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Abstract: Millimeter-wave (mmWave) technology is a cornerstone of 5G, offering extremely high data rates 

and low latency. Yet in practice, its signals are easily weakened by distance, obstacles, and high energy 

demands, which makes network performance unreliable in dense urban and mobile environments. This study 

tackles these challenges with two main goals: improving spectrum efficiency and reducing energy use without 

compromising service quality. To achieve this, we combine user clustering with hybrid beamforming to better 

manage interference and boost throughput. At the same time, we integrate intelligent computation offloading 

and distributed scheduling so that devices conserve energy while maintaining smooth user experiences. Using 

DeepMIMO and NYUSIM datasets, our framework was tested in realistic scenarios. The results are 

encouraging: average user throughput improved by over one-third, spectrum efficiency rose by 32%, delay 

dropped from 48 ms to 34 ms, and device energy use decreased by nearly one-third compared to conventional 

methods. These gains show that the proposed approach makes mmWave networks more reliable, efficient, and 

sustainable. In real-world terms, this means faster video streaming, smoother autonomous vehicle 

communication, and greener connectivity for future smart cities. 

 

Introduction:  

Over the past decade, the way people connect, communicate, and consume digital services has changed 

dramatically. Activities that once demanded only modest bandwidth—such as browsing the web or sending 

emails—have been overtaken by data-hungry applications like 4K video streaming, virtual reality gaming, 

real-time telemedicine, and autonomous driving. All of these rely on one thing: fast, reliable, and seamless 

wireless connectivity. The demand for mobile data is no longer simply increasing; it is skyrocketing [1]. 

Forecasts suggest that traffic on mobile networks will multiply several times compared to the early 2010s, 

with billions of devices competing for limited resources. Meeting this demand requires not just incremental 

improvements but a complete rethinking of wireless infrastructure. This is where millimeter-wave (mmWave) 

communication enters the picture. Operating in the frequency range of 30–300 GHz, mmWave technology 

offers vast, underutilized spectrum resources. Unlike lower frequency bands that are already overcrowded, 

mmWave opens the door to multi-gigabit-per-second data rates, enabling a new generation of immersive and 

mission-critical services. Imagine surgeons performing operations remotely with virtually no delay, or 

autonomous vehicles navigating busy streets by exchanging real-time data with roadside sensors. These are 

not science-fiction scenarios—they are practical examples of how mmWave [2] can transform everyday life. 

 

Yet, with its enormous potential comes equally significant challenges. mmWave signals cannot travel long 

distances, fade quickly, and are easily blocked by buildings, trees, or even the movement of people. A simple 

obstruction such as a passer by or a vehicle can cause sudden link degradation. To overcome these weaknesses, 

mmWave networks need dense deployments of small cells, advanced antenna systems, and intelligent 

scheduling strategies. While this makes the technology powerful, it also makes it complex to implement and 

manage. Traditional frameworks for evaluating network performance [3], built during the 3G and 4G eras, are 

not well suited for mmWave. These older models cannot capture the intricacies of large-scale antenna arrays, 

dynamic interference, or the need for adaptive scheduling across diverse user scenarios. Consequently, 
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researchers and practitioners are looking for new methodologies that reflect the reality of modern wireless 

environments. Without reliable evaluation tools and adaptive mechanisms [4], it is difficult to understand how 

proposed solutions will work outside the lab or how they can scale to meet the demands of smart cities, 

industrial automation, or nationwide deployments. 

 

The stakes are high, not only for 5G but also for the future of sixth-generation (6G) networks. While 6G is 

expected to push into terahertz frequencies and integrate artificial intelligence for end-to-end control, the 

foundation for those innovations is being laid now, in the mmWave era of 5G. Every improvement we make 

today—whether in routing, interference management [5], or energy efficiency—becomes a stepping stone 

toward realizing the vision of ultra-connected societies. The research presented in this paper positions itself 

squarely in this context. The focus is on performance evaluation and scheduling strategies for mmWave 

networks through hybrid nodal distribution. The motivation is simple but powerful mmWave offers the raw 

capacity to satisfy growing data needs, but practical constraints like interference, energy consumption, and 

unreliable links must be managed intelligently [6]. This work aims to design solutions that not only maximize 

throughput but also enhance reliability, fairness, and sustainability. 

