 

information quality and density. According to numerous studies, both the quality and quantity of features have a 

significant impact on the performance of EMG pattern recognition [6-9]. 

EMG pattern recognition systems employ emerging deep learning architectures and methods like Gesture 

Recognition by Instantaneous Surface EMG Images, EMG-based estimation of Limb Movement Using Deep 

Learning And CNN, and EMG Pattern Classification Using Deep Belief Networks for Enhanced User Experience, 

with the introduction of shared larger EMG data sets and recent progress in techniques for addressing overfitting 

problems [10-12,14]. In few cases, the amalgamation of both feature engineering and extracting is done by 

inputting pre-processed data or pre-extracted features into a deep learning process with some benefits which have 

been demonstrated in Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer 
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Learning, EMG-based estimation of Limb Movement Using Deep Learning And CNN, EMG Pattern 

Classification Using Deep Belief Networks for Enhanced User Experience [11-13].  

Interfaces that rely on surface electromyography (sEMG) can be difficult to design because they require a signal 

function or model that ensures reliable control of a care system. sEMG analysis typically involves three methods 

to extract information based on the non-stationary signal behaviour: time, frequency, and time-frequency 

domain[15-17]. However, some practical factors such as changes in arm position may hinder robust myoelectric 

control. So, machine learning models are used for better results [18]. Overall, non-invasive electromyography 

(EMG) remains the optimal intuitive and easy-to-use interface for stroke rehabilitation compared to other 

methods [19-20]. 

Pattern recognition (PR) is challenging or even impossible in the post-stroke heterogeneous discrepancies in 

abnormal muscle signals and subject-dependent characteristics[21-24]. Analytically, at the signal preprocessing 

stage, signal cleaning (rejection, decimation, and down-sampling) and filtering an reduce but not eliminate this 

distortion[25-27]. Effective signal decoding requires further stages related to feature extraction and classification; 

however, material limitations are a hindrance [6,14,26-31]. 

During the learning, most supervised learning (SL) procedures are usually linear and are restricted to an estimate 

of classified labels [4,27,28]. Nevertheless, a supervised function support vector machine (SVM) permits to evade 

of linearity (while using non-linear attributes) and is broadly used in neural signal processing [31,32]. After 

acquiring signal data, it can be denoted by processed features, as the complexity of the raw data degrades the 

capability of the method to correctly classify [6,28,33]. Those features have small dimensional masses and can 

reveal exact signal parameters more proficiently (compared to raw signals), but feature selection needs domain 

skill and remains a tough job [35,6]. Additionally, redundancy and probable computational load (important for 

real-time use) [34,35] can be caused by extracted feature characteristics from identical and different domains. 

Lastly, due to model overfitting in practical use, the theoretical number of feature components is limited[14,33]. 

It is possible to address the challenges associated with EMG signal-based hand gesture recognition by using 

Machine Learning techniques [36]. SVMs, k-nearest neighbours (k-NN), decision trees, random forests, linear 

discriminant analysis, artificial neural networks (ANN), convolutional neural networks, and gated recurrent unit 

networks are some commonly used strategies for hand gesture detection[37-49]. The traditional features used for 

accurate hand gesture recognition are defined in three domains:  

 time domain - mean absolute value (MAV) and zero crossing (ZC) [50]  

 frequency domain - median frequency and power spectrum ratio [30] 

 time-frequency domain - wavelets [51].  

Tremors in neurological patients [52] have clinically described their mode of presentation as 

 Rest - appears during rest 

 Postural - triggered by maintaining a posture or a position against gravity 

 Kinetic tremor - induced by a voluntary movement (maximal near the target) [53] 

The prominent frequency and the power spectral density categorize tremors in a clinical setting. Rest tremor 

frequency is typically in the range of 3–6 Hz and may rise with mental stress or contralateral voluntary motion 

[53,54]. Idiopathic Parkinson’s Disease is the root cause of rest tremor. Postural tremor frequency lies between 4 

and 12 Hz. Postural tremors in the upper limbs lead to many disorders. Essential tremor is the leading cause [55]. 

Kinetic tremor frequency usually lies between 2 and 7 Hz [53]. 

The objective of this project is to predict the irregularities or the presence of disorders in the patient's conditions, 

at an early stage, using the conditional statement of Python programming language. It mainly focuses on the 

features of the EMG signal, especially the time and frequency domain. The primary reasons that motivated us to 

pursue this research were 

 Increased occurrence of neuromuscular diseases among all age groups in recent years has led to many 

innovations in medical science. This is also an attempt to make a better service. 

 Delayed diagnostic decisions often lead to tragic consequences whereas quality service implies diagnosing 

patients correctly with effective treatment at the soonest. 
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 The provision of quality services at affordable costs can be achieved by employing appropriate program-

based algorithms and decision support systems. 

In this paper, we have used a machine learning model and sEMG signals-based pattern recognition model to 

achieve real-time response [52]. For data acquisition, we use the sEMG signal data set, but we have also made a 

feature to incorporate real-time data measured from an indigenously developed sensor. For preprocessing, we use 

a Butterworth filter to remove noise and smooth the signal. For feature extraction, we use the pre-processed signals 

in the sliding window. The flow diagram explaining the entire procedure of the feature extraction is shown in 

Figure 1. 

 

Figure 1 - Flow diagram of Feature Extraction 

Materials and Methods 

EMG findings in neuropathy and myopathy reflect the underlying pathophysiology of these conditions. 

Neuropathy is characterised by reduced nerve conduction and denervation-related changes, while myopathy is 

associated with direct muscle damage and alterations in MUAPs. EMG, besides other diagnostic tests, plays a 

vital role in distinguishing between these conditions (as shown in Figure 2) and guiding clinicians in the diagnosis 

and management of neuromuscular disorders. It can be seen that the primary distinguishing factor is frequency in 

this case. 

