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Abstract

Integrating patient-specific glycemic data with artificial intelligence (Al) models provides a
modern approach to guiding biosimilar selection in type 2 diabetes treatment. The framework
begins with the collection of patient-level data, including HbAlc values, fasting and postprandial
glucose fluctuations, body mass index, age, comorbidities, renal and hepatic function, as well as
prior treatment history and response patterns. These multidimensional datasets serve as critical
inputs for the Al-driven system. Within the processing layer, machine learning algorithms analyze
glycemic variability in conjunction with clinical parameters to create predictive models that
forecast insulin responsiveness, safety profiles, and risk of adverse outcomes such as
hypoglycemia. This computational step also enables a comparative assessment of available
biosimilar insulins, evaluating their efficacy, safety, immunogenicity, and cost-effectiveness in the
context of the individual patient profile. The decision-support layer translates these predictions
into actionable recommendations, offering clinicians a personalized biosimilar insulin selection
and optimized dosing strategy. This Al-driven guidance ensures that the therapy aligns closely with
the patient’s metabolic needs while minimizing risks and maximizing therapeutic benefit. Finally,
the outcome layer emphasizes the clinical advantages of this integration: improved glycemic
control, reduced adverse drug events, enhanced adherence, and lower overall treatment costs.
Importantly, by aligning biosimilar selection with individualized patient profiles, this approach not
only supports precision medicine in diabetes management but also enhances accessibility to

affordable therapies without compromising safety or efficacy.
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Introduction:

Type 2 diabetes has become a significant global public health issue, largely due to rapid
urbanization, unhealthy diets, sedentary lifestyles, and an aging population. The condition reduces
functional capacity and living standard, leading to serious health issues and premature demise,
particularly in individuals under 60.[1] This increases medical expenses for patients and the
healthcare system. People who are overweight or have high blood sugar are at greater risk, and
those with higher BMI are especially vulnerable to type 2 diabetes.[2] The economic burden of
diabetes is significant, as the costs of care are more than three times higher than average and can
be nearly ten times greater when complications occur.[3] Despite advancements in treatment,
achieving preferred control of blood glucose, blood pressure, and other key health targets remains
a challenge. The rise in diabetes is mainly due to a lack of awareness and not health promotion
efforts. The International Diabetes Federation found that about 10.5% of people worldwide had
diabetes in 2021. This number is expected to grow to 11.3% by 2030 and 12.2% by 2040.[4] These
figures highlight the need for better education and health programs to address this important
issue.[5] People with type 2 diabetes are more likely to develop problems with organs such as the
kidneys, eyes, and nerves. These complications increase medical costs and reduce living
standards.[6] Studies also show that type 2 diabetes can raise the risk of early death by about 15%
and shorten life expectancy by up to 20 years.[7]

Insulin remains a key tool in the treatment of type 2 diabetes, especially when patients can’t reach
blood sugar goals with oral medications alone. Over the past few years, insulin therapy has evolved
with new formulations and alternatives to help improve effectiveness, convenience, and
affordability.[8] Biosimilar insulins are biologic medications that closely match original brand
products in safety and effectiveness while often costing significantly less. As of 2025, the U.S.
market includes three approved biosimilars: two long-acting insulin glargine products (Semglee
[insulin glargine-yfgn] and Rezvoglar [insulin glargine-aglr]) and one rapid-acting insulin Aspart
biosimilar (Merilog).[9] Merilog, approved in 2025, offers a more affordable rapid-acting insulin
alternative and has been shown to match the originator (Novolog) in safety and glucose-lowering
efficacy.[10] Semglee was the first FDA-designated interchangeable biosimilar insulin, meaning

pharmacists can substitute it without needing specific physician approval in many states.
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Importantly, biosimilars like Semglee deliver equivalent glucose control to their reference products

at prices often 15-35% lower, helping reduce long-term treatment costs.[9]

Table nol: Comparison Between Different Biosimilars.

Structure Example Reference
Type Role in T2DM
Modification Biosimilars Product
Gly—Asn (A21), ]
) . | Basaglar, Long-acting basal
Insulin Glargine | +2 Arg (B-chain Lantus o
Semglee insulin
C-terminus)
o B28  Pro—Lys, | Rapid-acting,
Insulin Lispro Lispro Sanofi Humalog
B29 Lys—Pro mealtime
) Aspart  Sanofi _ Rapid-acting,
Insulin Aspart | B28 Pro—Asp ) NovoRapid ]
(developing) mealtime
Human Insulin | Native insulin | Insugen, Humulin, Short-acting &
(Regular, NPH) | sequence Wosulin Novolin intermediate
Modified GLP-1 | Liraglutide, Increases insulin,
GLP-1 Agonists ) . . Victoza,
peptide  (resists | Dulaglutide o reduces glucagon,
(future) S Trulicity )
DPP-4) biosimilars weight loss

