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Abstract—Cognitive fatigue, a critical factor in performance
degradation and safety risks, especially in high-stakes envi-
ronments, requires real-time and reliable monitoring solutions.
This study presents an AI-enhanced cognitive fatigue monitoring
system that integrates fuzzy logic for real-time assessment. By
utilizing EEG data and behavioral indicators, the system employs
a fuzzy inference engine that interprets ambiguous physiological
patterns to provide continuous, non-intrusive fatigue estimation.
Experimental results demonstrate improved detection accuracy
and adaptability compared to traditional threshold-based models.
This work lays the foundation for intelligent and context-aware
cognitive health monitoring frameworks.

Index Terms—Cognitive fatigue, fuzzy logic, artificial intelli-
gence, EEG, real-time monitoring, human factors.

I. INTRODUCTION

Cognitive fatigue impairs alertness and decision-making,
which can result in significant consequences in sectors like
transportation, military, and healthcare. Existing monitoring
solutions either lack accuracy or are intrusive. The fusion of
Artificial Intelligence (AI) and fuzzy logic presents a novel,
robust method to assess fatigue states by modeling human-like
reasoning.

This paper proposes an AI-based system using fuzzy in-
ference to classify cognitive fatigue levels in real-time using
EEG signals and behavioral data. The aim is to create a non-
invasive, adaptable system suitable for continuous monitoring.

II. RELATED WORK

Fatigue detection and monitoring have become essential
in high-stakes environments such as transportation, aviation,
healthcare, and defense, where cognitive fatigue can lead to
impaired decision-making and severe consequences [1]. Tra-
ditionally, fatigue assessment has relied on physiological indi-
cators like heart rate variability (HRV), electroencephalogram
(EEG) signals, and reaction time tests [2]. HRV, which reflects
autonomic nervous system activity, has been extensively used
as a non-invasive biomarker for stress and fatigue [3]. Reaction
time tests offer a behavioral perspective, while EEG captures
brainwave alterations associated with cognitive workload and
fatigue states. However, these conventional methods often lack
adaptability and may be affected by individual differences,
environmental conditions, or the subject’s state of mind at the
time of measurement [4].

In recent years, machine learning (ML) techniques have
gained significant traction for enhancing fatigue detection
accuracy [5]. Among them, Support Vector Machines (SVM)
and Artificial Neural Networks (ANN) have shown promising
results by learning complex patterns in physiological data
[6]. SVMs are widely appreciated for their ability to handle
high-dimensional data and perform well with limited training
samples [7]. ANN models, particularly deep learning variants,
can extract hierarchical features from raw signals, achieving
high classification accuracy in fatigue-related tasks. Studies
using EEG or multimodal physiological signals have reported
accuracies exceeding 85percent with these methods. However,
despite their performance, ML models often lack transparency,
making them unsuitable for safety-critical applications where
interpretability and trust are paramount [8]. Their black-box
nature raises concerns in real-world deployments, especially
when results must be validated or explained to clinicians or
safety supervisors [9].

To overcome these limitations, attention has shifted toward
explainable and interpretable models such as fuzzy logic
systems. Fuzzy logic, rooted in approximate reasoning and
the handling of uncertainty, mimics human decision-making
and has found widespread applications in medical diagnostics,
stress monitoring, and intelligent control systems [10]. Its rule-
based architecture allows for clear reasoning paths and can
incorporate expert knowledge, making it ideal for scenarios
where ambiguity and imprecision are prevalent. Several studies
have successfully employed fuzzy inference systems for men-
tal stress evaluation, cognitive load estimation, and adaptive
decision-making in ergonomics [11]. Nevertheless, its appli-
cation in fatigue monitoring remains relatively underutilized.
While fuzzy logic excels at classification under uncertainty,
there is a lack of comprehensive frameworks that combine its
interpretability with physiological signal processing for fatigue
detection [12].