 

Figure 2 - Graphical Comparison of healthy, neuropathic and myopathic conditions 

 Sensors and Data Acquisition - To facilitate real-time processing, we use the indigenously developed EMG 

sensor to acquire the sEMG data [56]. The sensor is developed using Arduino sensors. These sensors measure the 

electrical activity of the muscles of the palm at a sampling frequency of 2000 Hz. The features are estimated using 

a frame of 500 and a step of 250. Data from the sensor is transmitted to the computer by the program. For 

preliminary detection, we have used a readily available data set of EMG. There is a facility for analysing real-

time data which can be acquired using the sensor. 
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 Method - The original signal (as shown in Figure 3) is pre-processed for rectification and filtered to remove the 

noise at first. Then, the time domain features representative of the data are extracted. The proposed approach for 

classification uses a sliding window protocol for all the features. Our model meticulously presents separate and 

detailed algorithms for both training and testing. 

 
Figure 3 - Raw Data Plot of EMG Signal from the data set 

 

1. Preprocessing - The purpose of the preprocessing is to denoise the acquired signal and make it easy to extract 

features. The original signal has additional noise that can generate invalid features and interfere with the 

classification. For training, the observed signals are normalised at first, with each element of each matrix being in 

the range determined by using a notch filter (as shown in Figure 4) [57]. We design the filter to smooth the signal 

and reduce the noise by analysing the signal frequency component and noise. The cut-off frequency of the 4th-

order digital Butterworth filter is set at 10 Hz which is appropriate due to the use of Fourier transform. Then, the 

detection function removes the signals above the higher cut-off of 500 Hz to extract the muscle activity range[58]. 

The muscle activity region can be found by calculating the spectrum energy from filtered data, based on sampling 

intervals that can be extracted. So, the time area of muscle activity can be found. Combining both Butterworth 

and notch filters and applying filters both forward and backward on a signal help eliminate phase lag and give 

better results. This combination ensures the correct amplitude and phase relationships across a wide tuning range 

to create adjustable Z-transforms without sacrificing the gain of the passband. 

 

 
Figure 4 - A snippet of the code from Digital Processing 

 

2. Noise minimization - Tremor time series need noise removal, achieved using Frequency-selective filters or 

adaptative filters [54]. Wavelet (time-scale distribution) denoising may act as a band-pass filter for a given signal. 

Wavelet transforms exist in both frequency and time domains and are effective for random signals like 

neurological tremors [59]. Wavelets express a signal as a linear combination of given sets of functions (wavelet 
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transform). The mother wavelet function can be shifted and dilated to form the transforms. Wavelet-based 

denoising can efficiently isolate activities of interest such as EMG discharges (as shown in Figure 5), from noise 

in the tremor signal [54]. The noise (amplitude-based) and the desired signal (frequency-based) can be elucidated 

using graphical representation. 

 
Figure 5 - Filtered and Processed Signal from the data set 

 

3. Feature Extraction - For feature extraction, the sliding window technique is used. The data set is divided into 

data segments. For accuracy in real-time, the step size of the two consecutive sliding windows is set, based on the 

frames. For extracting features in the sliding window, to reduce the room for error, we select ten features in the 

time domain: Variance, RMS, MAV, Wavelength, ZCR, Wilson amplitude, AAC Myo-pulse percentage rate, log 

detector, and integrated EMG [60-62]. The formulae for these features are discussed in Table 1. 

 

Table 1: Time-domain Indicators for EMG Signal Processing 

Features Formula Denotation 

Variance 

VAR(s(k)) =
1

N − 1
∑ s(k)2

N

k−1

 

s(k) - k-th voltage value that makes up 

the signal 

N- number of elements 

RMS 

R = √
1

N
∑ s(k)2

N

k=1

 

L- total length of the curve or the sum of 

the Euclidean distances between 

successive points 

m- diameter of the curve 

N- number of steps in the curve 

MAV 

M =
1

N
∑|s(k)|

N

k=1

 

s(k) - k-th voltage value that makes up 

the signal 

N- number of elements 

Wavelength 

W = ∑|s(k) − s(k − 1)|

N

k=2

 

s(k) - k-th voltage value that makes up 

the signal 

Zero crossing 

zcr =
1

T − 1
∑ 1R<0(StSt − 1)

T−1

t=1

 

s is a signal of length T and 1R<0  is an 

indicator function 

Wilson Amplitude 

WAMP = ∑ 𝑓(|𝑥𝑛 − 𝑥𝑛+1|)

N−1

n=1

 

 

𝑥𝑛 - n-th voltage value that makes up the 

signal 

N- number of elements 
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𝑓(𝑥) = {
1      if (𝑥 ≥ 𝑦)
0    otherwise

 

AAC 

𝑖𝐴𝑣𝑔 =
1

N
∑ 𝑥𝑡

𝑁

𝑡=1

 

𝑥𝑡   - instantaneous values in the EMG 

time signal 

N- number of elements 

MYOP 

MYOP =
1

N
∑ 𝛷(𝑥𝑘)

N

k=1

 

 

Φ(x) = {
1     if 𝑥 > 𝐿,
0 otherwise

 

𝑥𝑘 - k-th voltage value that makes up the 

signal 

 

LOG 

LOG = exp (
1

N
∑ log(|xk|)

N

k=1

) 

𝑥𝑘- k-th voltage value that makes up the 

signal 

 

IEMG 

IEMG = ∑|xk|

N

k=1

 

𝑥𝑘 - k-th voltage value that makes up the 

signal 

 

 

Similarly, we select six features in the frequency domain: Frequency rate, Mean and Total power, Mean, Median, 

and Peak frequency [63]. The formulae for the frequency features are discussed in Table 2. 