Biologic drugs are different from traditional medicines because they are derived from living cells
and often utilize recombinant DNA technology. The first biopharmaceutical approved for medical
use was recombinant human insulin (Humulin®, produced by Eli Lilly and Company in
Indianapolis) [11] in 1982. Since then, advancements in biotechnology have led to the approval of
many biologic products, including peptide hormones, growth factors, interferons, interleukins, and
monoclonal antibodies, in various regions around the world.[12] Biopharmaceuticals represent one
of the fastest-growing segments of the pharmaceutical industry. By 2017, it was projected that they
would account for about 20% of global drug spending, growing more rapidly than traditional

medicines.[13] Due to the impending patent expirations of many first-generation
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biopharmaceuticals, there is significant interest in the production and commercialization of similar
biologic products, commonly referred to as “Biosimilars.” A biosimilar product is defined as being
highly similar to an already approved biologic product. The new versions of insulin will be
submitted for approval using the existing 505(b)(2) regulatory pathway. This pathway is
designated for instances where the reference product was previously approved under section

505(b)(1) of the Food, Drug, and Cosmetic Act (FDCA).[14]

Similar biologic products and biosimilars are frequently misclassified as generics, leading to
confusion in the pharmaceutical market. The term "generic" specifically refers to medications that
are chemically identical replicas of non-biologic drugs, such as traditional small-molecule
medications. These generics can be produced with relative ease by replicating the active
pharmaceutical ingredient (API) of the reference drug and fulfilling established bioequivalence
criteria, which assess whether the generic performs in the same manner as the original.[15]
Biologics are complex molecules made from living cells. They have detailed structures and
complicated manufacturing processes. Biosimilars are similar products but are not identical to their
reference biologics due to natural variations in biological systems. To create biosimilars,
manufacturers must replicate the active ingredients and show through clinical studies that the
biosimilar has a similar safety and effectiveness to the original product. This complicated process
makes it clear that biosimilars are different from generic drugs, and they should not be confused

with each other.[16]

Managing type 2 diabetes (T2D) is not a one-size-fits-all approach. Personalized medicine, also
referred to as precision or individualized medicine, seeks to customize treatment according to each
person’s clinical characteristics, genetic profile, and lifestyle. This strategy recognizes the
significant differences in how individuals develop diabetes, react to medications, and experience
related complications.[17] Improved treatment response: Many conventional therapies work on
average, but nearly half of T2D patients fail to reach blood sugar targets despite adherence.
Personalized markers like age, BMI, ethnicity, or genetic variants can help predict who benefits
most from which drug.[18] Reduced adverse effects: Genetics can influence how a patient
metabolizes drugs like metformin, sulfonylureas, and thiazolidinediones. Pharmacogenomics
helps identify patients with variations, such as reduced-function OCT1 for metformin or specific

KCNJ11/ABCC8 alleles affecting sulfonylurea response, allowing safer and more effective
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dosing.[19] Savings and efficiency: Tailored treatments can reduce hospitalizations, unscheduled
visits, and complications, yielding cost savings and a better quality of life.[20] Personalized
medicine for type 2 diabetes (T2D) focuses on customized treatments instead of one-size-fits-all
methods. This means doctors consider a person’s genetics, health markers, behavior, and digital
health data. The goal is to make medications work better, reduce side effects, help patients stick to
their treatment plans, and decrease long-term healthcare costs. As the price of genetic testing goes
down and digital monitoring becomes more common, using these tools in regular diabetes care is

becoming easier and more effective.[20]
Personalizing Type 1 and Type 2 Diabetes

Type 1 Diabetes is an autoimmune condition in which the body’s immune system demolishes
insulin-producing beta cells. While insulin replacement remains the cornerstone of treatment,
personalization is increasingly achieved through technology and lifestyle adjustments. For
example, continuous glucose monitoring (CGM), insulin pumps, and hybrid closed-loop “artificial
pancreas” systems allow individualized insulin dosing based on real-time glucose data and patient
activity. These technologies improve glycemic control, reduce hypoglycemia, and enhance quality
of life.[21] In addition, research into immunotherapies (e.g., teplizumab) offers the potential to
delay or prevent T1D onset in genetically at-risk individuals, further personalizing treatment at the
disease-prevention stage.[22] T2D is more heterogeneous than T1D, involving both insulin
resistance and beta-cell dysfunction. Treatment personalization focuses on pharmacogenomics,
biomarkers, and patient characteristics such as BMI, age, ethnicity, comorbidities, and
cardiovascular risk. For example, metformin remains the first-line therapy, but some individuals
respond poorly due to genetic variants in transporters like OCT1. Sulfonylureas are more effective
in patients with preserved beta-cell function, while GLP-1 receptor agonists and SGLT2 inhibitors
are prioritized for patients with obesity or cardiovascular/renal disease.[23] Lifestyle interventions
are also highly personalized nutrition plans, exercise programs, and digital health tools (e.g.,
wearables, telehealth coaching) that are tailored to individual preferences and cultural contexts to
improve adherence. Increasingly, real-world data and artificial intelligence are being used to

predict who benefits most from specific therapies, supporting precision T2D care.[24]

