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Abstract 

Integrating patient-specific glycemic data with artificial intelligence (AI) models provides a 

modern approach to guiding biosimilar selection in type 2 diabetes treatment. The framework 

begins with the collection of patient-level data, including HbA1c values, fasting and postprandial 

glucose fluctuations, body mass index, age, comorbidities, renal and hepatic function, as well as 

prior treatment history and response patterns. These multidimensional datasets serve as critical 

inputs for the AI-driven system. Within the processing layer, machine learning algorithms analyze 

glycemic variability in conjunction with clinical parameters to create predictive models that 

forecast insulin responsiveness, safety profiles, and risk of adverse outcomes such as 

hypoglycemia. This computational step also enables a comparative assessment of available 

biosimilar insulins, evaluating their efficacy, safety, immunogenicity, and cost-effectiveness in the 

context of the individual patient profile. The decision-support layer translates these predictions 

into actionable recommendations, offering clinicians a personalized biosimilar insulin selection 

and optimized dosing strategy. This AI-driven guidance ensures that the therapy aligns closely with 

the patient’s metabolic needs while minimizing risks and maximizing therapeutic benefit. Finally, 

the outcome layer emphasizes the clinical advantages of this integration: improved glycemic 

control, reduced adverse drug events, enhanced adherence, and lower overall treatment costs. 

Importantly, by aligning biosimilar selection with individualized patient profiles, this approach not 

only supports precision medicine in diabetes management but also enhances accessibility to 

affordable therapies without compromising safety or efficacy. 
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Introduction: 

Type 2 diabetes has become a significant global public health issue, largely due to rapid 

urbanization, unhealthy diets, sedentary lifestyles, and an aging population. The condition reduces 

functional capacity and living standard, leading to serious health issues and premature demise, 

particularly in individuals under 60.[1] This increases medical expenses for patients and the 

healthcare system. People who are overweight or have high blood sugar are at greater risk, and 

those with higher BMI are especially vulnerable to type 2 diabetes.[2] The economic burden of 

diabetes is significant, as the costs of care are more than three times higher than average and can 

be nearly ten times greater when complications occur.[3] Despite advancements in treatment, 

achieving preferred control of blood glucose, blood pressure, and other key health targets remains 

a challenge. The rise in diabetes is mainly due to a lack of awareness and not health promotion 

efforts. The International Diabetes Federation found that about 10.5% of people worldwide had 

diabetes in 2021. This number is expected to grow to 11.3% by 2030 and 12.2% by 2040.[4] These 

figures highlight the need for better education and health programs to address this important 

issue.[5] People with type 2 diabetes are more likely to develop problems with organs such as the 

kidneys, eyes, and nerves. These complications increase medical costs and reduce living 

standards.[6] Studies also show that type 2 diabetes can raise the risk of early death by about 15% 

and shorten life expectancy by up to 20 years.[7]  

Insulin remains a key tool in the treatment of type 2 diabetes, especially when patients can’t reach 

blood sugar goals with oral medications alone. Over the past few years, insulin therapy has evolved 

with new formulations and alternatives to help improve effectiveness, convenience, and 

affordability.[8] Biosimilar insulins are biologic medications that closely match original brand 

products in safety and effectiveness while often costing significantly less. As of 2025, the U.S. 

market includes three approved biosimilars: two long-acting insulin glargine products (Semglee 

[insulin glargine-yfgn] and Rezvoglar [insulin glargine-aglr]) and one rapid-acting insulin Aspart 

biosimilar (Merilog).[9] Merilog, approved in 2025, offers a more affordable rapid-acting insulin 

alternative and has been shown to match the originator (Novolog) in safety and glucose-lowering 

efficacy.[10] Semglee was the first FDA-designated interchangeable biosimilar insulin, meaning 

pharmacists can substitute it without needing specific physician approval in many states. 
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Importantly, biosimilars like Semglee deliver equivalent glucose control to their reference products 

at prices often 15-35% lower, helping reduce long-term treatment costs.[9] 

Table no1: Comparison Between Different Biosimilars. 

Type 
Structure 

Modification 

Example 

Biosimilars 

Reference 

Product 
Role in T2DM 

Insulin Glargine 

Gly→Asn (A21), 

+2 Arg (B-chain 

C-terminus) 

Basaglar, 

Semglee 
Lantus 

Long-acting basal 

insulin 

Insulin Lispro 
B28 Pro→Lys, 

B29 Lys→Pro 
Lispro Sanofi Humalog 

Rapid-acting, 

mealtime 

Insulin Aspart B28 Pro→Asp 
Aspart Sanofi 

(developing) 
NovoRapid 

Rapid-acting, 

mealtime 

Human Insulin 

(Regular, NPH) 

Native insulin 

sequence 

Insugen, 

Wosulin 

Humulin, 

Novolin 

Short-acting & 

intermediate 

GLP-1 Agonists 

(future) 

Modified GLP-1 

peptide (resists 

DPP-4) 

Liraglutide, 

Dulaglutide 

biosimilars 

Victoza, 

Trulicity 

Increases insulin, 

reduces glucagon, 

weight loss 

 