 

Table 2: Frequency-domain Indicators for EMG Signal Processing 

Features Formula Denotation 

FR 
FR =

∑ 𝑃𝑗
𝑈𝐿𝐶
𝑗=𝐿𝐿𝐶

∑ 𝑃𝑗
𝑈𝐻𝐶
𝑗=𝐿𝐻𝐶

⁄  
LLC and ULC - lower and 

upper cut-off frequency 

Pj - EMG power spectrum 

at frequency bin j 

MNP 
MNP =

∑ 𝑃𝑗
M
j=1

M
⁄  

Pj - EMG power spectrum 

at frequency bin j 

TTP 

TTP = ∑ Pj = SM0

M

j=1

 

SM0 – zero spectral 

moment 

MNF 
MNF =

∑ 𝑓𝑗𝑃𝑗
M
j=1

∑ 𝑃𝑗
M
j=1

⁄  
fj- frequency value of EMG 

power spectrum at 

frequency bin j 

MDF 

∑ 𝑃𝑗 = ∑ 𝑃𝑗 =
1

2
∑ 𝑃𝑗

𝑀

𝑗=1

𝑀

𝑗=𝑀𝐷𝐹

𝑀𝐷𝐹

𝑗=1

 

Pj - EMG power spectrum 

at frequency bin j 

PKF PKF = max(Pj), j = 1, . . . , M Pj - EMG power spectrum 

at frequency bin j 

 

To improve the accuracy, besides using the feature parameters, we also extract the pre-processed signals through 

the sliding windows and put them together to form the final matrix used in the classifier. 

Machine learning (ML) models are increasingly being used in the processing and feature selection of 

electromyography (EMG) signals to enhance the accuracy and efficiency of tasks such as pattern recognition, 

classification, and identification of muscle activities [29, 36, 37]. Here are some common machine-learning 

models and techniques used in EMG signal processing: 

1. Support Vector Machines (SVM): SVM is a popular supervised learning algorithm used for classification tasks. 

It has been employed in EMG signal processing to classify different muscle activities or to identify specific 

patterns associated with certain neuromuscular disorders [31,32]. 

2. Artificial Neural Networks (ANN): ANNs, particularly deep learning models, have shown success in 

processing complex EMG signals [45, 46]. Deep learning architectures like convolutional neural networks 

Journal of Engineering and Technology Management 72 (2024)

Page No: 1642



(CNNs) are capable of automatically learning hierarchical features from raw EMG data, eliminating the need 

for manual feature extraction [11]. 

3. Random Forests: Random Forest is an ensemble learning method that combines the predictions of multiple 

decision trees. It can be used for classification tasks in EMG signal processing, especially in scenarios where 

interpretability is important. 

4. K-Nearest Neighbors (KNN): KNN is a simple and effective algorithm for classification tasks. It has been 

applied to EMG data for pattern recognition and muscle activity classification. 

5. Hidden Markov Models (HMM): HMMs are probabilistic models that have been used in the analysis of time-

series data, including EMG signals. They can be employed for gesture recognition or identifying patterns in 

sequential muscle activities. 

6. Principal Component Analysis (PCA): PCA is a dimensionality reduction technique used to transform high-

dimensional data into a lower-dimensional space. It has been applied to EMG data for feature selection and to 

reduce the dimensional complexity of the dataset [6]. 

7. Wavelet Transform: The wavelet transform is a time-frequency analysis technique that has been used to extract 

features from EMG signals. It allows for the representation of signal characteristics at different time scales, 

which can be useful in capturing dynamic changes in muscle activity [35]. 

8. Autoencoders: Autoencoders are a type of neural network used for unsupervised learning. They can be 

employed for feature learning and representation of EMG signals, helping to discover meaningful patterns in 

the data [24]. However, in this project, we have used Sliding Window Protocol which allows even better data 

transmission.  

9. Genetic Algorithms: Genetic algorithms can be applied to optimize feature selection for EMG signal 

processing. They help identify the most relevant features that contribute to the discrimination of different 

muscle activities. 

 

These machine-learning models and techniques play a crucial role in the development of intelligent systems for 

EMG signal analysis, classification, and feature selection. The choice of a specific model depends on the nature 

of the task, the complexity of the data, and the goals of the analysis. 

Results and Discussion 

First, the raw data is processed by noise removal and filtered. Now this filtered data will be used to extract features 

useful for diagnosis. We cannot get all the features as they are very complex but a ball-park diagnosis can be 

provided using this project. The frequency can tell if the tremors are in normal range or less or more. Now for 

visual representation, we have used graphs so that people can easily understand because values would not mean 

anything to most people but looking at differences between healthy and diseased graphs will hold meaning. The 

results obtained in electromyography (EMG) signal feature extraction involve the identification and quantification 

of relevant characteristics within the EMG signals [1,6-9]. Feature extraction is a crucial step in processing EMG 

data as it transforms raw signals into a set of discriminative features that can be used for analysis, classification, 

or further interpretation. By extracting relevant features from EMG signals, researchers and clinicians gain 

insights into the underlying patterns of muscle activity, which can aid in understanding motor control, diagnosing 

disorders, and developing effective rehabilitation strategies. The choice of features depends on the specific goals 

of the analysis and the characteristics of the EMG signals under investigation. 

Electromyography is used for recording the electrical activity produced by skeletal muscles. It can distinguish 

myopathy from neurogenic muscle wasting and weakness. The frequency range for healthy conditions is 8-12 Hz, 

but for myopathic conditions, the range is from up to 3hz and for neuropathy it is beyond 12hz up to 16hz. By 

combining Butterworth and Notch filters and applying digital filters forward and backwards on a signal we can 

detect these (as shown in Figure 6). 