 

The importance of millimeter-wave communication becomes clearer when we look at its direct impact on 

daily life. In healthcare, for example, doctors increasingly rely on telemedicine platforms to monitor patients 

and even guide surgeries across long distances. Such applications demand a network that can transfer large 

amounts of data instantly and without interruptions [7], since even a slight delay may influence a diagnosis or 

treatment. In the world of transportation, the safety of autonomous vehicles depends on their ability to 

exchange real-time data with nearby cars, roadside sensors, and traffic systems. Any pause in connectivity 

could mean the difference between a smooth journey and a potential accident. Entertainment is another area 

where network performance shapes human experience. Virtual reality games and augmented reality 

applications [8] thrive only when latency is nearly imperceptible and bandwidth is abundant, otherwise users 

experience lag or motion sickness. Beyond leisure and healthcare, industries are also undergoing a digital 

transformation, with factories relying on sensors, robots, and intelligent systems that must interact 

continuously to maintain efficiency. These examples illustrate that mmWave is not just a technical 

advancement; it is a foundation for safer, smarter, and more immersive everyday experiences.  

 

Despite its promise, mmWave technology [9] comes with serious limitations that hinder its practical use. The 

first issue is that these signals weaken rapidly as they travel, which means they require a dense network of 

base stations to cover even moderately sized areas. This becomes a challenge in cities where deploying 

infrastructure is expensive and time-consuming. Another complication is the tendency of mmWave links to be 

blocked by everyday objects such as buildings, trees, or even human bodies. This makes maintaining a stable 

connection difficult in environments where mobility is high. Energy consumption [10] adds another layer of 

concern. Delivering multi-gigabit speeds typically requires significant power, which not only affects the 

sustainability of networks but also drains the batteries of user devices more quickly. Managing resources in 

such conditions is also far from simple. With countless devices competing for bandwidth in real time, 

conventional scheduling methods often struggle to ensure fairness, speed, and efficiency simultaneously. 

Lastly, mobility poses its own challenges. As users move between cells, maintaining reliable connections with 

static configurations becomes almost impossible, requiring networks that are far more adaptive than traditional 

systems. 
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Literature Survey:  

The rise of data-intensive applications such as ultra-high-definition video, cloud gaming, immersive 

augmented reality, and real-time industrial automation has placed millimeter-wave (mmWave) communication 

at the center of 5G innovation. Researchers worldwide have investigated techniques to overcome mmWave’s 

limitations [11], with most focusing on beamforming, clustering, computation offloading, scheduling, routing, 

and blockage mitigation. This section surveys the progress made in these areas, identifies their strengths, and 

highlights gaps that motivate the present research. Beamforming has long been considered the cornerstone of 

mmWave networks because of its ability to direct signals in narrow beams, thereby compensating for severe 

path losses. Early work on analog beamforming demonstrated cost efficiency but lacked the flexibility 

required to adapt to dynamic environments [12]. On the other hand, digital beamforming offered high 

precision and control but came with significant hardware costs and computational overhead [Chen et al., 

2020]. To strike a balance, hybrid beamforming (HBF) emerged as a promising solution, combining analog 

and digital techniques. Studies showed that HBF can deliver near-digital performance with fewer RF chains, 

making it more practical for large antenna arrays [13]. Extensions to this idea incorporated Intelligent 

Reflecting Surfaces (IRS), which further improved coverage and reduced interference by dynamically 

reflecting signals [14]. While these methods enhanced spectral efficiency, most IRS-assisted models relied on 

static configurations, limiting adaptability in real-world environments where user positions and channel 

conditions change rapidly. This limitation highlights the need for more adaptive and intelligent beamforming 

strategies. 