Biologic drugs are different from traditional medicines because they are derived from living cells 

and often utilize recombinant DNA technology. The first biopharmaceutical approved for medical 

use was recombinant human insulin (Humulin®, produced by Eli Lilly and Company in 

Indianapolis) [11] in 1982. Since then, advancements in biotechnology have led to the approval of 

many biologic products, including peptide hormones, growth factors, interferons, interleukins, and 

monoclonal antibodies, in various regions around the world.[12] Biopharmaceuticals represent one 

of the fastest-growing segments of the pharmaceutical industry. By 2017, it was projected that they 

would account for about 20% of global drug spending, growing more rapidly than traditional 

medicines.[13] Due to the impending patent expirations of many first-generation 
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biopharmaceuticals, there is significant interest in the production and commercialization of similar 

biologic products, commonly referred to as “Biosimilars.” A biosimilar product is defined as being 

highly similar to an already approved biologic product. The new versions of insulin will be 

submitted for approval using the existing 505(b)(2) regulatory pathway. This pathway is 

designated for instances where the reference product was previously approved under section 

505(b)(1) of the Food, Drug, and Cosmetic Act (FDCA).[14] 

Similar biologic products and biosimilars are frequently misclassified as generics, leading to 

confusion in the pharmaceutical market. The term "generic" specifically refers to medications that 

are chemically identical replicas of non-biologic drugs, such as traditional small-molecule 

medications. These generics can be produced with relative ease by replicating the active 

pharmaceutical ingredient (API) of the reference drug and fulfilling established bioequivalence 

criteria, which assess whether the generic performs in the same manner as the original.[15] 

Biologics are complex molecules made from living cells. They have detailed structures and 

complicated manufacturing processes. Biosimilars are similar products but are not identical to their 

reference biologics due to natural variations in biological systems. To create biosimilars, 

manufacturers must replicate the active ingredients and show through clinical studies that the 

biosimilar has a similar safety and effectiveness to the original product. This complicated process 

makes it clear that biosimilars are different from generic drugs, and they should not be confused 

with each other.[16]  

Managing type 2 diabetes (T2D) is not a one-size-fits-all approach. Personalized medicine, also 

referred to as precision or individualized medicine, seeks to customize treatment according to each 

person’s clinical characteristics, genetic profile, and lifestyle. This strategy recognizes the 

significant differences in how individuals develop diabetes, react to medications, and experience 

related complications.[17] Improved treatment response: Many conventional therapies work on 

average, but nearly half of T2D patients fail to reach blood sugar targets despite adherence. 

Personalized markers like age, BMI, ethnicity, or genetic variants can help predict who benefits 

most from which drug.[18] Reduced adverse effects: Genetics can influence how a patient 

metabolizes drugs like metformin, sulfonylureas, and thiazolidinediones. Pharmacogenomics 

helps identify patients with variations, such as reduced-function OCT1 for metformin or specific 

KCNJ11/ABCC8 alleles affecting sulfonylurea response, allowing safer and more effective 
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dosing.[19] Savings and efficiency: Tailored treatments can reduce hospitalizations, unscheduled 

visits, and complications, yielding cost savings and a better quality of life.[20] Personalized 

medicine for type 2 diabetes (T2D) focuses on customized treatments instead of one-size-fits-all 

methods. This means doctors consider a person’s genetics, health markers, behavior, and digital 

health data. The goal is to make medications work better, reduce side effects, help patients stick to 

their treatment plans, and decrease long-term healthcare costs. As the price of genetic testing goes 

down and digital monitoring becomes more common, using these tools in regular diabetes care is 

becoming easier and more effective.[20]  

Personalizing Type 1 and Type 2 Diabetes 

Type 1 Diabetes is an autoimmune condition in which the body’s immune system demolishes 

insulin-producing beta cells. While insulin replacement remains the cornerstone of treatment, 

personalization is increasingly achieved through technology and lifestyle adjustments. For 

example, continuous glucose monitoring (CGM), insulin pumps, and hybrid closed-loop “artificial 

pancreas” systems allow individualized insulin dosing based on real-time glucose data and patient 

activity. These technologies improve glycemic control, reduce hypoglycemia, and enhance quality 

of life.[21] In addition, research into immunotherapies (e.g., teplizumab) offers the potential to 

delay or prevent T1D onset in genetically at-risk individuals, further personalizing treatment at the 

disease-prevention stage.[22] T2D is more heterogeneous than T1D, involving both insulin 

resistance and beta-cell dysfunction. Treatment personalization focuses on pharmacogenomics, 

biomarkers, and patient characteristics such as BMI, age, ethnicity, comorbidities, and 

cardiovascular risk. For example, metformin remains the first-line therapy, but some individuals 

respond poorly due to genetic variants in transporters like OCT1. Sulfonylureas are more effective 

in patients with preserved beta-cell function, while GLP-1 receptor agonists and SGLT2 inhibitors 

are prioritized for patients with obesity or cardiovascular/renal disease.[23] Lifestyle interventions 