This combination ensures the correct amplitude and phase relationships across a wide tuning range to create 

adjustable Z-transforms without sacrificing the gain of the passband. Butterworth filter gives a smooth output. 

This eliminates phase lag and gives better results. 

The recommended cutoff frequency fc for the high pass filter for attenuating these low-frequency artefacts is within 

the range of 5–30 Hz for conductive EMG sensors. A 400–500 Hz lowpass filter fc is recommended for filtering 

high-frequency noise while maintaining EMG signal power. 
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The project uses the Denoising Wavelet of MATLAB to suppress the noise part of the signals and to recover f. It 

uses Sliding Window Protocol instead of autoencoders to select the appropriate size of data transmission. 

 

Figure 6 - Feature Extracted Signal from the data set 

Real-time processing and outputs 

 Data Acquisition - To collect the real-time EMG data a unique EMG sensor is used that interprets the 

biosignal acquired through the surface electrode and relays it to the Arduino circuit for digitization and 

further display through the program. Filters are also present within the sensor circuit which helps to minimize 

the noise. An unknown subject is seated in a resting condition and dirt is cleaned if present, which might 

affect the electrodes. Then the surface electrodes are applied to specific positions on the palm and hand as 

recommended by medical professionals. There are two polar electrodes, Bio-positive and Bio-negative, and 

a reference electrode that is placed on a bony region on the hand. After the electrode placement, EMG signal 

acquisition can be started by simply executing the Arduino program and checking the Serial Monitor for 

graphical output. A real-time frequency graph is obtained according to the muscular condition of the subject, 

which is then introduced to the Machine Learning model for further classification of the data. The settings 

to obtain the data are shown in Figure 7. 

 

 

Figure 7 - Settings to acquire real-time data from the sensor 
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 Data Segregation - The Machine Learning program is designed to process data in the form of a 1D array. 

All the values in the rows of a column are treated as a 1D array for further processing. Now, since the real-

time data acquired from the device, saved in the Excel format, has 2 columns (timestamp and values) it can't 

be used in the program to do further analysis (as shown in Figure 8). To make sure that the code works 

efficiently the data present only in the values column is taken and a separate file is created. When this file is 

fetched by the code, it can be read and processed easily as it is in the form of a 1D array. 

 

 

Figure 8 – Format to record data for sEMG of patients 

Using the code on real-time data for the diagnosis of disease in patients, in real-time we have derived similar 

results as the available data sets. This also confirms this system's high accuracy and precision rate concerning 

other models using ML and Python for sEMG analysis. The results for the real-time voluntary subjects are 

provided below. First, the raw data, from the Excel sheet, is plotted graphically (as shown in Figure 9). After this, 

a combination of filters filters out the desired signal from background noise to plot another graph (as shown in 

Figure 10). The filtered data is again subjected to processing through Machine Learning Algorithms and the 

formulas provided in Tables 1 and 2. Lastly, the feature-extracted signal is plotted forming a superpositioned graph 

on raw data to display how the program works efficiently to eliminate noise and extract necessary signals for 

disease prediction applications (as shown in Figure 11). Here, the amplitude reduction represents that the noise 

has been filtered out because the noise has a higher amplitude than the required signal. However, there is no loss 

of frequencies from the data due to the proper transmission using the Sliding Window Protocol. This ensures that 

there is no data loss which might lead to wrong analysis and predictions in ball-park diagnosis of diseases.  

 

Figure 9 - Raw Data Plot of EMG Signal from the real-time data 
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Figure 10 - Filtered and Processed Signal from the real-time data 

 

Figure 11 – Distinction of Feature Extracted Signal from the real-time data 

 

Conclusion 

The project aims to explore the intricacies of electromyography (EMG) signal acquisition and processing, 

focusing on robust feature extraction and graphical representation. Electromyography is a valuable technique for 

capturing electrical activity generated by muscles, providing a window into the neuromuscular system's 

functionality [31,32]. This project seeks to advance our understanding and application of EMG signals by 

developing a comprehensive framework that combines signal acquisition, processing, feature extraction, and 

graphical representation. 

This project seeks to contribute to biomechanics and neuromuscular research by providing an advanced and 

comprehensive framework for EMG signal processing [54,59]. The outcomes of this project could have far-

reaching implications, from improving our understanding of motor control to enhancing the development of 

intelligent systems for human-machine interaction. The combination of advanced signal processing techniques, 

feature extraction methods, and innovative graphical representations is expected to open new avenues for research 

and applications in the broader domain of biomedical engineering. 
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Discussion: 

Electromyography is used for recording the electrical activity produced by skeletal muscles. It can distinguish 

myopathy from neurogenic muscle wasting and weakness. The frequency range for healthy conditions is 8-12 Hz, 

but for myopathic conditions, the range is from up to 3hz and for neuropathy it is beyond 12hz up to 16hz. By 

combining Butterworth and Notch filters and applying digital filters forward and backwards on a signal we can 

detect these (as shown in Figure 6). 

This combination ensures the correct amplitude and phase relationships across a wide tuning range to create 

adjustable Z-transforms without sacrificing the gain of the passband. Butterworth filter gives a smooth output. 

This eliminates phase lag and gives better results. 

The recommended cutoff frequency fc for the high pass filter for attenuating these low-frequency artefacts is within 

the range of 5–30 Hz for conductive EMG sensors. A 400–500 Hz lowpass filter fc is recommended for filtering 

high-frequency noise while maintaining EMG signal power. 