Moreover, hybrid models that integrate fuzzy logic with
machine learning—such as neuro-fuzzy systems or fuzzy-
SVMs—have shown potential in other domains but are
scarcely explored in fatigue assessment [13]. Such models
could combine the accuracy of ML with the transparency of
fuzzy systems, addressing the key challenges of current fatigue
monitoring solutions [14].

In summary, while traditional techniques provide founda-
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tional insights and machine learning models achieve high
performance, the need for interpretable, adaptive, and real-time
fatigue detection systems remains [15]. Fuzzy logic offers a
promising direction, but its potential has not yet been fully
harnessed in this domain [16]. Future work should focus on
integrating fuzzy systems with advanced signal processing and
machine learning techniques to develop robust, transparent,
and context-aware fatigue monitoring frameworks suitable for
deployment in real-world environments[17-20].

III. METHODOLOGY

A. System Architecture

The system consists of the following components:
• EEG Signal Acquisition: Using a 14-channel wearable

EEG device (e.g., Emotiv Epoc+).
• Feature Extraction: Power spectral density (PSD) anal-

ysis in delta, theta, alpha, beta, and gamma bands.
• Fuzzy Inference Engine: Rules derived from expert

knowledge map features to fatigue levels.
• AI Integration: A machine learning module continu-

ously updates fuzzy membership functions based on user
adaptation.

Fig. 1. Block Diagram

IV. SYSTEM OVERVIEW

This system continuously monitors cognitive fatigue in real-
time using multiple sensors and AI techniques, particularly
fuzzy logic, to assess when a person is becoming mentally
fatigued and needs intervention.

A. Component Breakdown

1) 1. Input Sensors Layer: Physiological Sensors:
• EEG Signals: Measures brainwave activity to detect

changes in cognitive states. Alpha and theta waves often
increase during fatigue.

• Eye Tracking: Monitors blink rate, pupil dilation, and
gaze patterns. Fatigue typically causes slower blinks,
reduced pupil response, and erratic eye movements.

• Heart Rate: Tracks heart rate variability (HRV). Fatigue
often correlates with changes in HRV patterns.

• Skin Conductance: Measures electrodermal activity,
which changes with stress and arousal levels associated
with fatigue.

Behavioral Sensors:
• Response Time: Measures how quickly users respond to

stimuli. Fatigue causes slower reaction times.
• Task Performance: Monitors accuracy, completion rates,

and error patterns in cognitive tasks.
• Mouse/Keyboard Activity: Tracks typing patterns, click

patterns, and movement smoothness. Fatigue affects mo-
tor precision.

• Voice Analysis: Analyzes speech patterns, tone, and
vocal fatigue indicators.

2) 2. Signal Processing Layer: This layer cleans and pre-
pares the raw sensor data:

• Noise Filtering: Removes artifacts and interference from
sensor signals.

• Feature Extraction: Identifies relevant patterns and char-
acteristics from the raw data.

• Data Normalization: Standardizes data from different
sensors to comparable scales.

• Synchronization: Aligns data from multiple sensors tem-
porally for accurate analysis.

3) 3. AI Processing Core: Fuzzy Logic System:
• Fuzzification: Converts crisp sensor values into fuzzy

membership values (e.g., “somewhat tired,” “very alert”).
• Rule Engine: Applies expert-defined rules such as “IF

heart rate is high AND response time is slow THEN
fatigue is medium.”

• Defuzzification: Converts fuzzy outputs back to crisp
fatigue scores.

• Membership Functions: Define categories like “Low
Fatigue,” “Medium Fatigue,” and “High Fatigue” with
overlapping boundaries.

Machine Learning Models:
• Neural Networks: Learn complex patterns between sen-

sor inputs and fatigue states.
• Support Vector Machines (SVMs): Classify fatigue

levels based on feature combinations.
These models complement fuzzy logic by learning from his-
torical data.

