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Abstract: Deep learning algorithms enable a variety of methods for the diagnosis of eye conditions, including age-related 

macular degeneration (AMD), glaucoma (GLC), and diabetic retinanopathy (DR). A few recent research contrasted data 

from healthy participants with the examination of a few main disorders. However, up until now, computer-aided methods 

have not been able to identify numerous main eye disorders, such as AMD, GLC, and DR, concurrently. Four types of 

fundus image classification were present, but only two pairs of healthy and eye-diseased groups were the subject of high-

performance outcome studies. Gaining a deeper understanding of multi-category classification of Optimal residual deep 

neural networks and effective picture preparation methods, like constricting the region of interest, were employed in the 

fundus photos. Data augmentation and iso-luminance plane contrast-limited adaptive histogram equalization. Utilizing them 

for the categorization of three ocular conditions from presently accessible public datasets, we attained average and peak 

accuracy rates of 85.79% and 91.16%, respectively. For healthy eyes, GLC, AMD, and DR patients, the specificities were 

90.06%, 99.63%, 99.82%, and 91.90%, respectively. Improved specificity results could warn patients of eye disorders early 

on and help them avoid losing their vision. As a successful pilot research of classification for the three most common eye 

disorders, this study shows a potential use of a multi-categorical deep neural network technique that may be employed for 

future assistive devices in computer-aided clinical applications. 

Keywords: Multi-categorical classification, deep neural networks, glaucoma, age-related macular degeneration; diabetic 

retinopathy. 

  

1. INTRODUCTION 

The primary causes of vision loss and blindness worldwide are diabetic retinopathy (DR), glaucoma (GLC), and 

age-related macular degeneration (AMD). These three conditions are the subject of our investigation. Diabetes 

mellitus, the most prevalent cause of vision loss and blindness in adults, is the cause of diabetic retinopathy 

(DR) [1,2]. Global diabetes prevalence was predicted to increase from 2.8% (171 million) to 4.4% (3.4%) by 

2030 [3], with an additional 195 million individuals expected to have diabetes-related disorders (DR) [4-6]. 

Within the following 20 years, it was anticipated that nearly all individuals with type 1 diabetes and more than 
60% with type 2 diabetes would get DR [7]. In the following 15 years, these diabetic patients were predicted to 

account for roughly 10% of vision loss and 2% of blindness [8]. Although the reported patients have grown 

gradually, it was anticipated that they would develop quickly. A report from the beginning of the twenty-first 

century states that the incidence of diabetes mellitus has doubled in the US and climbed three to five times in 

countries like India, Indonesia, China, Korea, and Thailand [9]. Both industrialized and emerging nations saw 

the rise of DR. The impact of differential pressure in intraocular lenses is the second most frequent cause of 

vision loss, or GLC. 6.7 million of the 66.8 million individuals who had primary GLC in 2000 also experienced 

bilateral blindness [10]. About 60.5 million GLC patients worldwide were affected by this disease by 2010, 

making it the second most common cause of vision loss and blindness [11]. Both the bending of the optic nerve 

head and the damage to the optic nerve's origin can be detected in fundus photography photos. AMD, which 

poses a serious threat in developed nations, is the third most prevalent cause of vision loss and blindness. Even 
if DR and GLC were more common, AMD incidence has increased in those over 60, and it has been estimated 

that AMD alone accounts for 8.7% of blindness globally, primarily in wealthy nations [12–20]. Those who 

experienced AMD have undoubtedly faced challenges in their lives because vision is one of the five 

fundamental human senses. In addition, the second sensitive and important nerve among the twelve cranial 

nerves is the optic nerve, also known as the nerve of sight. 

Experts or medical professionals use a variety of methods to diagnose eye conditions; two common ones are 

fundus photography and optical coherence tomography, which produces a cross-sectional image. In addition to 

the eye, optical coherence tomography has been crucial in the diagnosis of other organs like the brain. Many 

researchers, including Hwang et al. [21], Bussel et al. [22], and Lee et al. [23], had examined the cross-sectional 
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pictures of the eye damaged by DR, GLC, and AMD using this technique; nevertheless, the techniques had 

certain drawbacks. 

Photographs from fundus photography researchers have shown a significant amount of interest in studying the 

inner eye using a customized camera. Several eye conditions can be identified using the same photograph, 

including the three in this investigation. The different fundus photography methods can be divided into three 

categories: fluorescein angiographic, mydriatic, and non-mydriatic. These methods involve using fluorescent or 

indocyanine green dyes to examine the retina, as well as using pupil dilation and imaging without dilation to 

examine the choroid or blood flow. This study aims to classify eye illnesses by combining fundus pictures from 

multiple open-source datasets. 