The project uses the Denoising Wavelet of MATLAB to suppress the noise part of the signals and to recover f. It 

uses the Sliding Window Protocol instead of autoencoders to select the appropriate data transmission size. For 

now, it is best suited for ball-park diagnosis but with further modifications and training the model with diseased 

data sets, auto-analysis of graphs can be achieved eliminating the need for specialists to analyse the data for 

disease prediction.  

Acknowledgement 

We want to convey our heartfelt gratitude to our mentors, for their invaluable advice and assistance in completing 

this project. They were there to assist us in every step of the way, and their motivation is what enabled us to 

accomplish the task effectively. We would also like to thank all of the other supporting personnel who assisted us 

by supplying the equipment that was essential and vital, without which we would not have been able to perform 

efficiently on this project. We would also like to thank Department of Biomedical Engineering, JISCE for 

accepting our project. We’d also like to thank our friends and parents for their support and encouragement as we 

worked on this project. 

Statements and Declarations 

 Funding: This article did not receive any specific grant from funding agencies in the public, commercial, or 

not-for-profit sectors. 

 Conflict of Interest: The authors have no conflicts of interest related to this review. 

 Ethical Approval: Ethical Approval by an institutional review board or equivalent ethics committee was not 

applicable for this article as it does not involve any experiments involving interventions in human tissue. 

References 

[1] Scheme E, Englehart K(2011) Electromyogram pattern recognition for control of powered upper-limb 

prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev 48(6):643-659. 

https://doi.org/10.1682/jrrd.2010.09.0177. 

[2] Phinyomark A, Phukpattaranont P, Limsakul C (2011). A Review of Control Methods for Electric Power 

Wheelchairs Based on Electromyography (EMG) Signals with Special Emphasis on Pattern 

Recognition.IETE Tech. Rev 28: 316-323. https://doi.org/10.4103/0256-4602.83552. 

[3] Saponas TS. & Tan DS, Morris D, Balakrishnan R, Turner J, Landay JA (2009). Enabling always-available 

input with muscle-computer interfaces. UIST 2009 - Proceedings of the 22nd Annual ACM Symposium on 

User Interface Software and Technology. 167-176. https://doi.org/10.1145/1622176.1622208. 

[4] Yousefi J, Hamilton-Wright A (2014). Characterizing EMG data using machine-learning tools. Comput Biol 

Med 51:1-13. https://doi.org/10.1016/j.compbiomed.2014.04.018 

[5] Padmanabhan P, Puthusserypady S (2004). Nonlinear analysis of EMG signals - a chaotic approach. Conf 

Proc IEEE Eng Med Biol Soc 2006:608-611. https://doi.org/10.1109/IEMBS.2004.1403231. 

[6] Phinyomark A ,Phukpattaranont P,  Limsakul C (2012). Feature Reduction and Selection for EMG Signal 

Classification. Expert Syst Appl 39: 7420–7431. https://doi.org/10.1016/j.eswa.2012.01.102. 

[7] Boostani R, Moradi MH (2003). Evaluation of the forearm EMG signal features for the control of a prosthetic 

hand. Physiol Meas 24(2):309-319. https://doi.org/10.1088/0967-3334/24/2/307 

Journal of Engineering and Technology Management 72 (2024)

Page No: 1647

https://doi.org/10.1682/jrrd.2010.09.0177
https://doi.org/10.4103/0256-4602.83552
https://doi.org/10.1145/1622176.1622208
https://doi.org/10.1016/j.compbiomed.2014.04.018
https://doi.org/10.1109/IEMBS.2004.1403231
https://doi.org/10.1016/j.eswa.2012.01.102
https://doi.org/10.1088/0967-3334/24/2/307


[8] Zardoshti-Kermani M, Wheeler BC, Badie K, Hashemi RM (1995). EMG feature evaluation for movement 

control of upper extremity prostheses. In: IEEE Transactions on Rehabilitation Engineering, vol. 3, no. 4, 

pp. 324-333. https://doi.org/10.1109/86.481972 

[9] Scheme E, Englehart K (2014). On the robustness of EMG features for pattern recognition based myoelectric 

control: a multi-dataset comparison. Annu Int Conf IEEE Eng Med Biol Soc 2014:650-653. 

https://doi.org/10.1109/EMBC.2014.6943675. 

[10] Geng W, Du Y, Jin W, Wei W, Hu Y, Li J (2016). Gesture recognition by instantaneous surface EMG 

images. Sci Rep 6:36571. https://doi.org/10.1038/srep36571. 

[11] Xia P, Hu J, Peng Y (2018). EMG-Based Estimation of Limb Movement Using Deep Learning With 

Recurrent Convolutional Neural Networks. Artif Organs 42(5):E67-E77. https://doi.org/10.1111/aor.13004. 

[12] Shim HM, Lee S (2015). Multi-channel electromyography pattern classification using deep belief networks 

for enhanced user experience. J. Cent. South Univ 22:1801–1808. https://doi.org/10.1007/s11771-015-2698-

0. 

[13] Cote-Allard U, Fall CL, Drouin A, Campeau-Lecours A, Gosselin C, Glette K, Laviolette F, Gosselin B 

(2019). Deep Learning for Electromyographic Hand Gesture Signal Classification Using Transfer Learning. 

IEEE Trans Neural Syst Rehabil Eng 27(4):760-771. https://doi.org/10.1109/TNSRE.2019.2896269. 

[14] Phinyomark A, Scheme E (2018). EMG Pattern Recognition in the Era of Big Data and Deep Learning. Big 

Data and Cogn Comput 2(3):21. https://doi.org/10.3390/bdcc2030021. 

[15] Benchabane SI, Saadia N, Ramdane-Cherif A (2020). Novel algorithm for conventional myocontrol of upper 

limbs prosthetics. Biomed Signal Process Control. 57:101791. https://doi.org/10.1016/j.bspc.2019.101791. 