Real-Time Analysis Engine:
• Processes incoming data streams continuously.
• Integrates fuzzy logic outputs with ML predictions.
• Maintains temporal context and trends.
4) 4. Output System: Fatigue Level Assessment:
• Provides quantitative fatigue scores (e.g., 0–100 scale).
• Categorizes fatigue levels (Low/Medium/High).
Alert Generation:
• Triggers warnings when fatigue exceeds safe thresholds.
• Provides graduated alerts based on severity.
Break Recommendations:
• Suggests optimal break timing and duration.
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• Recommends specific activities for recovery.
Real-time Dashboard:
• Visual display of current fatigue status.
• Shows trends and historical patterns.
• Provides performance metrics.
Historical Data Log:
• Stores fatigue patterns over time.
• Enables long-term analysis and model improvement.
5) 5. Feedback & Adaptation Loop: This critical compo-

nent enables continuous improvement:
• Continuous Learning: Models adapt based on user

feedback and outcomes.
• Model Updates: Algorithms refine their accuracy over

time.
• Personalization: System learns individual fatigue pat-

terns and adjusts thresholds accordingly.

B. Data Flow Process

1) Data Collection: Multiple sensors simultaneously cap-
ture physiological and behavioral data.

2) Preprocessing: Raw signals are filtered, normalized,
and synchronized.

3) Feature Analysis: Relevant fatigue indicators are ex-
tracted.

4) Fuzzy Assessment: Fuzzy logic system evaluates un-
certainty and provides initial assessment.

5) ML Enhancement: Machine learning models refine and
validate fuzzy logic outputs.

6) Decision Making: Combined AI systems determine
final fatigue level and actions.

7) Output Generation: System provides alerts, recom-
mendations, and displays current status.

8) Feedback Integration: User responses and outcomes
feed back into the system.

C. Why Fuzzy Logic?

Fuzzy logic is particularly well-suited for fatigue monitoring
because:

• Handles Uncertainty: Fatigue isn’t binary—people can
be “somewhat tired” or “very fatigued.”

• Mimics Human Reasoning: Uses linguistic terms that
match how we naturally describe fatigue.

• Combines Multiple Inputs: Integrates diverse sensor
data with varying uncertainty.

• Robust to Noise: Handles imperfect sensor data grace-
fully.

• Explainable: Provides interpretable rules that can be
understood and validated by experts.

D. System Architecture Components

The modular architecture of the system consists of:
• Data Acquisition: Hardware interfaces and sensor man-

agement.
• Pre-processing: Signal conditioning and feature extrac-

tion.

• Fuzzy Inference: Core fuzzy logic processing.
• Pattern Recognition: ML-based pattern identification.
• Decision Making: Final fatigue level determination.
• User Interface: Dashboard and user interaction compo-

nents.
• Alert System: Warning and notification management.
This comprehensive system provides reliable, real-time

cognitive fatigue monitoring that can be applied in various
settings like workplaces, driving scenarios, or educational
environments to enhance safety and performance.

E. Fuzzy Rule Base

Sample fuzzy rules:
• IF alpha band is high AND beta band is low THEN

fatigue is high.
• IF theta band is moderate AND user blinking rate is high

THEN fatigue is moderate.

F. Defuzzification

The centroid method was used to convert fuzzy values into
crisp outputs to classify the fatigue level as Low, Medium,
High.

V. RESULTS

The system was evaluated on a dataset of 20 subjects
performing cognitively demanding tasks for 90 min. Fatigue
labels were validated using subjective questionnaires (NASA-
TLX). The proposed model achieved an accuracy of 88.6%,
outperforming threshold-based methods (76.3%) and conven-
tional SVM models (83.1

Fig. 2. Comparison of fatigue detection accuracy across models
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Fig. 3. Real-time testing Pictures

VI. DISCUSSION

The integration of fuzzy logic allows for the flexible in-
terpretation of ambiguous physiological signals. AI tuning of
fuzzy sets improved the model adaptability across individuals,
highlighting the importance of hybrid intelligent systems in
real-world cognitive monitoring.

VII. CONCLUSION

This study introduces a novel AI-enhanced cognitive fatigue
monitoring system that utilizes fuzzy logic for real-time,
accurate, and adaptive assessment. Future work will involve
expanding multimodal data sources (e.g., eye tracking and
HRV) and deploying the system in vehicular and workplace
safety environments.
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