We guarantee that this work will be a pioneer in future research. The current study employs a feedforward 

neural network to identify multiple eye disorders using fundus photos. Numerous research, including those by 

Qummar et al., have applied deep learning techniques in the field of DR detection. [24] developed an automatic 

DR detection system for retinal images using an ensemble approach, and Mateen et al. [25] developed a DR 

image classification system using a combination of Gaussian mixture model, Visual Geometry Group (VGG) 

networks, singular value decomposition, and principle component analysis. A few research have combined 

ensemble and neural network approaches to GLC identification; Singh et al. [26] developed an autonomous 

GLC diagnostic system by combining a deep learning ensemble with feature selection techniques. In the study 

by Tan et al. [27], a suggested computer-aided diagnosis system based on a customized convolutional neural 

network offered second opinions to help ophthalmologists in AMD diagnosis. Numerous studies on computer-

aided diagnosis have been published; these studies may provide ophthalmologists with tools to help with the 

screening and diagnosis of eye diseases. 

The structure of this document is as follows. A overview of the literature on eye diseases is presented in Section 

2. We detail how we acquired our data in Section 3. The methods used for preprocessing and processing Section 

4 describes the methods used in the paper. Here are our classification findings in Section 5. Section 6 provides a 

discussion and a conclusion. 

2. RELATED WORK 

Numerous research have contributed significantly to the direction of investigations on the various methods used 

in the identification of eye diseases. In this paper, we used a deep convolutional neural network (DNN) to 

examine classification. The most popular methods for utilizing fundus photography for illness screening and 

detection were DNN, classical machine learning, and feature extraction with an ensemble. As was already 

indicated, earlier research [24–27] offered opportunities for diagnosing and categorizing eye disorders. The 

current study, however, focuses on one method—DNN—that has been investigated recently by numerous 

researchers in order to give the classification of a variety of eye illnesses.  

  

Many neural networks have been used to autonomously diagnose eye disorders, including new, pre-trained 

convolutional and meta-cognitive neural networks. For DR screening. A neural network diagnostic approach 
with 88.40% sensitivity and 83.50% specificity was proposed by Gardner et al. [28]; a novel meta-cognitive 

neural network that monitored and controlled a cognitive neural network was proposed by Banu et al. [29] and 

produced 100% accuracy, sensitivity, and specificity. The optic disc was one of the most important 

characteristics of GLC identification in this study, and this performance was attained by removing it from 

fundus images utilizing the methods of "robust spatial kernel fuzzy c-means" before the meta-cognitive neural 

network classifier. In contrast, a support vector machine model for GLC detection was proposed by 

Raghavendra et al. [30]. Using a 26-feature classification strategy, their method produced maximum results of 

93.62%, 87.50%, and 95.80%, respectively, across a public dataset. Furthermore, a different study [31] 

suggested an 18-layer neural network model to identify GLC the method was very different from earlier neural 

network models, producing accuracy, sensitivity, and specificity of 98.13%, 98.00%, and 98.30%, respectively. 

  
Two experimental studies are representative of the AMD detection field. Burlina et al. [32] proposed a pre-

trained convolutional neural network model that achieved peak accuracy, sensitivity, and specificity of 95.00%, 

96.40%, and 95.60%, respectively. Lee et al. [23] proposed a method with a 21-layer neural network that 

yielded accuracy, peak sensitivity, and peak specificity of 93.45%, 92.64%, and 93.69%, respectively. At the 

feedforward step, a large neural network would be able to automatically identify several eye disorders without 

producing classification results that overlap. As a result, it could be able to identify these illnesses earlier and 

lessen the amount of blindness and visual loss they cause. In their pilot research, Choi et al. [33] employed a 

deep neural network (VGG-19). When applied to images from the Structured Analysis of the Retina (STARE) 

database, the technique of transfer learning with a random forest yielded a peak accuracy of 72.8% for three-

class early disease screening among normal retina (NR), background DR, and dry AMD. Furthermore, using the 
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same model structure, five-class eye illness classification—NR, background DR, proliferative DR, dry AMD, 

and wet AMD—achieved a maximal accuracy of 59.1%. This performance was not good enough for a tiny 

database. However, this groundbreaking study demonstrated that using a 19-layer neural network to analyze a 

397-file database including 14 illness categories could be able to produce a result that is satisfactory. The 

present work was inspired by the documented capabilities of vast neural networks. Examination of this 
intriguing potential for multi-eye disease diagnosis using a deeper pre-trained neural network on publicly 

accessible web datasets. 