 

User clustering has been explored as a means to improve spectrum utilization by grouping users with similar 

channel conditions or spatial features. Techniques such as k-means clustering have been widely applied to 

reduce interference and improve throughput [15]. These methods allow for targeted beamforming and efficient 

resource allocation. However, they often require frequent updates as users move, creating overhead and 

scalability issues in dense networks. Recent studies advocate combining clustering with machine learning 

techniques to better manage mobility and dynamic interference [16]. This motivates the present research to 

integrate clustering directly with hybrid beamforming, ensuring both adaptability and efficiency. Computation 

offloading has also attracted considerable attention as devices such as smartphones, drones, and autonomous 

vehicles increasingly run resource-hungry applications. Offloading heavy computational tasks to edge or cloud 

servers reduces device power consumption and ensures faster processing. Reinforcement learning approaches 

such as SARSA and Q-learning have been proposed to optimize offloading decisions under fluctuating channel 

and energy conditions [17]. Combining these models with evolutionary algorithms like Genetic Algorithms 

(GA) has shown potential in exploring larger solution spaces and reducing delays [18]. Despite these advances, 

scalability remains a challenge, particularly in ultra-dense 5G scenarios where the number of connected 

devices continues to grow. A hybrid approach that combines reinforcement learning with optimization 

algorithms appears promising but requires further refinement to achieve real-time practicality. 

 

Scheduling, one of the most critical aspects of network performance, has also evolved significantly. 

Conventional centralized schedulers such as Proportional Fair (PF), once effective in LTE and early 5G 

networks, fail to handle sudden blockages and dynamic interference in mmWave environments [19]. This led 

to the exploration of distributed scheduling techniques. In one approach, base stations act as independent 

reinforcement learning agents capable of making local decisions about resource allocation [20]. Algorithms 

inspired by Particle Swarm Optimization (PSO) have also been applied to balance convergence speed and 

global optimality [21]. Auction-based mechanisms such as the Vickrey–Clarke–Groves (VCG) method were 
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investigated to guarantee fairness in resource distribution [22]. While these methods demonstrated 

performance improvements, they often degraded under congestion, suggesting the need for more scalable and 

adaptable scheduling strategies that balance efficiency, fairness, and latency. 

 

Routing in mmWave networks presents another unique challenge due to frequent blockages and highly 

directional links. Early strategies such as minimum hop-count routing offered simplicity but lacked reliability 

in environments where links break frequently [23]. To address this, probabilistic approaches based on Markov 

Stochastic Processes (MSP) were introduced to model relay transitions, thereby improving throughput and 

reducing packet loss [24]. More recently, bio-inspired methods such as the Dingo Optimization Algorithm 

(DOA) have been explored for efficient path selection, showing improvements in packet delivery ratios and 

adaptability in dynamic environments [25]. However, these approaches often demand significant 

computational resources, making them difficult to deploy in real time. Thus, there remains a need for routing 

mechanisms that balance computational simplicity with adaptability. 

 

Blockage mitigation has also been extensively researched because signal interruptions are among the most 

pressing problems in mmWave systems. Proactive resource allocation strategies attempt to predict and prepare 

for blockages before they occur, thereby minimizing service degradation. Reinforcement learning-based 

rerouting techniques offer more dynamic adaptability by allowing networks to quickly recover from 

disruptions. Despite this, many of these models still compromise fairness or struggle with real-time 

responsiveness, leaving open space for smarter, lightweight solutions that can be deployed at scale. Security 

and energy efficiency are two additional dimensions that remain underexplored. While physical-layer security 

schemes and blockchain-based authentication methods have been proposed, they often suffer from latency and 

scalability issues in high-mobility networks. Similarly, although energy harvesting and green communication 

techniques have been suggested to address sustainability concerns, their integration into practical mmWave 

scheduling and routing frameworks is still limited. Given the rising importance of sustainable communication 

systems, it is essential to design scheduling and routing strategies that explicitly consider energy consumption. 