PAGE NO: 1221



Journal of Engineering and Technology Management 77 (2025)

Artificial intelligence (Al) is swiftly changing the healthcare landscape by facilitating quicker,
more accurate, and personalized decision-making. Al involves computer systems that can analyze
complex medical data, recognize patterns, and support clinicians in diagnosis, treatment planning,
and patient management. Its applications include diagnostics, predictive analytics, drug discovery,
and improving operational efficiency within healthcare systems.[25] Al-powered tools have shown
remarkable ability in detecting diseases from imaging and clinical data. For instance, deep learning
algorithms can analyze radiology scans, retina scans, and pathology slides with accuracy
comparable to or even exceeding that of human experts. Al systems are already FDA-approved for
tasks such as screening diabetic retinopathy and identifying early breast cancer lesions. Early
diagnosis enables timely interventions, improving patient outcomes.[26] Al accelerates drug
development by analyzing massive biological datasets to identify drug candidates, optimize trial
design, and repurpose existing medications. In oncology, Al supports precision medicine by
identifying biomarkers and guiding treatment based on tumor genetics. This reduces costs and
shortens the timeline for bringing new therapies to patients.[27] Al-driven CDSS assist clinicians
by integrating patient data with clinical guidelines and research evidence. These systems provide
recommendations on medication dosing, diagnostic testing, and treatment pathways. For example,
Al models in intensive care units help in predicting sepsis hours before it develops, allowing life-
saving interventions.[28] Al has emerged as a powerful tool in healthcare decision-making,
supporting earlier diagnosis, risk prediction, personalized treatment, and more efficient healthcare
delivery. As technologies mature, integrating AI with human clinical expertise offers the potential

to reshape modern medicine into a more precise, predictive, and patient-centered system.[29]
Types of Biosimilars

a. Biosimilar Insulins-Examples are Insulin glargine, Insulin lispro. Use in the management
of type 1 and type 2 diabetes to regulate blood glucose.[30]

b. Biosimilar Monoclonal Antibodies (mAbs)-Examples: Trastuzumab (used in HER2+
breast cancer), Rituximab (used in lymphoma, rheumatoid arthritis). Use in the treatment
of cancers and autoimmune disorders.[31]

c. Biosimilar Growth Factors-Filgrastim (stimulates neutrophils), Epoetin alfa (stimulates red
blood cell production). Used to prevent/treat chemotherapy-induced neutropenia, manage

anemia in chronic kidney disease or cancer.[32]
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d. Biosimilar Hormones-Somatropin (recombinant human growth hormone). Use in growth

hormone deficiency, Turner syndrome, and chronic renal insufficiency in children.[33]
Biosimilars in Diabetes Management:

Diabetes mellitus, especially type 2 diabetes (T2D), is a major global health crisis affecting
millions, often requiring insulin therapy. Since the discovery of insulin in 1921, formulations have
evolved from animal extracts to advanced recombinant human forms and analogs, improving
glycemic control and reducing side effects. The increasing prevalence of diabetes and high insulin
costs necessitate cost-effective treatment options. Biosimilar insulins have emerged as a key
solution, closely replicating approved biological insulins in quality, safety, and efficacy. They play
a critical role in enhancing affordability and treatment adherence, alleviating the financial burden
of diabetes management for many patients.[34] Biosimilars are not exact replicas of generic small-
molecule drugs; they are designed to be highly comparable to reference biologic insulins. Produced
using living cells and advanced biotechnology, biosimilars may have slight variations that are
rigorously assessed for clinical equivalence. Regulatory agencies like the EMA and FDA require
extensive studies covering structure, pharmacokinetics, pharmacodynamics, safety, and
immunogenicity to demonstrate bio-similarity.[35] Significance in Diabetes Management
improved the Accessibility and Affordability, Comparable Safety and Efficacy, which have shown
that biosimilar insulins provide glycemic control equivalent to their reference products, without
increased risk of hypoglycemia or adverse immunogenic responses. This ensures that switching
from an originator insulin to a biosimilar does not compromise treatment outcomes.[36] Biosimilar
insulins represent a crucial advancement in diabetes management, addressing both the clinical and
economic challenges of insulin therapy. By ensuring similar efficacy and safety at a lower cost,
they hold the potential to expand global access to insulin and improve long-term health outcomes
in people living with diabetes. Their growing adoption underscores their importance in making
diabetes care more sustainable and equitable worldwide.[37] While biosimilar insulins are
generally less expensive than innovator (originator) insulins, the price reduction is often modest
compared to generic small-molecule drugs. This is due to the high cost of manufacturing, complex
regulatory requirements, and the need for extensive clinical testing. In some markets, the cost
difference between biosimilars and branded insulins is insufficient to drive widespread switching,