are also highly personalized nutrition plans, exercise programs, and digital health tools (e.g., 

wearables, telehealth coaching) that are tailored to individual preferences and cultural contexts to 

improve adherence. Increasingly, real-world data and artificial intelligence are being used to 

predict who benefits most from specific therapies, supporting precision T2D care.[24]  
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Artificial intelligence (AI) is swiftly changing the healthcare landscape by facilitating quicker, 

more accurate, and personalized decision-making. AI involves computer systems that can analyze 

complex medical data, recognize patterns, and support clinicians in diagnosis, treatment planning, 

and patient management. Its applications include diagnostics, predictive analytics, drug discovery, 

and improving operational efficiency within healthcare systems.[25] AI-powered tools have shown 

remarkable ability in detecting diseases from imaging and clinical data. For instance, deep learning 

algorithms can analyze radiology scans, retina scans, and pathology slides with accuracy 

comparable to or even exceeding that of human experts. AI systems are already FDA-approved for 

tasks such as screening diabetic retinopathy and identifying early breast cancer lesions. Early 

diagnosis enables timely interventions, improving patient outcomes.[26] AI accelerates drug 

development by analyzing massive biological datasets to identify drug candidates, optimize trial 

design, and repurpose existing medications. In oncology, AI supports precision medicine by 

identifying biomarkers and guiding treatment based on tumor genetics. This reduces costs and 

shortens the timeline for bringing new therapies to patients.[27] AI-driven CDSS assist clinicians 

by integrating patient data with clinical guidelines and research evidence. These systems provide 

recommendations on medication dosing, diagnostic testing, and treatment pathways. For example, 

AI models in intensive care units help in predicting sepsis hours before it develops, allowing life-

saving interventions.[28] AI has emerged as a powerful tool in healthcare decision-making, 

supporting earlier diagnosis, risk prediction, personalized treatment, and more efficient healthcare 

delivery. As technologies mature, integrating AI with human clinical expertise offers the potential 

to reshape modern medicine into a more precise, predictive, and patient-centered system.[29]  

Types of Biosimilars  

a. Biosimilar Insulins-Examples are Insulin glargine, Insulin lispro. Use in the management 

of type 1 and type 2 diabetes to regulate blood glucose.[30] 

b. Biosimilar Monoclonal Antibodies (mAbs)-Examples: Trastuzumab (used in HER2+ 

breast cancer), Rituximab (used in lymphoma, rheumatoid arthritis). Use in the treatment 

of cancers and autoimmune disorders.[31] 

c. Biosimilar Growth Factors-Filgrastim (stimulates neutrophils), Epoetin alfa (stimulates red 

blood cell production). Used to prevent/treat chemotherapy-induced neutropenia, manage 

anemia in chronic kidney disease or cancer.[32] 
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d. Biosimilar Hormones-Somatropin (recombinant human growth hormone). Use in growth 

hormone deficiency, Turner syndrome, and chronic renal insufficiency in children.[33] 

Biosimilars in Diabetes Management: 

Diabetes mellitus, especially type 2 diabetes (T2D), is a major global health crisis affecting 

millions, often requiring insulin therapy. Since the discovery of insulin in 1921, formulations have 

evolved from animal extracts to advanced recombinant human forms and analogs, improving 

glycemic control and reducing side effects. The increasing prevalence of diabetes and high insulin 

costs necessitate cost-effective treatment options. Biosimilar insulins have emerged as a key 

solution, closely replicating approved biological insulins in quality, safety, and efficacy. They play 

a critical role in enhancing affordability and treatment adherence, alleviating the financial burden 

of diabetes management for many patients.[34] Biosimilars are not exact replicas of generic small-

molecule drugs; they are designed to be highly comparable to reference biologic insulins. Produced 

using living cells and advanced biotechnology, biosimilars may have slight variations that are 

rigorously assessed for clinical equivalence. Regulatory agencies like the EMA and FDA require 

extensive studies covering structure, pharmacokinetics, pharmacodynamics, safety, and 

immunogenicity to demonstrate bio-similarity.[35] Significance in Diabetes Management 

improved the Accessibility and Affordability, Comparable Safety and Efficacy, which have shown 

that biosimilar insulins provide glycemic control equivalent to their reference products, without 

increased risk of hypoglycemia or adverse immunogenic responses. This ensures that switching 

from an originator insulin to a biosimilar does not compromise treatment outcomes.[36] Biosimilar 

insulins represent a crucial advancement in diabetes management, addressing both the clinical and 

economic challenges of insulin therapy. By ensuring similar efficacy and safety at a lower cost, 

they hold the potential to expand global access to insulin and improve long-term health outcomes 

in people living with diabetes. Their growing adoption underscores their importance in making 

diabetes care more sustainable and equitable worldwide.[37] While biosimilar insulins are 

generally less expensive than innovator (originator) insulins, the price reduction is often modest 

compared to generic small-molecule drugs. This is due to the high cost of manufacturing, complex 

regulatory requirements, and the need for extensive clinical testing. In some markets, the cost 

difference between biosimilars and branded insulins is insufficient to drive widespread switching, 