  

3. PROPOSED METHODOLOGIES 

Ophthalmologists will greatly benefit from automatic classification of the three most prevalent retinal fundus 

illnesses, which will aid in the early and affordable diagnosis of eye problems. The training and testing parts of 

the suggested method consist of two stages: preprocessing the data and categorizing retinal images. Fig. 6 

illustrates the suggested method. First, the reducing region of interest, iso-luminance plane contrast limited 

adaptive histogram equalization, and other preprocessing steps were applied to each dataset. data augmentation 

with k-fold cross-validation. Second, training settings were applied to each training set that emerged from the 

pre-processing phase in order to generate a learned weight for every dataset. Lastly, To produce the testing 

results of the eye-disease classifications, each testing set was forecasted using the learned weight generated 
during the training phase. 

 

 
Figure 6 - Eye disease evaluation process 

3.1 Pre-Processing 

Prior to training our model, we used many picture normalizing techniques. Different researchers approached the 

preprocessing of their images in different ways. In order to standardize the original fundus images across the 

datasets, we reduced their region of interest in this work. This was automatically carried out, with the blue 

channel serving as a complimentary layer and the red and green channels having thresholds of 25 and 13, 

respectively. The following represents the coordinates for decreasing the region of interest, where imax and 

jmax denote the width and height of the image: 
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We also used a different preprocessing method that we named ISOL-CLAHE. The application of contrast-

limited adaptive histogram equalization (CLAHE) on an isoluminant plane is known as ISOL-CLAHE. We 

adjusted this method for our retinal fundus images within an isoluminant plane, as stated by Han et al. [41]. The 

isoluminant plane histogram equalization enhanced the linear cumulative distribution function's lowest mean 

absolute error rate. Between earlier research on independent RGB histogram equalization [41–43]. Three-

dimensional CLAHE was performed on each of the original image files, which were spread throughout eight 

child subdirectories and four parent folders (NR, GLC, AMD, and DR). Using software from an open-source 

library, the photos were transformed to a color space prescribed by the International Commission on 

Illumination (abbreviated CIELAB in French) in order to extract lightness [44]. CLAHE with a scaling grid 

kernel size of eight and a clip limit of 1.5 was then resized to 384 × 384 pixels. ROI shrink and ISOL-CLAHE 

implementation are shown in Fig. 7. 

  

  

  

  

  

  
Figure 7: Shrinking region of interest (ROI), (a) The original image with its original size. (b) The ROI 

shrinking image. (c) The ISOL-CLAHE image 

  

Breiman et al. [45] found that in models with more characteristics, K-fold cross-validation in its tenfold variant 

outperformed leave-one-out, twofold, and fivefold cross-validation. According to Ron Kohavi [46], 

bootstrapping with a smaller variance but an exceptionally big bias was not as effective as stratified tenfold 

cross-validation, which outperformed twofold and fivefold cross-validation. To avoid bias from the data 

preparation, we employed stratified tenfold cross-validation with data shuffling for the fundus image 

categorization in the current investigation, as described by [47]. Three portions totaling 80%, 10%, and 10% of 

the images were taken from the entire dataset for testing, validating, and experimental training, respectively. 

  

One way to increase datasets without generating bogus images is termed data augmenta- tion. There were 

different numbers of photos for each category of sickness in the gathered dataset. Suddenly, a An image 

underwent many transformations, including an 8-degree rotation, a 25% brightness adjustment, a 20% 

magnification, and a horizontal reflection. Because there were numerous NR and DR images and very few 

AMD images, this resulted in a balanced training and testing dataset of up to 9400 images for the entire 

combined dataset experiment, preventing performance discrepancies. We did not employ the data augmentation 

method's common changes, like shear or shifts in height or width. Usually, the participant faced forward when 

an ophthalmologist took the fundus photograph. Shear range may thus not be a possibility in this process. 

Similar to this, every naturally occurring structure, such as an optic disc, a macula, and blood vessels, should be 

present in the fundus image. For this reason, we decided not to apply in case doing so would unintentionally 

remove one of these features. Figure 8 displays a few instances of data augmentation on a MESSIDOR dataset. 
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Figure 8: Illustrations of data augmentation from a MESSIDOR image-set. (a) The original image from ISOL-CLAHE. (b) An augmented 

image with +25% brightness and 80◦ rotation. (c) An augmented image with +25% brightness, 20% zoom-out, horizontal flip, and 40◦ 

rotation. (d) An augmented image with 25% brightness, 20% zoom-in, horizontal flip, and 80◦ rotation 

  

3.2 Model Architectures and Settings 

Deep neural networks known as Residual Networks (ResNets) were so called because of their residual state 

[48]. By employing a shortcut link, this kind of network made a breakthrough over pointless convolutional layer 

blocks [49]. We used three residual network (ResNet) architectures: ResNet-50, ResNet-101, and ResNet-152. 