especially in healthcare systems with pre-established procurement contracts.[35]
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Interchangeability, the ability to substitute a biosimilar for an innovator insulin without prescriber
intervention, remains a key issue. While regulatory agencies such as the U.S. FDA have provided
pathways for interchangeability designation, not all biosimilars hold this status. Physicians and
patients may hesitate to switch due to concerns about glycemic control, dosing accuracy, and brand
familiarity. Furthermore, automatic substitution policies vary between countries, which can limit
widespread adoption.[38] Since biosimilars are derived from living cells, slight structural
variations may trigger unwanted immune responses. Although clinical trials have shown no
significant differences in immunogenicity between biosimilars and originator insulins, theoretical
concerns persist. Both healthcare professionals and patients may perceive a higher risk of
hypersensitivity or neutralizing antibody formation, which contributes to resistance to

switching.[39]

Clinical research and real-world evidence consistently demonstrate that biosimilar insulins exhibit
comparable efficacy, safety, and tolerability when compared to their innovator counterparts. A
series of randomized controlled trials have revealed no statistically significant differences in key
clinical outcomes, including HbAlc levels, fasting plasma glucose, and the duration patients
maintain their glucose levels within the target range. These findings suggest that biosimilar insulins
can effectively serve as alternatives to original insulin products, offering the potential for broader
access to diabetes management without compromising patient care. Comprehensive analyses
further support the notion that these biosimilars adhere to the rigorous standards established for

biological therapies, ensuring that patients receive robust treatment options.[36]

Additionally, the incidence and severity of hypoglycemic episodes appear to be remarkably similar
between patients utilizing biosimilar insulins and those relying on originator insulins. This
compelling evidence further underscores the clinical equivalence of these therapeutic options,
providing confidence to both healthcare providers and patients in the use of biosimilar insulins as
a viable alternative in diabetes management.[35] Clinical monitoring has found no evidence of
increased immunogenicity with biosimilars, and rates of anti-insulin antibody development are
consistent with reference products.[39] The adoption of biosimilar insulins is influenced by
challenges such as pricing strategies, regulatory variations in interchangeability, and persistent
concerns about immunogenicity. However, clinical evidence consistently supports their

equivalence to innovator insulins in terms of efficacy, safety, and immunogenicity. Wider
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acceptance of biosimilars can reduce healthcare costs and expand patient access to insulin therapy,

provided that education, transparent communication, and supportive policies are in place.[40]
Mechanism of Action of Biosimilar Insulins:

Biosimilar insulins are biological medicines that are highly similar in structure, efficacy, and safety
to their original (reference) insulin products. They are designed to provide the same therapeutic
effects at a reduced cost, thus improving accessibility for diabetes patients. In Type 2 Diabetes
Mellitus (T2DM), where insulin resistance and progressive B-cell dysfunction cause chronic
hyperglycemia, biosimilar insulins act by mimicking the physiological effects of endogenous

insulin on target tissues such as the liver, skeletal muscle, and adipose tissue.
1. Binding to the Insulin Receptor:

Biosimilar insulins are designed to replicate the effects of natural insulin by binding to a specific
protein called the Insulin Receptor (IR). The IR is a complex structure found within the cell
membrane and is classified as a heterotetrameric transmembrane glycoprotein. It consists of two
parts outside of the cell, known as a-subunits, which serve the purpose of binding insulin, and two
parts that span the membrane, referred to as B-subunits, which possess intrinsic activity to trigger
cellular responses. When a biosimilar insulin molecule attaches itself to an a-subunit, it triggers a
change in the shape of the receptor. This conformational change is transmitted across the plasma
membrane to the B-subunits, which then become activated.[41] The activation leads to a process
called autophosphorylation, whereby phosphate groups are added to specific tyrosine residues
located within the intracellular portion of the B-subunit. This modification creates acceptable
docking sites for downstream signaling proteins, primarily from a group known as the Insulin
Receptor Substrate (IRS) family. These downstream proteins play crucial roles in mediating the
effects of insulin within the cell, influencing various metabolic processes such as glucose uptake.
The subsequent recruitment and phosphorylation of IRS proteins initiate intracellular signaling
cascades, particularly the PI3K-Akt pathway, which mediates metabolic effects like glucose uptake
and glycogen synthesis, and the MAPK pathway, which regulates mitogenic responses such as cell
growth and proliferation. Importantly, biosimilar insulins must demonstrate comparable receptor-
binding affinity and signaling activation to their reference insulin products to ensure equivalent

efficacy and safety in clinical use.[41]
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2. Tissue-Specific Actions of Biosimilar Insulins:

Biosimilar insulins exert their therapeutic effects through actions on key target tissues, skeletal
muscle, adipose tissue, and the liver by activating insulin receptor-mediated signaling pathways.
In skeletal muscle, which is responsible for the majority of glucose uptake, biosimilar insulins
stimulate the PI3K-Akt pathway, promoting translocation of glucose transporter type 4 (GLUT-4)
to the plasma membrane, thereby increasing glucose uptake and enhancing glycogen synthesis. In
adipose tissue, they facilitate glucose uptake for triglyceride synthesis, activate lipoprotein lipase
to promote lipid storage, and inhibit hormone-sensitive lipase, thus reducing lipolysis and free

fatty acid release.[42]

In the liver, biosimilar insulins suppress hepatic glucose production by inhibiting gluconeogenesis
and glycogenolysis, while simultaneously promoting glycogen synthesis and lipogenesis.
Collectively, these tissue-specific actions help reduce hyperglycemia and restore metabolic
balance in type 2 diabetes. Since biosimilars are designed to be highly similar in structure and
receptor-binding affinity to their reference products, they produce the same tissue-level responses,

ensuring equivalent clinical efficacy and safety.[43]
Artificial Intelligence in Diabetes Care

Artificial Intelligence (AI) has emerged as a transformative tool in diabetes care, offering
innovative approaches to diagnosis, treatment optimization, and long-term management. Al
applications in diabetes primarily focus on predictive modeling, insulin dosing algorithms, and

digital twin technologies.

Predictive Models: Al-driven models can forecast blood glucose fluctuations, risk of
hypoglycemia, and long-term complications by analyzing clinical, genetic, and lifestyle data.

These predictive insights help clinicians personalize therapy and prevent adverse events.

Insulin Dosing Algorithms: Advanced algorithms assist in recommending optimal insulin doses by
analyzing continuous glucose monitoring (CGM) data, carbohydrate intake, and physical
activity.[41] These systems are crucial for patients using insulin pumps and hybrid closed-loop
systems. Digital Twins: A digital twin is a virtual replica of a patient that integrates clinical,

lifestyle, and sensor data to simulate disease progression and treatment outcomes. In diabetes,

PAGE NO: 1226



Journal of Engineering and Technology Management 77 (2025)

digital twins allow testing of different interventions (e.g., insulin regimens, diet changes) in silico

before implementation, thus personalizing therapy.[44]

Various machine learning (ML) approaches have been applied in diabetes management, each

offering unique strengths:

v

v

v

Regression Models: Used to predict blood glucose levels based on dietary intake, insulin
dosage, and activity. Linear and logistic regression are common in risk prediction for
diabetes onset and complications.

Decision Trees & Random Forests: Provide interpretable models for clinical decision-
making, such as predicting hypoglycemia episodes or stratifying patients by complication
risk.

Neural Networks: Particularly suited for nonlinear and complex datasets, neural networks
can learn patterns from CGM data to improve glycemic forecasting.

Deep Learning: Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNSs) are applied in the interpretation of CGM signals, retinopathy detection from retinal

images, and long-term glycemic trend prediction.[45]

Limitations of Current AI Models in Diabetes Therapy:

v

Al systems necessitate large, high-quality datasets for effective performance. Variability in
glucose measurement accuracy, missing data, and inconsistent logging of lifestyle factors
can negatively impact predictive capabilities.

Generalizability is a crucial concern in artificial intelligence (Al), as many models are
confined to specific populations, reducing their accuracy with diverse groups. Genetic
differences, dietary habits, and socioeconomic factors greatly influence individual
responses. To enhance effectiveness across communities, AI models must incorporate a
broader range of data sources.

Regulatory and Ethical Challenges: Clinical validation, approval, and post-market
surveillance of Al tools are complex. Data privacy, informed consent, and algorithm
transparency are ongoing concerns.

User Adoption: Patients and clinicians may hesitate to rely on Al tools due to a lack of

trust, usability challenges, or a limited understanding of how algorithms make decisions.
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v' Cost and Accessibility: Advanced Al-driven systems, like artificial pancreas devices,
remain expensive and are not equally accessible across all healthcare settings, particularly

in low-resource countries.[46]

Al is revolutionizing diabetes care through predictive analytics, automated insulin dosing, and
digital twin simulations. Machine learning models, ranging from regression to deep learning, are
being integrated into CGM analysis, artificial pancreas systems, and complication screening tools.
However, challenges related to data quality, generalizability, regulatory approval, and patient trust
remain. Overcoming these barriers will be essential for Al to fully realize its potential in achieving

personalized, effective, and accessible diabetes management.[47]
Integrating AI Models with Patient-Specific Data for Biosimilar Selection:
1. Concept of Personalized Biosimilar Matching Using Al

The idea of personalized biosimilar matching is to use Al algorithms that analyze individual patient
data, such as clinical history, biomarkers, genomic profiles, and treatment response, to recommend
the most suitable biosimilar insulin or biologic. This targets not only efficacy but also factors like
immunogenicity, safety, and cost. Al can uncover patterns and predictive markers that guide
clinicians toward the best individualized biosimilar choice, moving beyond generic substitution

toward truly personalized biologic therapy.[48]
2. Frameworks or Models Where Al Integrates Real-World Data for Drug Selection

Although direct real-world examples of Al-driven biosimilar selection are limited, emerging

frameworks suggest how this could be implemented.