especially in healthcare systems with pre-established procurement contracts.[35] 
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Interchangeability, the ability to substitute a biosimilar for an innovator insulin without prescriber 

intervention, remains a key issue. While regulatory agencies such as the U.S. FDA have provided 

pathways for interchangeability designation, not all biosimilars hold this status. Physicians and 

patients may hesitate to switch due to concerns about glycemic control, dosing accuracy, and brand 

familiarity. Furthermore, automatic substitution policies vary between countries, which can limit 

widespread adoption.[38] Since biosimilars are derived from living cells, slight structural 

variations may trigger unwanted immune responses. Although clinical trials have shown no 

significant differences in immunogenicity between biosimilars and originator insulins, theoretical 

concerns persist. Both healthcare professionals and patients may perceive a higher risk of 

hypersensitivity or neutralizing antibody formation, which contributes to resistance to 

switching.[39]  

Clinical research and real-world evidence consistently demonstrate that biosimilar insulins exhibit 

comparable efficacy, safety, and tolerability when compared to their innovator counterparts. A 

series of randomized controlled trials have revealed no statistically significant differences in key 

clinical outcomes, including HbA1c levels, fasting plasma glucose, and the duration patients 

maintain their glucose levels within the target range. These findings suggest that biosimilar insulins 

can effectively serve as alternatives to original insulin products, offering the potential for broader 

access to diabetes management without compromising patient care. Comprehensive analyses 

further support the notion that these biosimilars adhere to the rigorous standards established for 

biological therapies, ensuring that patients receive robust treatment options.[36] 

Additionally, the incidence and severity of hypoglycemic episodes appear to be remarkably similar 

between patients utilizing biosimilar insulins and those relying on originator insulins. This 

compelling evidence further underscores the clinical equivalence of these therapeutic options, 

providing confidence to both healthcare providers and patients in the use of biosimilar insulins as 

a viable alternative in diabetes management.[35] Clinical monitoring has found no evidence of 

increased immunogenicity with biosimilars, and rates of anti-insulin antibody development are 

consistent with reference products.[39] The adoption of biosimilar insulins is influenced by 

challenges such as pricing strategies, regulatory variations in interchangeability, and persistent 

concerns about immunogenicity. However, clinical evidence consistently supports their 

equivalence to innovator insulins in terms of efficacy, safety, and immunogenicity. Wider 
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acceptance of biosimilars can reduce healthcare costs and expand patient access to insulin therapy, 

provided that education, transparent communication, and supportive policies are in place.[40] 

Mechanism of Action of Biosimilar Insulins: 

Biosimilar insulins are biological medicines that are highly similar in structure, efficacy, and safety 

to their original (reference) insulin products. They are designed to provide the same therapeutic 

effects at a reduced cost, thus improving accessibility for diabetes patients. In Type 2 Diabetes 

Mellitus (T2DM), where insulin resistance and progressive β-cell dysfunction cause chronic 

hyperglycemia, biosimilar insulins act by mimicking the physiological effects of endogenous 

insulin on target tissues such as the liver, skeletal muscle, and adipose tissue. 

1. Binding to the Insulin Receptor: 

Biosimilar insulins are designed to replicate the effects of natural insulin by binding to a specific 

protein called the Insulin Receptor (IR). The IR is a complex structure found within the cell 

membrane and is classified as a heterotetrameric transmembrane glycoprotein. It consists of two 

parts outside of the cell, known as α-subunits, which serve the purpose of binding insulin, and two 

parts that span the membrane, referred to as β-subunits, which possess intrinsic activity to trigger 

cellular responses. When a biosimilar insulin molecule attaches itself to an α-subunit, it triggers a 

change in the shape of the receptor. This conformational change is transmitted across the plasma 

membrane to the β-subunits, which then become activated.[41] The activation leads to a process 

called autophosphorylation, whereby phosphate groups are added to specific tyrosine residues 

located within the intracellular portion of the β-subunit. This modification creates acceptable 

docking sites for downstream signaling proteins, primarily from a group known as the Insulin 

Receptor Substrate (IRS) family. These downstream proteins play crucial roles in mediating the 

effects of insulin within the cell, influencing various metabolic processes such as glucose uptake. 

The subsequent recruitment and phosphorylation of IRS proteins initiate intracellular signaling 

cascades, particularly the PI3K-Akt pathway, which mediates metabolic effects like glucose uptake 

and glycogen synthesis, and the MAPK pathway, which regulates mitogenic responses such as cell 

growth and proliferation. Importantly, biosimilar insulins must demonstrate comparable receptor-

binding affinity and signaling activation to their reference insulin products to ensure equivalent 

efficacy and safety in clinical use.[41] 
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2. Tissue-Specific Actions of Biosimilar Insulins: 

Biosimilar insulins exert their therapeutic effects through actions on key target tissues, skeletal 

muscle, adipose tissue, and the liver by activating insulin receptor-mediated signaling pathways. 