These three ResNet architectures each had 50, 101, and 152 weight layers with 25, 610, 216, 44, 654, 504, and 

60, 344, 232 total parameters. These models had 224 × 224 × 3 input and 1,000 fully connected Softmax 

regression classes as their initial shapes. For this investigation, we optimized the input shape to 384 × 384 × 3, 

and the result was a four-class fully linked Softmax regression prediction probability. The Visual Geometry 

Group presented two networks, VGG-16 and VGG-19, with a total of 138 million and 144 million parameters, 

respectively, made up of 16 and 19 weight layers [50]. Both the original and modified input and output shapes 

that we employed in this investigation were exactly the same as those found in ResNets. 

  

In order to obtain the most accurate form possible, neural network optimizers were crucial in helping to choose 

and adjust these weights. Loss functions helped the optimizers make the proper decisions. In comparison to the 

adaptive gradient algorithm optimizer that came before it, an adaptive gradient extension optimizer called 

Adadelta enhanced learning robustness and learning rate variation [48]. According to Zeiler [51], this optimizer 

outperformed a number of rivals, including momentum and stochastic gradient descent optimizers, in terms of 

test error rate. We employed a categorical cross-entropy loss function and an adaptive gradient extension 

optimizer with a learning rate of 0.001. 

  

There were numerous methods available to stop the network from overfitting. Early-stopping is an effective 

method that monitors the validation error rate during training and ends the procedure if the validation error did 

not decrease within a predetermined period of epochs, or "patience" [48]. The likelihood of overfitting could be 

ascertained with an ideal drop-out rate. Gal et al. [52] suggested combining early-stopping with drop-out rate 

optimization in order to reduce test mistake rates. In the current work, we employed an early-stopping function 

with a dropout rate of 0.05 for the best prevention of overfitting, a patience of 20 epochs, and a minimum 

increment for the validation-loss of 0.001. 

  

We used the tools TensorFlow [53] and Scikit-Learn [54] to train and assess the suggested architecture deep 

neural network models in order to carry out the classification. We applied the following strategy to our dual-

core system configuration: 2.2 GHz Intel Xeon Silver 4114 CPUs, 12 x 16 GB DIMM DDR4 Synchronous 

RAMs, 3 x 512 GB Samsung 970 NVMe M.2 SSDs, and 3 x NVIDIA TITAN RTX GPUs with 24 GB 

GDDR6@1770 MHz–4608 Compute Unified Device Architecture (CUDA) cores are all included in this 

configuration. 

  

4. REUSLTS AND DISCUSSION  

We acquired intriguing performance statistics on data augmentation using a ResNet with a depth of 50-layer 

layers after evaluating the four-class eye-disease classification system utilizing various DNN model designs. As 

previously stated, noise from non-GLC photos was included in the NOISE-STRESS test dataset. A neural 

network was considered to be a great classifier for multi-class categorization if it performed better than the 
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others. It may have outperformed it, though, because it overfitted the noise data, which would have led to issues 

with multi-class detection. The ResNet-50 achieved average accuracy and sensitivities of 73.16%, 18.13%, 

53.33%, and 79.00% for NR, GLC, AMD, and DR with the 2335 source pictures correspondingly. 

  

Additionally, the specificities for these four classes were 70.45%, 98.74%, 99.73%, and 81.77%, respectively. 

When it came to data augmentation, the ResNet-50 model outperformed the VGG networks or their deeper 

siblings, the ResNet-101 and ResNet-152 models. On average, the ResNet-50 model achieved 76.71% with data 

augmentation, and its sensitivities for NR, GLC, AMD, and DR were 45.40%, 83.96%, 98.00%, and 79.49%, 

respectively. The specificities for these four classes were 88.51%, 91.99%, 99.26%, and 89.19%, respectively. 

Given these performance rates, it may be reasonable to conclude that the datasets' data augmentation resulted in 

generalization across the models. Tab 4 displays the NOISE-STRESS dataset test results. 

  
Table 4: Full combined dataset (NOISE-STRESS) test result 

  
    ∗Sens. and Spec. are the performance sensitivity and specificity, respectively. 