Al in Biosimilar Development & Pharmacovigilance: Al tools are already being used to analyze
process data in biosimilar manufacturing example, predicting glycosylation profiles, ensuring
molecular similarity, and enhancing quality control through real-time process monitoring with Al-
driven analytics. Additionally, Al supports pharmacovigilance by detecting rare adverse events and
mining literature using NLP techniques to extract safety-related signals.[49] AI-Driven Drug
Response Prediction in T2D: Al systems analyzing real-world clinical data, age, lab results,
prescription history, and comorbidities have been developed for predicting drug response in T2D.

For instance, transformer-based models achieved high predictive accuracy (ROC-AUC ~0.99) in
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classifying drug choices based on patient profiles.[50] Similarly, a 2025 viewpoint highlights AI’s
growing capability to analyze vast datasets from EHRs and trials to anticipate individual treatment
responses, aiding personalized drug selection.[51] Interpretable Al for Treatment Progression: A
recent Al framework using interpretable tree-based models trained on observational data suggests
optimized treatment step-ups, with better HbAlc reduction compared to standard clinician

decisions, showcasing how Al can support clinical pathways.[52]
3. Potential for Al-Based Decision-Support Systems in Clinical Practice

Al-enhanced decision support systems (CDSS) could guide clinicians in selecting the most

appropriate biosimilar based on personalized patient profiles. Potential capabilities include:

Combining Multidimensional Data: Al could integrate clinical metrics, immunological markers,
prior insulin responses, and cost constraints, producing ranked biosimilar options. Predictive
Safety and Efficacy Modeling: Using pharmacovigilance data and patient history, Al can estimate
the risk of adverse reactions or immunogenicity before biosimilar switching. Dynamic Learning
Systems: As real-world evidence accumulates, e.g., outcomes following biosimilar switches, Al

models could refine recommendations, improving guidance over time. [52,53]
Benefits of AI-Guided Biosimilar Selection:
1. Improved Clinical Outcomes and Glycemic Control

Al-guided systems can enhance glycemic outcomes by offering personalized, accurate insulin
dosing that adapts to each patient’s real-time needs. For instance, an Al-based insulin decision
support system (iNCDSS) demonstrated glycemic control on par with experienced physicians in
hospitalized T2D patients, yielding comparable "time in range" (TIR) results and high physician
satisfaction.[54] While not specific to biosimilars, such Al algorithms could similarly optimize
matching biosimilar insulin to individual needs, maximizing therapeutic efficacy through

personalized dosage and monitoring.
2. Cost-Effectiveness in Diabetes Management

The introduction of insulin biosimilars has already resulted in meaningful cost reductions: e.g., the
entry of Basaglar (a follow-on insulin glargine) led to quarterly price declines of approximately

3.4% for glargine insulins.[55] More broadly, biosimilars across therapeutic areas are projected to
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slash biologic drug expenses by up to $54 billion between 2017 and 2026.[51] Incorporating Al to
optimally match patients with the most suitable and affordable biosimilar could further enhance
cost savings, enabling targeted use of lower-cost alternatives while preserving clinical

outcomes.[56]
3. Enhanced Patient Adherence and Satisfaction

Al decision support tools can improve clinical workflows and ease the workload of healthcare
providers, which ultimately helps patients. For example, the integrated Non-Communicable
Diseases Decision Support System (iNCDSS) received a rating of 4.1 out of 5 from physicians for
its usability, safety, and efficiency. Additionally, 98.9% of the Al recommendations were put into
practice.[54] In the context of biosimilars, Al could recommend equivalent yet less expensive
options seamlessly, minimizing treatment complexity and boosting patient confidence and

adherence. [56,57]
4. Data-Driven Healthcare Decision-Making

Al excels at synthesizing vast datasets, including clinical records, pharmacologic profiles, and cost
information to inform biosimilar selection. One review highlights how Al and IoT technologies
can support biosimilar decision-making by analyzing alignment of molecules, optimizing
manufacturing, predicting adverse events, and enhancing regulatory evaluation through text
mining and Pharmacovigilance.[58] Such capabilities could be adapted for clinical decision
support, drawing on patient demographics, history, and biosimilar performance to recommend

optimal therapeutic matches.[58]
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Table no 2: Advantages of Al guided Biosimilars.

Benefit Category Al-Guided Biosimilar Selection Advantage

Personalized matching improves glycemic control and

safety (e.g., TIR)

Clinical Outcomes

‘ Maximizes use of affordable biosimilars; drives down
Cost-Effectiveness o
overall medication costs

. . ) Streamlined decision-making increases trust, lowers
Patient Adherence & Satisfaction )
complexity.