In skeletal muscle, which is responsible for the majority of glucose uptake, biosimilar insulins 

stimulate the PI3K-Akt pathway, promoting translocation of glucose transporter type 4 (GLUT-4) 

to the plasma membrane, thereby increasing glucose uptake and enhancing glycogen synthesis. In 

adipose tissue, they facilitate glucose uptake for triglyceride synthesis, activate lipoprotein lipase 

to promote lipid storage, and inhibit hormone-sensitive lipase, thus reducing lipolysis and free 

fatty acid release.[42]  

In the liver, biosimilar insulins suppress hepatic glucose production by inhibiting gluconeogenesis 

and glycogenolysis, while simultaneously promoting glycogen synthesis and lipogenesis. 

Collectively, these tissue-specific actions help reduce hyperglycemia and restore metabolic 

balance in type 2 diabetes. Since biosimilars are designed to be highly similar in structure and 

receptor-binding affinity to their reference products, they produce the same tissue-level responses, 

ensuring equivalent clinical efficacy and safety.[43] 

Artificial Intelligence in Diabetes Care 

Artificial Intelligence (AI) has emerged as a transformative tool in diabetes care, offering 

innovative approaches to diagnosis, treatment optimization, and long-term management. AI 

applications in diabetes primarily focus on predictive modeling, insulin dosing algorithms, and 

digital twin technologies. 

Predictive Models: AI-driven models can forecast blood glucose fluctuations, risk of 

hypoglycemia, and long-term complications by analyzing clinical, genetic, and lifestyle data. 

These predictive insights help clinicians personalize therapy and prevent adverse events. 

Insulin Dosing Algorithms: Advanced algorithms assist in recommending optimal insulin doses by 

analyzing continuous glucose monitoring (CGM) data, carbohydrate intake, and physical 

activity.[41] These systems are crucial for patients using insulin pumps and hybrid closed-loop 

systems. Digital Twins: A digital twin is a virtual replica of a patient that integrates clinical, 

lifestyle, and sensor data to simulate disease progression and treatment outcomes. In diabetes, 

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 1226



digital twins allow testing of different interventions (e.g., insulin regimens, diet changes) in silico 

before implementation, thus personalizing therapy.[44]  

Various machine learning (ML) approaches have been applied in diabetes management, each 

offering unique strengths: 

 Regression Models: Used to predict blood glucose levels based on dietary intake, insulin 

dosage, and activity. Linear and logistic regression are common in risk prediction for 

diabetes onset and complications. 

 Decision Trees & Random Forests: Provide interpretable models for clinical decision-

making, such as predicting hypoglycemia episodes or stratifying patients by complication 

risk. 

 Neural Networks: Particularly suited for nonlinear and complex datasets, neural networks 

can learn patterns from CGM data to improve glycemic forecasting. 

 Deep Learning: Convolutional Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs) are applied in the interpretation of CGM signals, retinopathy detection from retinal 

images, and long-term glycemic trend prediction.[45]  

 

Limitations of Current AI Models in Diabetes Therapy: 

 AI systems necessitate large, high-quality datasets for effective performance. Variability in 

glucose measurement accuracy, missing data, and inconsistent logging of lifestyle factors 

can negatively impact predictive capabilities. 

 Generalizability is a crucial concern in artificial intelligence (AI), as many models are 

confined to specific populations, reducing their accuracy with diverse groups. Genetic 

differences, dietary habits, and socioeconomic factors greatly influence individual 

responses. To enhance effectiveness across communities, AI models must incorporate a 

broader range of data sources. 

 Regulatory and Ethical Challenges: Clinical validation, approval, and post-market 

surveillance of AI tools are complex. Data privacy, informed consent, and algorithm 

transparency are ongoing concerns. 

 User Adoption: Patients and clinicians may hesitate to rely on AI tools due to a lack of 

trust, usability challenges, or a limited understanding of how algorithms make decisions. 
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 Cost and Accessibility: Advanced AI-driven systems, like artificial pancreas devices, 

remain expensive and are not equally accessible across all healthcare settings, particularly 

in low-resource countries.[46]  

AI is revolutionizing diabetes care through predictive analytics, automated insulin dosing, and 

digital twin simulations. Machine learning models, ranging from regression to deep learning, are 

being integrated into CGM analysis, artificial pancreas systems, and complication screening tools. 

However, challenges related to data quality, generalizability, regulatory approval, and patient trust 

remain. Overcoming these barriers will be essential for AI to fully realize its potential in achieving 

personalized, effective, and accessible diabetes management.[47]  

Integrating AI Models with Patient-Specific Data for Biosimilar Selection: 

1. Concept of Personalized Biosimilar Matching Using AI 

The idea of personalized biosimilar matching is to use AI algorithms that analyze individual patient 

data, such as clinical history, biomarkers, genomic profiles, and treatment response, to recommend 

the most suitable biosimilar insulin or biologic. This targets not only efficacy but also factors like 

immunogenicity, safety, and cost. AI can uncover patterns and predictive markers that guide 

clinicians toward the best individualized biosimilar choice, moving beyond generic substitution 

toward truly personalized biologic therapy.[48] 

2. Frameworks or Models Where AI Integrates Real-World Data for Drug Selection 

Although direct real-world examples of AI-driven biosimilar selection are limited, emerging 

frameworks suggest how this could be implemented.  