[16] Rasool G, Iqbal K, Bouaynaya N, White G (2016). Real-Time Task Discrimination for Myoelectric Control 

Employing Task-Specific Muscle Synergies. IEEE Trans Neural Syst Rehabil Eng 24(1):98-108. 

https://doi.org/10.1109/TNSRE.2015.2410176. 

[17] Karabulut D, Ortes F, Arslan YZ ,Adli MA (2017). Comparative evaluation of EMG signal features for 

myoelectric controlled human arm prosthetics. Biocybern Biomed Eng 37. 

https://doi.org/10.1016/j.bbe.2017.03.001. 

[18] Pérez-Reynoso F, Farrera-Vazquez N, Capetillo C, Méndez-Lozano N, González-Gutiérrez C, López-Neri 

E (2022). Pattern Recognition of EMG Signals by Machine Learning for the Control of a Manipulator Robot. 

Sensors (Basel) 22(9):3424. https://doi.org/10.3390/s22093424. 

[19] Gohel V, Mehendale N (2020). Review on electromyography signal acquisition and processing. Biophys 

Rev 12(6):1361–1367. https://doi.org/10.1007/s12551-020-00770-w. 

[20] Balasubramanian S, Garcia-Cossio E, Birbaumer N, Burdet E, Ramos-Murguialday A(2018). Is EMG a 

Viable Alternative to BCI for Detecting Movement Intention in Severe Stroke? IEEE Trans Biomed Eng 

65(12):2790-2797. https://doi.org/10.1109/TBME.2018.2817688. 

[21] Azzollini V, Dalise S, Chisari C (2021). How Does Stroke Affect Skeletal Muscle? State of the Art and 

Rehabilitation Perspective. Front Neurol 12:797559. https://doi.org/10.3389/fneur.2021.797559. 

[22] Campanini I, Disselhorst-Klug C, Rymer WZ, Merletti R (2020). Surface EMG in Clinical Assessment and 

Neurorehabilitation: Barriers Limiting Its Use. Front Neurol 11:934. 

https://doi.org/10.3389/fneur.2020.00934. 

[23] Jochumsen M, Niazi IK, Zia Ur Rehman M, Amjad I, Shafique M, Gilani SO, Waris A (2020). Decoding 

Attempted Hand Movements in Stroke Patients Using Surface Electromyography. Sensors (Basel) 

20(23):6763. https://doi.org/10.3390/s20236763. 

[24] Anastasiev A, Kadone H, Marushima A, Watanabe H, Zaboronok A, Watanabe S, Matsumura A, Suzuki K, 

Matsumaru Y, Ishikawa E (2023). Empirical Myoelectric Feature Extraction and Pattern Recognition in 

Hemiplegic Distal Movement Decoding. Bioengineering (Basel) 10(7):866. 

https://doi.org/10.3390/bioengineering10070866. 

[25] Fang C, He B, Wang Y, Cao J, Gao S (2020). EMG-Centered Multisensory Based Technologies for Pattern 

Recognition in Rehabilitation: State of the Art and Challenges. Biosensors (Basel) 10(8):85. 

https://doi.org/10.3390/bios10080085. 

[26] Li Y, Chen X, Zhang X, Zhou P (2014). Several practical issues toward implementing myoelectric pattern 

recognition for stroke rehabilitation. Med Eng Phys 36(6):754-60. 

https://doi.org/10.1016/j.medengphy.2014.01.005. 

[27] Abbaspour S, Lindén M, Gholamhosseini H, Naber A, Ortiz-Catalan M (2020). Evaluation of surface EMG-

based recognition algorithms for decoding hand movements. Med Biol Eng Comput 58(1):83-100. 

https://doi.org/10.1007/s11517-019-02073-z. 

[28] Tkach D, Huang H, Kuiken TA (2010). Study of stability of time-domain features for electromyographic 

pattern recognition. J Neuroeng Rehabil 7:21. https://doi.org/10.1186/1743-0003-7-21. 

[29] Too J, Abdullah AR, Saad NM (2019). Classification of Hand Movements Based on Discrete Wavelet 

Transform and Enhanced Feature Extraction. Int J Adv Comput Sci Appl 10: 83-89. 

https://doi.org/10.14569/IJACSA.2019.0100612. 

Journal of Engineering and Technology Management 72 (2024)

Page No: 1648

https://doi.org/10.1109/EMBC.2014.6943675
https://doi.org/10.1038/srep36571
https://doi.org/10.1111/aor.13004
https://doi.org/10.1007/s11771-015-2698-0
https://doi.org/10.1007/s11771-015-2698-0
https://doi.org/10.1109/TNSRE.2019.2896269
https://doi.org/10.3390/bdcc2030021
https://doi.org/10.1016/j.bspc.2019.101791
https://doi.org/10.1109/TNSRE.2015.2410176
https://doi.org/10.1016/j.bbe.2017.03.001
https://doi.org/10.3390/s22093424
https://doi.org/10.1007/s12551-020-00770-w
https://doi.org/10.1109/TBME.2018.2817688
https://doi.org/10.3389/fneur.2021.797559
https://doi.org/10.3389/fneur.2020.00934
https://doi.org/10.3390/s20236763
https://doi.org/10.3390/bioengineering10070866
https://doi.org/10.3390/bios10080085
https://doi.org/10.1016/j.medengphy.2014.01.005
https://doi.org/10.1007/s11517-019-02073-z
https://doi.org/10.1186/1743-0003-7-21
https://doi.org/10.14569/IJACSA.2019.0100612


[30] Phinyomark A, Khushaba RN, Scheme E (2018). Feature Extraction and Selection for Myoelectric Control 

Based on Wearable EMG Sensors. Sensors (Basel) 18(5):1615. https://doi.org/10.3390/s18051615. 