. o . Integrates multiple data streams for optimal, evidence-
Data-Driven Decision-Making _
based recommendations

Challenges and Limitations:
1. Data quality and interoperability issues

Al models are only as good as the data they learn from. In routine diabetes care, key inputs (A1C,
CGM traces, insulin doses, comorbidities, hypoglycemia events) often live in fragmented,
heterogeneous systems (EHRs, pharmacy claims, device portals). Missingness, inconsistent
coding, device calibration differences, and label noise degrade model performance and
reproducibility. Health information exchange and adoption of HL7-FHIR can mitigate these
problems by standardizing data elements and semantics, but implementation is uneven across
healthcare settings and vendors. Even with FHIR, semantic alignment and provenance tracking
remain practical hurdles that limit large-scale, multi-center model training and external

validation.[59]

Without high-fidelity longitudinal data (including switch dates, dose changes, concurrent
therapies, and outcomes such as time-in-range or hypoglycemia), Al cannot reliably infer which
biosimilar is best for a given patient or whether an observed change in control truly followed a

switch rather than confounding factors. [59,60]
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2. Ethical and privacy concerns with patient-specific data

Personalized biosimilar recommendations require integrating sensitive, identifiable health data.
That triggers strict legal and ethical duties on privacy, consent, fairness, and transparency. Recent
reviews highlight risks of re-identification, secondary use, and bias when Al is embedded in EHR
workflows; they call for stronger governance, auditability, and explicit consent pathways.
Regulatory scrutiny is increasing, e.g., proposals to modernize HIPAA security safeguards
(encryption/MFA) in response to rising ransomware threats; debates over national data
infrastructures (e.g., NHS) underscore the difficulty of truly anonymizing health data. Developers
of clinical Al and digital therapeutics must also minimize data collection and formalize data-
sharing agreements. [61,62,63] If patients or institutions are reluctant to share detailed histories,
Al models will skew toward data-rich subgroups, raising equity concerns and limiting the

generalizability of recommendations across diverse populations.[61]
3. Regulatory challenges in Al-driven biosimilar recommendations

From a U.S. perspective, whether an Al recommendation engine is regulated depends on the FDA’s
Clinical Decision Support (CDS) framework and Software-as-a-Medical-Device (SaMD) policies.
CDS that allows clinicians to independently review the basis for recommendations may be “non-
device,” while opaque or autonomous systems typically fall under device regulation, implying
design controls, clinical evaluation, and post-market oversight. In the EU, the Al Act (2024)
classifies most clinical Al as high-risk, imposing requirements for data governance, transparency,
human oversight, and quality management, while interacting with MDR/IVDR and GDPR. For
biosimilars specifically, FDA guidance on biosimilar/interchangeable labeling and post-approval
changes sets expectations for evidence and communication; automatic substitution still depends
on state law and the product’s “interchangeability” designation. An Al tool proposing switches
must align with these frameworks and avoid implying clinical superiority where none is
established. [64,65,66] An Al that ranks biosimilars by “appropriateness” may be viewed as
influencing treatment selection; sponsors and health systems should plan for SaMD pathways,
rigorous explainability, and careful claims language consistent with bio-similarity (i.e., no

clinically meaningful differences vs the reference).[64]
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Future Perspectives

Selecting the optimal glucose-lowering therapy for people with Type 2 diabetes (T2D) is
increasingly a precision problem: patient heterogeneity (age, comorbidity, renal function,
adherence, prior treatment history) and expanding medicine choices (including biosimilars) make
individualized recommendations complex. Continuous and point-in-time glycemic data (CGM
traces, fingerstick logs, HbAlc trajectories) provide a rich, patient-specific phenotype that, when
combined with Al models, can help predict which therapeutic option (including which biosimilar)
will achieve better glycemic control, fewer side effects, and higher adherence for that person.
Recent reviews document rapid progress in Al for glycemic prediction and decision support,

forming the technical foundation for this integration.[67]
1. Integration with digital health platforms and mobile apps

Digital health platforms and smartphone apps are the natural conduit for bringing patient-specific
glycemic data into AI workflows. Modern platforms already ingest CGM streams, wearable
activity/sleep data, diet logs, medication timing, and patient-reported outcomes; Al layers built on
top of these streams can generate individualized risk scores, glycemic forecasts, and candidate
treatment options. Trials and platform studies show Al-enhanced digital interventions can improve
glycemic outcomes and engagement by delivering personalized coaching and actionable alerts to
patients and care teams. Embedding biosimilar-selection logic in these platforms means patients’
real-world glucose responses (variability, hypoglycemia risk, time-in-range) can be used to
recommend not only drug class but specific products (including biosimilars) predicted to match
the patient’s physiological profile and tolerability. [68,69] Practical considerations: to be useful
clinically, app Al integrations must enforce strong data standards (FHIR/HL7 for EHR
interoperability), privacy controls (consent, encryption), and clear UX that differentiates patient-
facing suggestions (behavioral tips, adherence nudges) from prescriptive treatment
recommendations (which require clinician sign-off and regulatory safeguards). Interoperability
with EMRs allows the app-derived Al insights to be visible in the clinician workflow (medication
reconciliation, formulary checks), enabling seamless biosimilar substitution where

appropriate.[68]
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2. Development of real-time Al decision-support tools for clinicians (CDSS)