AI in Biosimilar Development & Pharmacovigilance: AI tools are already being used to analyze 

process data in biosimilar manufacturing example, predicting glycosylation profiles, ensuring 

molecular similarity, and enhancing quality control through real-time process monitoring with AI-

driven analytics. Additionally, AI supports pharmacovigilance by detecting rare adverse events and 

mining literature using NLP techniques to extract safety-related signals.[49] AI-Driven Drug 

Response Prediction in T2D: AI systems analyzing real-world clinical data, age, lab results, 

prescription history, and comorbidities have been developed for predicting drug response in T2D. 

For instance, transformer-based models achieved high predictive accuracy (ROC-AUC ~0.99) in 
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classifying drug choices based on patient profiles.[50] Similarly, a 2025 viewpoint highlights AI’s 

growing capability to analyze vast datasets from EHRs and trials to anticipate individual treatment 

responses, aiding personalized drug selection.[51] Interpretable AI for Treatment Progression: A 

recent AI framework using interpretable tree-based models trained on observational data suggests 

optimized treatment step-ups, with better HbA1c reduction compared to standard clinician 

decisions, showcasing how AI can support clinical pathways.[52] 

3. Potential for AI-Based Decision-Support Systems in Clinical Practice 

AI-enhanced decision support systems (CDSS) could guide clinicians in selecting the most 

appropriate biosimilar based on personalized patient profiles. Potential capabilities include: 

Combining Multidimensional Data: AI could integrate clinical metrics, immunological markers, 

prior insulin responses, and cost constraints, producing ranked biosimilar options. Predictive 

Safety and Efficacy Modeling: Using pharmacovigilance data and patient history, AI can estimate 

the risk of adverse reactions or immunogenicity before biosimilar switching. Dynamic Learning 

Systems: As real-world evidence accumulates, e.g., outcomes following biosimilar switches, AI 

models could refine recommendations, improving guidance over time. [52,53] 

Benefits of AI-Guided Biosimilar Selection: 

1. Improved Clinical Outcomes and Glycemic Control 

AI-guided systems can enhance glycemic outcomes by offering personalized, accurate insulin 

dosing that adapts to each patient’s real-time needs. For instance, an AI-based insulin decision 

support system (iNCDSS) demonstrated glycemic control on par with experienced physicians in 

hospitalized T2D patients, yielding comparable "time in range" (TIR) results and high physician 

satisfaction.[54] While not specific to biosimilars, such AI algorithms could similarly optimize 

matching biosimilar insulin to individual needs, maximizing therapeutic efficacy through 

personalized dosage and monitoring. 

2. Cost-Effectiveness in Diabetes Management 

The introduction of insulin biosimilars has already resulted in meaningful cost reductions: e.g., the 

entry of Basaglar (a follow-on insulin glargine) led to quarterly price declines of approximately 

3.4% for glargine insulins.[55] More broadly, biosimilars across therapeutic areas are projected to 
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slash biologic drug expenses by up to $54 billion between 2017 and 2026.[51] Incorporating AI to 

optimally match patients with the most suitable and affordable biosimilar could further enhance 

cost savings, enabling targeted use of lower-cost alternatives while preserving clinical 

outcomes.[56] 

3. Enhanced Patient Adherence and Satisfaction 

AI decision support tools can improve clinical workflows and ease the workload of healthcare 

providers, which ultimately helps patients. For example, the integrated Non-Communicable 

Diseases Decision Support System (iNCDSS) received a rating of 4.1 out of 5 from physicians for 

its usability, safety, and efficiency. Additionally, 98.9% of the AI recommendations were put into 

practice.[54] In the context of biosimilars, AI could recommend equivalent yet less expensive 

options seamlessly, minimizing treatment complexity and boosting patient confidence and 

adherence. [56,57] 

4. Data-Driven Healthcare Decision-Making 

AI excels at synthesizing vast datasets, including clinical records, pharmacologic profiles, and cost 

information to inform biosimilar selection. One review highlights how AI and IoT technologies 

can support biosimilar decision-making by analyzing alignment of molecules, optimizing 

manufacturing, predicting adverse events, and enhancing regulatory evaluation through text 

mining and Pharmacovigilance.[58] Such capabilities could be adapted for clinical decision 

support, drawing on patient demographics, history, and biosimilar performance to recommend 

optimal therapeutic matches.[58] 
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Table no 2: Advantages of AI guided Biosimilars. 

Benefit Category AI-Guided Biosimilar Selection Advantage 

Clinical Outcomes 
Personalized matching improves glycemic control and 

safety (e.g., TIR) 

Cost-Effectiveness 
Maximizes use of affordable biosimilars; drives down 

overall medication costs 

Patient Adherence & Satisfaction 
Streamlined decision-making increases trust, lowers 

complexity. 