 

The existing research provides valuable building blocks for addressing mmWave challenges, but limitations 

persist. Hybrid beamforming and clustering methods improve spectrum efficiency but often lack adaptability 

to mobility. Computation offloading strategies conserve device energy but struggle with scalability. 

Distributed schedulers and optimization algorithms enhance resource allocation yet often fail under 

congestion. Routing and blockage mitigation schemes improve reliability but remain computationally 

demanding. Finally, energy efficiency and security, though recognized, are frequently treated as afterthoughts 

rather than integral components of system design. This study responds directly to these gaps by proposing a 

unified framework that integrates clustering, hybrid beamforming, computation offloading, distributed 

scheduling, and intelligent routing into one system. Unlike isolated solutions, the proposed approach aims to 

balance spectrum utilization, latency, reliability, and energy efficiency in a holistic manner. By leveraging 

reinforcement learning and optimization techniques and validating performance on both synthetic 

(DeepMIMO) and real-world (NYUSIM) datasets, the research seeks to contribute a practical, scalable, and 

human-centered pathway toward sustainable mmWave networks. 

 

Proposed Work:  

The rapid expansion of data-driven applications has underscored the need for high-performance, resilient, and 

sustainable 5G networks. Millimeter-wave (mmWave) technology, while capable of offering multi-gigabit 
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throughput and ultra-low latency, suffers from unique challenges such as path loss, susceptibility to blockages, 

and high computational demands. The proposed work introduces a holistic framework that integrates user 

clustering, hybrid beamforming, computation offloading, distributed scheduling, and intelligent routing. By 

treating these modules as interconnected rather than isolated solutions, the framework aims to maximize 

spectrum efficiency, minimize latency, improve energy performance, and enhance the adaptability of mmWave 

networks.  

 

 

Figure 1: Proposed Work 

This work facilitates trained and validated using two well-known mmWave datasets: DeepMIMO and 

NYUSIM. DeepMIMO is a large-scale, ray-tracing–based dataset generator that produces massive amounts 

of channel state information (CSI) under diverse configurations. It allows customization of frequency, 

bandwidth, antenna arrays, user positions, and mobility scenarios. This flexibility enables the algorithm to 

learn clustering, beamforming, and scheduling strategies in both line-of-sight (LoS) and non-line-of-sight 

(NLoS) conditions. On the other hand, NYUSIM is a statistical channel simulator built on real-world 

measurements from NYU Wireless, covering frequencies from 500 MHz up to 100 GHz. It provides accurate 

models of path loss, Doppler effects, delay spreads, and blockage behavior in urban, indoor, and rural 

environments. Together, these datasets allow the proposed framework to balance synthetic large-scale learning 

with real-world validation, ensuring that the models generalize well beyond simulations. 

In the training phase, DeepMIMO is primarily used to generate high-dimensional CSI samples for clustering, 

hybrid beamforming, and reinforcement learning agents. For example, when training the dual-agent DQN in 

the beamforming module, thousands of synthetic CSI matrices can be generated across different base station-

user layouts. Similarly, blockage events and mobility models embedded in DeepMIMO help reinforcement 

learning algorithms adapt to dynamic environments. For the validation phase, NYUSIM provides realistic 

channel impulse responses (CIRs), shadow fading patterns, and measured path loss data at frequencies like 28 

GHz and 73 GHz. This ensures that the learned policies for offloading, scheduling, and routing are robust 

under empirical conditions that reflect real-world 5G deployments. 
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By using both datasets together, the algorithm benefits from the scale of synthetic data and the authenticity of 

measurement-based data. DeepMIMO accelerates training by providing virtually unlimited CSI scenarios, 

while NYUSIM ensures the results are not limited to idealized models. This dual-dataset strategy is essential 

for making the framework human-centered and application-ready. For instance, in telemedicine or 

autonomous vehicle communication, where reliability is critical, the ability of the algorithm to perform 

consistently under NYUSIM-validated conditions confirms its readiness for deployment. In short, the datasets 

act as complementary pillars: DeepMIMO drives scalable learning, and NYUSIM guarantees realistic 

performance evaluation, making the overall system adaptive, robust, and trustworthy. 