Real-time decision support systems for clinicians (CDSS) ingest live glycemic feeds and clinically
relevant context (renal function, concomitant meds, prior treatment response) and can produce
ranked therapeutic choices, dosing adjustments, and safety alerts. Randomized and pragmatic
studies of Al-assisted insulin titration and inpatient glycemic CDSS demonstrate effectiveness at
improving glucose control and reducing adverse events, suggesting real-time Al can safely move
from insulin algorithms toward recommending choice among multiple injectable biologics and
biosimilars. When integrated with drug-formulary modules, the CDSS can prioritize biosimilars
that are therapeutically equivalent but cost-favorable while flagging patient features that might
argue for using the reference product (history of immunogenic reaction, special populations).
[70,71] Key implementation points: transparency (explainable Al outputs) and clinician control
are essential. Clinicians must see why the model favors a biosimilar for a given patient (e.g., prior
rapid time-in-range improvements on similar molecule classes, low predicted immunogenicity
risk) so they can make informed prescribing decisions. Embedding confidence metrics and
suggested monitoring plans (e.g., anti-drug antibody checks, closer post-switch glucose

monitoring) will increase adoption and safety.[70]
3. Expansion toward multi-omics data integration (genomics, proteomics)

Moving beyond glycemic phenotypes, combining genomics, proteomics, metabolomics, and
microbiome data with glycemic traces enables mechanistic, precision selection of therapies. Multi-
omics can reveal genetic variants affecting drug pharmacokinetics or pharmacodynamics (for
example, variants that alter drug metabolism or insulin signaling pathways), proteomic markers of
inflammation that predict poorer response to a drug class, or metabolomic signatures associated
with hypoglycemia susceptibility. Al methods deep learning, graph neural networks, and
integrative generative models, are proving capable of harmonizing these high-dimensional datasets
to derive clinically useful subtypes and treatment-response predictors in diabetes. In practice, a
clinician could receive a model output that says: “Patient A has omics signature X + CGM pattern
Y — predicted superior response to biosimilar formulation B with low immunogenicity risk,”
enabling truly personalized biosimilar selection.[72] Barriers remain: omics data availability, cost,

regulatory acceptance, and the need for large, diverse cohorts to avoid bias. However, pilot studies
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(e.g., pharmaco-multiomics for metformin response) show promise that expanding data modalities

materially improve the prediction of individual drug response.[73]
4. Role of Al in pharmacovigilance of biosimilars

Post-marketing safety monitoring is critical for biosimilars because minor manufacturing
differences can, in rare cases, affect immunogenicity or efficacy. Al can revolutionize
pharmacovigilance by continuously mining heterogeneous real-world data sources EHRs, claims,
lab databases, spontaneous adverse event reports, and patient-reported outcomes, to detect subtle
safety signals faster than traditional methods. Natural language processing (NLP) can extract
adverse event descriptions from clinical notes; causal inference models can separate confounding
in observational data; anomaly detection can flag unexpected patterns (e.g., increased neutralizing
antibodies after switching). Reviews and pilot deployments document AI’s utility and outline
implementation challenges (data quality, regulatory validation, explainability) for drug safety
monitoring. For biosimilars, this means more rapid, data-driven comparison against reference
biologics and earlier identification of subgroups at risk.[74] Operationally, integrating pharmaco-
safety Al with clinical CDSS and digital platforms closes the loop: if Al pharmacovigilance flags
a potential issue for a specific biosimilar in a patient subgroup, the clinician CDSS and app can

surface alternative recommendations and tailored monitoring for affected patients.[75]
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Conclusion:

The combination of specific patient glycemic data, artificial intelligence (Al), and biosimilar
therapies is changing how we manage Type 2 diabetes. Using continuous glucose monitoring,
digital health platforms, and advanced predictive models, doctors can create personalized
treatment paths instead of using a “one-size-fits-all” approach. Al tools help doctors choose the
right biosimilars while also improving cost-effectiveness, safety, and access to diabetes care.
Looking ahead, using various types of biological data, such as genomics, proteomics, and
metabolomics, will offer deeper insights into how patients respond to treatments and the different
forms of the disease. This will lead to more personalized biosimilar prescriptions. Al systems will
also enhance safety monitoring after biosimilars enter the market. In summary, the collaboration
between glycemic data and Al in biosimilar selection can redefine diabetes care. This fits with the
overall goal of modern healthcare to be patient-centered, data-driven, and accessible worldwide.
As digital systems improve and regulations change, the future treatment of Type 2 diabetes will
rely on smart systems that provide effective glycemic control and promote sustainable and fair

care for everyone.
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