Data-Driven Decision-Making 
Integrates multiple data streams for optimal, evidence-

based recommendations 

 

Challenges and Limitations: 

1. Data quality and interoperability issues 

AI models are only as good as the data they learn from. In routine diabetes care, key inputs (A1C, 

CGM traces, insulin doses, comorbidities, hypoglycemia events) often live in fragmented, 

heterogeneous systems (EHRs, pharmacy claims, device portals). Missingness, inconsistent 

coding, device calibration differences, and label noise degrade model performance and 

reproducibility. Health information exchange and adoption of HL7-FHIR can mitigate these 

problems by standardizing data elements and semantics, but implementation is uneven across 

healthcare settings and vendors. Even with FHIR, semantic alignment and provenance tracking 

remain practical hurdles that limit large-scale, multi-center model training and external 

validation.[59] 

Without high-fidelity longitudinal data (including switch dates, dose changes, concurrent 

therapies, and outcomes such as time-in-range or hypoglycemia), AI cannot reliably infer which 

biosimilar is best for a given patient or whether an observed change in control truly followed a 

switch rather than confounding factors. [59,60]  
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2. Ethical and privacy concerns with patient-specific data 

Personalized biosimilar recommendations require integrating sensitive, identifiable health data. 

That triggers strict legal and ethical duties on privacy, consent, fairness, and transparency. Recent 

reviews highlight risks of re-identification, secondary use, and bias when AI is embedded in EHR 

workflows; they call for stronger governance, auditability, and explicit consent pathways. 

Regulatory scrutiny is increasing, e.g., proposals to modernize HIPAA security safeguards 

(encryption/MFA) in response to rising ransomware threats; debates over national data 

infrastructures (e.g., NHS) underscore the difficulty of truly anonymizing health data. Developers 

of clinical AI and digital therapeutics must also minimize data collection and formalize data-

sharing agreements. [61,62,63] If patients or institutions are reluctant to share detailed histories, 

AI models will skew toward data-rich subgroups, raising equity concerns and limiting the 

generalizability of recommendations across diverse populations.[61]  

3. Regulatory challenges in AI-driven biosimilar recommendations 

From a U.S. perspective, whether an AI recommendation engine is regulated depends on the FDA’s 

Clinical Decision Support (CDS) framework and Software-as-a-Medical-Device (SaMD) policies. 

CDS that allows clinicians to independently review the basis for recommendations may be “non-

device,” while opaque or autonomous systems typically fall under device regulation, implying 

design controls, clinical evaluation, and post-market oversight. In the EU, the AI Act (2024) 

classifies most clinical AI as high-risk, imposing requirements for data governance, transparency, 

human oversight, and quality management, while interacting with MDR/IVDR and GDPR. For 

biosimilars specifically, FDA guidance on biosimilar/interchangeable labeling and post-approval 

changes sets expectations for evidence and communication; automatic substitution still depends 

on state law and the product’s “interchangeability” designation. An AI tool proposing switches 

must align with these frameworks and avoid implying clinical superiority where none is 

established. [64,65,66] An AI that ranks biosimilars by “appropriateness” may be viewed as 

influencing treatment selection; sponsors and health systems should plan for SaMD pathways, 

rigorous explainability, and careful claims language consistent with bio-similarity (i.e., no 

clinically meaningful differences vs the reference).[64] 
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Future Perspectives 

Selecting the optimal glucose-lowering therapy for people with Type 2 diabetes (T2D) is 

increasingly a precision problem: patient heterogeneity (age, comorbidity, renal function, 

adherence, prior treatment history) and expanding medicine choices (including biosimilars) make 

individualized recommendations complex. Continuous and point-in-time glycemic data (CGM 

traces, fingerstick logs, HbA1c trajectories) provide a rich, patient-specific phenotype that, when 

combined with AI models, can help predict which therapeutic option (including which biosimilar) 

will achieve better glycemic control, fewer side effects, and higher adherence for that person. 

Recent reviews document rapid progress in AI for glycemic prediction and decision support, 

forming the technical foundation for this integration.[67] 

1. Integration with digital health platforms and mobile apps 

Digital health platforms and smartphone apps are the natural conduit for bringing patient-specific 

glycemic data into AI workflows. Modern platforms already ingest CGM streams, wearable 

activity/sleep data, diet logs, medication timing, and patient-reported outcomes; AI layers built on 

top of these streams can generate individualized risk scores, glycemic forecasts, and candidate 

treatment options. Trials and platform studies show AI-enhanced digital interventions can improve 

glycemic outcomes and engagement by delivering personalized coaching and actionable alerts to 

patients and care teams. Embedding biosimilar-selection logic in these platforms means patients’ 

real-world glucose responses (variability, hypoglycemia risk, time-in-range) can be used to 

recommend not only drug class but specific products (including biosimilars) predicted to match 

the patient’s physiological profile and tolerability. [68,69] Practical considerations: to be useful 

clinically, app AI integrations must enforce strong data standards (FHIR/HL7 for EHR 

interoperability), privacy controls (consent, encryption), and clear UX that differentiates patient-

facing suggestions (behavioral tips, adherence nudges) from prescriptive treatment 

recommendations (which require clinician sign-off and regulatory safeguards). Interoperability 

with EMRs allows the app-derived AI insights to be visible in the clinician workflow (medication 

reconciliation, formulary checks), enabling seamless biosimilar substitution where 

appropriate.[68] 
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2. Development of real-time AI decision-support tools for clinicians (CDSS) 