This methodology works by integrating six critical modules into one adaptive framework for mmWave 5G 

networks. It begins with user clustering, where active devices are grouped based on channel conditions and 

spatial proximity using k-means. This clustering reduces interference and ensures that spectrum is allocated 

more efficiently. Once clustered, the hybrid beamforming module employs a dual-agent deep reinforcement 

learning model to fine-tune both analog and digital precoders, maximizing spectral efficiency while keeping 

hardware costs manageable. Together, these two steps form the foundation of efficient signal transmission, 

ensuring that even in dense environments, interference is minimized and throughput is maximized. 

Next, the framework addresses the issue of blockages and energy efficiency. Since mmWave signals are easily 

obstructed, the system continuously monitors key indicators like SINR and throughput. If a blockage is 

detected, the algorithm triggers reinforcement learning–based rerouting that reallocates backhaul resources, 

ensuring seamless connectivity. At the same time, user devices make intelligent decisions about computation 

tasks through a SARSA-Genetic Algorithm (SARSA-GA). This hybrid model balances local processing with 

task offloading to edge servers, minimizing device energy consumption while preserving quality of service. 

By doing so, the algorithm makes the system more sustainable and responsive to both user mobility and 

varying workloads. 

 

Algorithm Adaptive_mmWave_Framework 

 

1: Initialize clusters ← KMeans(CSI, user_features) 

2: For each cluster c in clusters do 

3:     Apply Dual-Agent DQN for hybrid beamforming(c) 

4: End For 

5: Monitor SINR, throughput → detect_blockages() 

6: If blockage_detected then 

7:     Reallocate resources via DRL_rerouting() 

8: End If 

9: For each user u in users do 

10:    Compute cost_local, cost_offload(u) 

11:    decision ← SARSA_GA(cost_local, cost_offload) 

12:    Execute task according to decision 

13: End For 

14: For each base_station b in network do 

15:    policy_b ← QLearning_PSO(b) 

16: End For 

17: optimal_routes ← MSP_PTD + DOA(network_topology) 

18: Update CSI, repeat until convergence 
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Finally, the scheduling and routing modules ensure that network resources are fairly and efficiently distributed. 

Instead of relying on centralized schedulers, each base station acts as an independent Q-learning agent, with 

Particle Swarm Optimization guiding their coordination to reduce latency and improve fairness. For multi-

hop routing, the system models relay transitions with Markov Stochastic Processes and refines path selection 

using the Dingo Optimization Algorithm, enhancing reliability and reducing packet loss. The process operates 

in a continuous feedback loop, where CSI and mobility data are updated in real time to refine clustering, 

beamforming, and routing decisions. This holistic approach not only improves throughput and reduces delays 

but also ensures that the system remains resilient, energy-efficient, and scalable for future applications such 

as smart cities, telemedicine, and autonomous transportation. 

 

Results and Discussion:  

The experimental findings clearly demonstrate that the proposed framework outperforms existing approaches 

across multiple dimensions. For average user throughput, the system achieves 278 Mbps, a substantial 

improvement over conventional HBF (205 Mbps), NLR-MHC (168 Mbps), and SISO (95 Mbps). This 

translates to a 36% gain relative to HBF, which indicates that the integration of clustering, hybrid 

beamforming, and distributed scheduling effectively manages interference and boosts data rates in dense 

environments. 

Table 1: Result Analysis with existing models 

 Metric SISO D&F 
model 

NLR-MHC 
model 

Proposed 
Work 

Avg Rate/User (Mbps) 95 168 205 278 

Spectral Efficiency 
(bits/s/Hz) 

2.1 4 5.2 6.9 

Avg BER (%) 3.8 4.3 4.9 3.1 

Avg Latency (ms) 72 55 48 34 

Energy/UE-hour (J) 14.6 12.1 11.3 8.2 

 

Spectral efficiency shows a similar trend: the proposed system delivers 6.9 bits/s/Hz, compared to 5.2 in HBF 

and 2.1 in SISO. This underscores the framework’s ability to maximize bandwidth utilization through 

intelligent user grouping and adaptive resource allocation. At the same time, latency dropped to 34 ms, much 

lower than HBF (48 ms) and SISO (72 ms), confirming its suitability for ultra-reliable low-latency 

communication (URLLC) applications such as telemedicine and autonomous driving. 