  

Testing using the NOISE dataset revealed that the reduction in data enhanced classification performance and 

produced a greater degree of detection generalization models. The sensitivities for NR, GLC, AMD, and DR 

were 57.23%, 83.11%, 99.53%, and 81.19%, respectively, while the average accuracy was 80.27%. These four 

groups had specificities of 89.21%, 92.03%, 99.02%, and 93.43%, in that order. Higher performance was 

achieved by reducing the stress of information generalization throughout the CNN by excluding mild and 

moderate DR pictures from the NOISE-STRESS dataset. This test was an investigation into what would happen 

if there were less stress data using a neural network. Since stress data for DR and other illness types are typically 

prevalent in the open-access dataset, we have included a STRESS result including those data in this paragraph. 

The NOISE-STRESS, NOISE, and STRESS dataset test results are displayed in Tab 5. 

 
Table 5: NOISE-STRESS, NOISE, and STRESS dataset test result 

  
    ∗Aug. is an abbreviation of “augmentation.” 

 

 

The average accuracy of the ResNet-50 model with data balancing was 85.79%, while the sensitivities of NR, 

GLC, AMD, and DR were 75.52%, 97.90%, 99.06%, and 70.66%, respectively, after removing non-GLC 

images from the NOISE-STRESS dataset. The rates of specificities for the four classes were 92.08%, 99.54%, 
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99.15%, and 90.28%, in that order. Better caution for patients in the early stages of eye disorders is suggested by 

the improved specificity performances when compared to those using the NOISE-STRESS dataset. The 

outcomes of k-fold cross-validation testing for non-GLC, mild, and moderate DR. The omitted dataset's max 

accuracy for the four-class eye illness classification trial was 91.16%. The 50-layer ResNet's average accuracy 

using tenfold cross-validation was 85.79%. The outcomes of evaluating different k-fold cross-validations using 

the STRESS dataset are displayed in Tab. 6. 
  

Table 6: Individual fold accuracy from STRESS dataset 

   
  

 5. DISCUSSION AND CONCLUSION 

As Perez et al. [55] pointed out, data augmentation was crucial to data generalization with a dataset since it 

increased validation accuracy. However, we also saw impressive testing performances with these fundus photos 

as a consequence of data augmentation in the Results, section 4. We also noticed, from the entire combined 

testing dataset, that the ResNet-50 model performed better at classifying eye diseases when paired with data 

augmentation than other competing models. We believe that the ResNet-50 model could extract as many 

features as possible from an image with a resolution of 384 × 384 pixels, given the available depth. 

Furthermore, the networks may be able to learn everything that fundus images may teach them thanks to their 

residual properties. The nodes in deeper residual models may get an excessive number of features, which could 

lead to a small amount of overfitting. 

  

To examine the performance gain resulting from utilizing less stress data, we removed the mild and moderate 

DR images from our training and testing dataset (see Results, Subsection 5.2). Our hypothesis that higher 

performances were achieved with less challenging data was validated by the small improvement observed with 

the NOISE dataset. As anticipated, the accuracy of this experiment was 80.27%, while the prior experiment's 

accuracy was 76.71%. 

  

We created a dataset in our experimental sequence to assess noise tolerance. Consequently, the STRESS dataset 

yielded an accuracy of 85.79% (Result, Subsection 5.3). 482 of the 650 photos in total were non-GLC photos, 

either NR or non-GLC from ORIGAlight. After removing the 40% of noisy data from our NR data, the 

experiment's performance dramatically improved. Furthermore, as anticipated, the stress inclusion of the mild 

and moderate DR images from the MESSIDOR dataset slightly affected overall performances. To improve the 

classification of various eye illnesses, fundus images from publically accessible datasets should be subjected to 

inter-rater reliability testing conducted by both local specialists and the experts employed by such databases. In 

order to classify fundus photos with difficult and noisy data, we tested deep neural networks. Using 10-fold 

cross-validation, our suggested approach obtained 85.79% accuracy from the STRESS dataset within a 50-layer 

ResNet architecture. This four-class eye illness classifier, when using our data preprocessing technique, had a 

peak accuracy of 91.16%. 

  

In summary, our study showed that, with adjustments to the preprocessing and data gathering phases, multi-

category classification applied to public datasets might achieve a notable improvement in performance over 

earlier studies. Furthermore, this study demonstrated that multiple category diagnosis on various pooled datasets 

is feasible. Therefore, this can be considered a successful pilot research of classification for the three most 

prevalent eye diseases in order to create future medical diagnostic helpful tools. We further indicate that 

researchers planning to use computer-aided techniques for the identification of eye diseases may find inspiration 

in the publicly available fundus picture databases. 
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