[31] Oskoei MA, Hu H (2008). Support vector machine-based classification scheme for myoelectric control 

applied to upper limb. IEEE Trans Biomed Eng 55(8):1956-1965. 

https://doi.org/10.1109/TBME.2008.919734. 

[32] Lee K.H, Kung SY, Verma N (2011). Improving kernel-energy trade-offs for machine learning in 

implantable and wearable biomedical applications. In: Proceedings of the 2011 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP).Prague, Czech Republic, pp 1597–1600. 

https://doi.org/10.1109/ICASSP.2011.5946802. 

[33] Fajardo JM , Gomez O, Prieto F(2020). EMG hand gesture classification using handcrafted and deep 

features. Biomed Signal Process Control 63. https://doi.org/10.1016/j.bspc.2020.102210. 

[34] Du S, Vuskovic M (2004). Temporal vs. Spectral Approach to Feature Extraction from Prehensile EMG 

Signals. Proceedings of the IEEE International Conference on Information Reuse and Integration-IRI. 344 - 

350. https://doi.org/10.1109/IRI.2004.1431485. 

[35] Maceira-Elvira P, Popa T, Schmid AC, Hummel FC (2019). Wearable technology in stroke rehabilitation: 

towards improved diagnosis and treatment of upper-limb motor impairment. J Neuroeng Rehabil 16(1):142. 

https://doi.org/10.1186/s12984-019-0612-y. 

[36] Zhang Z, Yang K, Qian J, Zhang L (2019). Real-Time Surface EMG Pattern Recognition for Hand Gestures 

Based on an Artificial Neural Network. Sensors (Basel) 19(14):3170. https://doi.org/10.3390/s19143170. 

[37] Dardas NH, Georganas ND (2011). Real-Time Hand Gesture Detection and Recognition Using Bag-of-

Features and Support Vector Machine Techniques. 60: 3592 - 3607. 

https://doi.org/10.1109/TIM.2011.2161140. 

[38] Benatti S, Milosevic B, Farella E, Gruppioni E, Benini L (2017). A Prosthetic Hand Body Area Controller 

Based on Efficient Pattern Recognition Control Strategies. Sensors (Basel) 17(4):869. 

https://doi.org/10.3390/s17040869. 

[39] Jaramillo-Yánez A ,Benalcázar ME & Mena-Maldonado E (2020). Real-Time Hand Gesture Recognition 

Using Surface Electromyography and Machine Learning: A Systematic Literature Review. Sensors 20: 2467. 

https://doi.org/10.3390/s20092467. 

[40] Benalcázar ME & Jaramillo AG , Zea JA , Paez A, Andaluz VH (2017). Hand gesture recognition using 

machine learning and the Myo armband.2017 25th European Signal Processing Conference (EUSIPCO) 

1040-1044. https://doi.org/10.23919/EUSIPCO.2017.8081366. 

[41] Joshi A, Monnier C, Betke M, Sclaroff S (2016). Comparing random forest approaches to segmenting and 

classifying gestures. Image Vis Comput 58. https://doi.org/10.1016/j.imavis.2016.06.001. 

[42] Sangjun O, Mallipeddi R, Lee M (2015). Real Time Hand Gesture Recognition Using Random Forest and 

Linear Discriminant Analysis. 3rd International Conference on Human-Agent Interaction. 

https://doi.org/10.1145/2814940.2814997. 

[43] Wang Y, Zhang L(2013). 3D hand gesture recognition based on Polar Rotation Feature and Linear 

Discriminant Analysis. Proceedings of the 2013 International Conference on Intelligent Control and 

Information Processing, ICICIP 2013. 215-219. https://doi.org/10.1109/ICICIP.2013.6568070. 

[44] Crepin R, Fall CL, Mascret Q, Gosselin C, Campeau-Lecours A, Gosselin B (2018). Real-Time Hand Motion 

Recognition Using sEMG Patterns Classification. Annu Int Conf IEEE Eng Med Biol Soc 2018:2655-2658. 

https://doi.org/10.1109/EMBC.2018.8512820. 

[45] Ahsan MR, Ibrahimy M, Khalifa OO (2011). Electromyography (EMG) Signal based Hand Gesture 

Recognition using Artificial Neural Network (ANN). 2011 4th International Conference on Mechatronics 

(ICOM). https://doi.org/10.1109/ICOM.2011.5937135. 

[46] Motoche C, Benalcázar ME (2018). Real-time hand gesture recognition based on electromyographic signals 

and artificial neural networks. In: Artificial Neural Networks and Machine Learning – ICANN 2018. Rhodes, 

Greece,pp. 352–361. http://doi.org/10.1007/978-3-030-01418-6_35 

[47] Molchanov P, Gupta Shalini, Kim K, Kautz J (2015). Hand gesture recognition with 3D convolutional neural 

networks. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 1-7. 

https://doi.org/10.1109/CVPRW.2015.7301342. 

[48] Allard UC, Nougarou F, François, Fall CL, Giguère P, Gosselin C, Laviolette F, Gosselin B (2016). A 

convolutional neural network for robotic arm guidance using sEMG based frequency-features. 2016 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2464-2470. 

https://doi.org/10.1109/IROS.2016.7759384. 

[49] Nasri N, Orts-Escolano S, Gomez-Donoso F, Cazorla M (2019) . Inferring Static Hand Poses from a Low-

Cost Non-Intrusive sEMG Sensor. Sensors (Basel) 19(2):371. https://doi.org/10.3390/s19020371. 