Energy efficiency also improved remarkably, with device consumption reduced to 8.2 J/hour, about 32% lower 

than conventional HBF (11.3 J/hour). This validates the effectiveness of SARSA-GA–based computation 

offloading in reducing device-level power use without compromising service quality. Interestingly, the bit 

error rate (BER) was also minimized (3.1%), showing enhanced signal reliability under real-world mobility 

and blockage scenarios validated by DeepMIMO and NYUSIM datasets. 

The qualitative evaluation confirms that reinforcement learning–driven blockage mitigation enables rapid 

recovery within two to three frames, significantly faster than baseline methods. Moreover, the model 

generalized effectively to realistic NYUSIM scenarios, suggesting robustness against Doppler effects and 

multipath propagation in urban deployments. These findings highlight that the proposed system is not only 

quantitatively superior but also resilient and scalable for next-generation smart city ecosystems. 
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The results highlight the effectiveness of the proposed framework compared to both the SISO baseline and 

conventional hybrid beamforming (HBF). In terms of average user throughput, the proposed method achieves 

278 Mbps, which is nearly three times higher than the SISO baseline (95 Mbps) and about 36% higher than 

conventional HBF (205 Mbps). This directly translates into smoother streaming, faster downloads, and more 

reliable connectivity in human-centric applications like telemedicine or real-time vehicle-to-vehicle 

communication. Similarly, spectral efficiency improves significantly, reaching 6.9 bits/s/Hz versus 5.2 for 

HBF and only 2.1 for SISO, showing how well the framework utilizes scarce spectrum resources in dense 

environments. 

 

Figure 2: Result Comparison 

Latency is another critical metric for real-world use cases such as remote surgery and immersive gaming. 

Here, the proposed system achieves an average latency of 34 ms, compared to 48 ms with HBF and 72 ms in 

the SISO model. This reduction ensures that delay-sensitive applications can function without noticeable 

interruptions, improving human experiences in both healthcare and entertainment. From an energy 

perspective, device-level power consumption is reduced to 8.2 J/hr, representing a 32% saving compared to 

HBF (11.3 J/hr). For end-users, this translates to longer battery life in smartphones, wearables, and IoT 

devices, making the technology more sustainable for everyday use. 

Finally, the Packet Delivery Ratio (PDR), which measures reliability, improves to 95.6% with the proposed 

framework. In contrast, conventional HBF achieves 90.1% and SISO just 82.3%. This improvement means 

fewer dropped connections during mobility or in blocked environments, ensuring that mission-critical 

applications like autonomous driving or industrial automation remain robust. The bar graph above visually 

reinforces these gains, showing clear performance advantages across all five dimensions. Together, these 

results demonstrate that the proposed approach not only improves technical performance but also makes 

mmWave 5G networks more human-centered, sustainable, and ready for real-world deployment. 
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Conclusion:  

The combined analysis in this work shows that the proposed framework successfully integrates clustering, 

hybrid beamforming, computation offloading, distributed scheduling, and optimal routing to tackle the 

persistent challenges of mmWave 5G networks. The results demonstrate clear improvements in throughput, 

spectral efficiency, latency, and energy savings when compared with conventional methods such as SISO, 

D&F, and NLR-MHC models. What makes this approach distinct is its adaptability under real-world 

conditions—validated through both DeepMIMO and NYUSIM datasets—proving that the system is not only 

theoretically strong but also practically reliable. From a human perspective, this means smoother 

communication for autonomous vehicles, faster telemedicine services, and more energy-efficient networks 

that align with sustainability goals.   
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