Real-time decision support systems for clinicians (CDSS) ingest live glycemic feeds and clinically 

relevant context (renal function, concomitant meds, prior treatment response) and can produce 

ranked therapeutic choices, dosing adjustments, and safety alerts. Randomized and pragmatic 

studies of AI-assisted insulin titration and inpatient glycemic CDSS demonstrate effectiveness at 

improving glucose control and reducing adverse events, suggesting real-time AI can safely move 

from insulin algorithms toward recommending choice among multiple injectable biologics and 

biosimilars. When integrated with drug-formulary modules, the CDSS can prioritize biosimilars 

that are therapeutically equivalent but cost-favorable while flagging patient features that might 

argue for using the reference product (history of immunogenic reaction, special populations). 

[70,71] Key implementation points: transparency (explainable AI outputs) and clinician control 

are essential. Clinicians must see why the model favors a biosimilar for a given patient (e.g., prior 

rapid time-in-range improvements on similar molecule classes, low predicted immunogenicity 

risk) so they can make informed prescribing decisions. Embedding confidence metrics and 

suggested monitoring plans (e.g., anti-drug antibody checks, closer post-switch glucose 

monitoring) will increase adoption and safety.[70] 

3. Expansion toward multi-omics data integration (genomics, proteomics) 

Moving beyond glycemic phenotypes, combining genomics, proteomics, metabolomics, and 

microbiome data with glycemic traces enables mechanistic, precision selection of therapies. Multi-

omics can reveal genetic variants affecting drug pharmacokinetics or pharmacodynamics (for 

example, variants that alter drug metabolism or insulin signaling pathways), proteomic markers of 

inflammation that predict poorer response to a drug class, or metabolomic signatures associated 

with hypoglycemia susceptibility. AI methods deep learning, graph neural networks, and 

integrative generative models, are proving capable of harmonizing these high-dimensional datasets 

to derive clinically useful subtypes and treatment-response predictors in diabetes. In practice, a 

clinician could receive a model output that says: “Patient A has omics signature X + CGM pattern 

Y → predicted superior response to biosimilar formulation B with low immunogenicity risk,” 

enabling truly personalized biosimilar selection.[72] Barriers remain: omics data availability, cost, 

regulatory acceptance, and the need for large, diverse cohorts to avoid bias. However, pilot studies 
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(e.g., pharmaco-multiomics for metformin response) show promise that expanding data modalities 

materially improve the prediction of individual drug response.[73] 

4. Role of AI in pharmacovigilance of biosimilars 

Post-marketing safety monitoring is critical for biosimilars because minor manufacturing 

differences can, in rare cases, affect immunogenicity or efficacy. AI can revolutionize 

pharmacovigilance by continuously mining heterogeneous real-world data sources EHRs, claims, 

lab databases, spontaneous adverse event reports, and patient-reported outcomes, to detect subtle 

safety signals faster than traditional methods. Natural language processing (NLP) can extract 

adverse event descriptions from clinical notes; causal inference models can separate confounding 

in observational data; anomaly detection can flag unexpected patterns (e.g., increased neutralizing 

antibodies after switching). Reviews and pilot deployments document AI’s utility and outline 

implementation challenges (data quality, regulatory validation, explainability) for drug safety 

monitoring. For biosimilars, this means more rapid, data-driven comparison against reference 

biologics and earlier identification of subgroups at risk.[74] Operationally, integrating pharmaco-

safety AI with clinical CDSS and digital platforms closes the loop: if AI pharmacovigilance flags 

a potential issue for a specific biosimilar in a patient subgroup, the clinician CDSS and app can 

surface alternative recommendations and tailored monitoring for affected patients.[75] 
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Conclusion: 

The combination of specific patient glycemic data, artificial intelligence (AI), and biosimilar 

therapies is changing how we manage Type 2 diabetes. Using continuous glucose monitoring, 

digital health platforms, and advanced predictive models, doctors can create personalized 

treatment paths instead of using a “one-size-fits-all” approach. AI tools help doctors choose the 

right biosimilars while also improving cost-effectiveness, safety, and access to diabetes care. 

Looking ahead, using various types of biological data, such as genomics, proteomics, and 

metabolomics, will offer deeper insights into how patients respond to treatments and the different 

forms of the disease. This will lead to more personalized biosimilar prescriptions. AI systems will 

also enhance safety monitoring after biosimilars enter the market. In summary, the collaboration 

between glycemic data and AI in biosimilar selection can redefine diabetes care. This fits with the 

overall goal of modern healthcare to be patient-centered, data-driven, and accessible worldwide. 

As digital systems improve and regulations change, the future treatment of Type 2 diabetes will 

rely on smart systems that provide effective glycemic control and promote sustainable and fair 

care for everyone. 
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