[50] Al-Angari H, Kanitz G, Tarantino S, Cipriani C (2016). Distance and mutual information methods for EMG 

feature and channel subset selection for classification of hand movements. Biomed Signal Process Control 

27:24-31. https://doi.org/10.1016/j.bspc.2016.01.011. 

Journal of Engineering and Technology Management 72 (2024)

Page No: 1649

https://doi.org/10.3390/s18051615
https://doi.org/10.1109/TBME.2008.919734
https://doi.org/10.1109/ICASSP.2011.5946802
https://doi.org/10.1016/j.bspc.2020.102210
https://doi.org/10.1109/IRI.2004.1431485
https://doi.org/10.1186/s12984-019-0612-y
https://doi.org/10.3390/s19143170
https://doi.org/10.1109/TIM.2011.2161140
https://doi.org/10.3390/s17040869
https://doi.org/10.3390/s20092467
https://doi.org/10.23919/EUSIPCO.2017.8081366
https://doi.org/10.1016/j.imavis.2016.06.001
https://doi.org/10.1145/2814940.2814997
https://doi.org/10.1109/ICICIP.2013.6568070
https://doi.org/10.1109/EMBC.2018.8512820
https://doi.org/10.1109/ICOM.2011.5937135
http://doi.org/10.1007/978-3-030-01418-6_35
https://doi.org/10.1109/CVPRW.2015.7301342
https://doi.org/10.1109/IROS.2016.7759384
https://doi.org/10.3390/s19020371
https://doi.org/10.1016/j.bspc.2016.01.011


[51] Phinyomark A, Limsakul C, Phukpattaranont P (2011). Application of Wavelet Analysis in EMG Feature 

Extraction for Pattern Classification. Meas Sci Rev 11: 45-52. https://doi.org/10.2478/v10048-011-0009-y. 

[52] Grimaldi G, Manto M (2010). Neurological tremor: sensors, signal processing and emerging applications. 

Sensors (Basel) 10(2):1399-1422. https://doi.org/10.3390/s100201399. 

[53] Pal PK (2011). Guidelines for management of essential tremor. Ann Indian Acad Neurol 14(Suppl 1):S25-

8. https://doi.org/10.4103/0972-2327.83097. 

[54] Grimaldi G, Manto M (2008). Tremor: From Pathogenesis to Treatment; Morgan & Claypool: San Rafael, 

CA, USA. 

[55] Kronenbuerger M, Konczak J, Ziegler W, Buderath P, Frank B, Coenen VA, Kiening K, Reinacher P, Noth 

J, Timmann D (2009). Balance and motor speech impairment in essential tremor. Cerebellum 8(3):389-398. 

https://doi.org/10.1007/s12311-009-0111-y. 

[56] Too J, Abdullah AR, Saad NM, Ali NM, Zawawi TNST (2018). Deep Convolutional Neural Network for 

Featureless Electromyogram Pattern Recognition Using Time-Frequency Distribution. Sensor Letters 16(2): 

92-99. https://doi.org/10.1166/sl.2018.3926. 

[57] Aschero G, Gizdulich P (2010). Denoising of surface EMG with a modified Wiener filtering approach. J 

Electromyogr Kinesiol 20(2):366-373. https://doi.org/10.1016/j.jelekin.2009.02.003. 

[58] Kundu AS, Mazumder O, Lenka PK, Bhaumik S(2018). Hand Gesture Recognition Based Omnidirectional 

Wheelchair Control Using IMU and EMG Sensors. J Intell Robot Syst 91. https://doi.org/10.1007/s10846-

017-0725-0. 

[59] Strambi SK, Rossi B, De Michele G, Sello S (2004). Effect of medication in Parkinson's disease: a wavelet 

analysis of EMG signals. Med Eng Phys 26(4):279-290. https://doi.org/10.1016/j.medengphy.2004.01.006. 

[60] Lu Z, Chen X, Zhang X, Tong KY, Zhou P (2017). Real-Time Control of an Exoskeleton Hand Robot with 

Myoelectric Pattern Recognition. Int J Neural Syst 27(5):1750009. 

https://doi.org/10.1142/S0129065717500095. 

[61] Maskeliūnas R, Damaševičius R, Raudonis V, Adomavičienė A, Raistenskis J, Griškevičius J (2023). 

BiomacEMG: A Pareto-Optimized System for Assessing and Recognizing Hand Movement to Track 

Rehabilitation Progress. Appl Sci 13(9):5744. https://doi.org/10.3390/app13095744. 

[62] Aviles M, Rodríguez-Reséndiz J, Ibrahimi D (2023). Optimizing EMG Classification through Metaheuristic 

Algorithms. Technol J 11(4):87. https://doi.org/10.3390/technologies11040087. 

[63] Phinyomark A, Thongpanja S, Hu H, Phukpattaranont P, Limsakul C (2012). The Usefulness of Mean and 

Median Frequencies in Electromyography Analysis. In: Computational Intelligence in Electromyography 

Analysis: A Perspective on Current Applications and Future Challenges. https://doi.org/10.5772/50639. 

 

Journal of Engineering and Technology Management 72 (2024)

Page No: 1650

https://doi.org/10.2478/v10048-011-0009-y
https://doi.org/10.3390/s100201399
https://doi.org/10.4103/0972-2327.83097
https://doi.org/10.1007/s12311-009-0111-y
https://doi.org/10.1166/sl.2018.3926
https://doi.org/10.1016/j.jelekin.2009.02.003
https://doi.org/10.1007/s10846-017-0725-0
https://doi.org/10.1007/s10846-017-0725-0
https://doi.org/10.1016/j.medengphy.2004.01.006
https://doi.org/10.1142/S0129065717500095
https://doi.org/10.3390/app13095744
https://doi.org/10.3390/technologies11040087
https://doi.org/10.5772/50639

