DEVELOPMENT AND EVALUATION OF RHIZOBIUM-BASED LIQUID BIO-INOCULANTS FOR ENHANCING LEGUME CROP PRODUCTIVITY

Dhinesh Kumar P, Arikrishna S, Gunanidhi N, Keerthiga K*

*Corresponding Author: Department of Biotechnology, V.S.B Engineering College Karur, Tamil Nadu, India-639111

ABSTRACT:

Legume crops play a vital role in sustainable agriculture by enriching soil fertility and reducing dependence on synthetic nitrogen fertilizers. Among various biofertilizers, Rhizobium-based inoculants are considered one of the most effective due to their ability to establish symbiotic nitrogen fixation. Conventional carrier-based formulations, however, face limitations such as short shelf life, contamination risk, and reduced microbial viability. Liquid bio-inoculants have emerged as a promising alternative, offering extended shelf stability, higher cell counts, and improved adaptability under field conditions. This review highlights recent advancements in the development and evaluation of liquid Rhizobium inoculants, with emphasis on their role in enhancing legume productivity, soil health, and environmental sustainability. Furthermore, the paper discusses the challenges associated with field application, regulatory considerations, and future opportunities, particularly in integrating Rhizobium with other beneficial microorganisms for climate-smart and resource-efficient agriculture.

Keywords:

Rhizobium; liquid bio-inoculants, legumes, nitrogen fixation, sustainable agriculture, microbial formulations, soil fertility, biofertilizers

INTRODUCTION

Leguminous plants are recognized as key crops in sustainable farming because they supply protein-rich food and simultaneously enrich soil fertility. This dual benefit is mainly due to their ability to associate with nitrogen-fixing bacteria of the genus Rhizobium, which colonize root nodules and transform atmospheric nitrogen into plant-usable compounds

PAGE NO: 1186

(Vessey, 2003). By reducing the reliance on chemical nitrogen fertilizers, this biological process not only decreases cultivation costs but also helps mitigate the environmental issues linked with synthetic inputs (Singh, Pandey, & Singh, 2011). For many years, the delivery of Rhizobium to crop plants has primarily been through carrier-based inoculants prepared with materials such as peat, charcoal, or lignite. While effective to some extent, these carriers are prone to several limitations, including a restricted storage life, susceptibility to contamination, and reduced bacterial survival under fluctuating field conditions (Nyalemegbe, Owusu-Bennoah, & Hemeng, 2020). To overcome these drawbacks, liquid formulations have recently been developed. These formulations provide a protective medium for the microbes, improve viability during storage, and enhance consistency of inoculation under diverse agro-ecological conditions (Bhattacharyya & Jha, 2012). Liquid bio-inoculants also present additional benefits, such as easier handling, greater compatibility with other biofertilizers, and better potential for large-scale commercialization (Mahanty et al., 2017). Experimental studies indicate that liquid Rhizobium inoculants can significantly increase seed germination, nodulation efficiency, and yield of legume crops compared with conventional carriers. Nevertheless, the widespread application of this technology is still restricted by challenges, including variable field performance, storage logistics, and limited awareness among farming communities.

Rhizobium and Symbiotic Nitrogen Fixation:

The genus Rhizobium comprises Gram-negative soil bacteria that establish a mutualistic association with legume roots. This interaction begins when plant roots release flavonoids, which act as chemical signals to attract compatible Rhizobium strains. In response, the bacteria produce lipo-chitooligosaccharide signals known as Nod factors, which trigger root hair curling and the initiation of nodule formation (Oldroyd, 2013). Inside the nodules, Rhizobium cells differentiate into bacteroids that perform nitrogen fixation. The enzyme nitrogenase plays a central role in this process, catalyzing the reduction of atmospheric nitrogen (N₂) into ammonia (NH₃), which plants can readily assimilate for growth and protein synthesis (Udvardi & Poole, 2013). Because nitrogenase is extremely sensitive to oxygen, the nodules contain leghemoglobin, a heme protein that regulates oxygen supply and maintains the anaerobic environment required for nitrogen fixation (Ott et al., 2005). The success of symbiotic nitrogen fixation is strongly influenced by multiple factors such as the genetic compatibility between the host plant and the bacterial strain, soil fertility, and the availability of efficient Rhizobium isolates. External stresses including water scarcity,

salinity, and nutrient deficiencies can impair nodule formation and reduce the efficiency of nitrogenase activity (Hungria & Kaschuk, 2014). To maximize the benefits of this symbiosis, it is essential to select highly effective Rhizobium strains and maintain their viability through stable formulations like liquid bio-inoculants, which offer greater reliability in supporting legume growth across varied field conditions.

Conventional Carrier-Based Inoculants:

For several decades, Rhizobium inoculants have been traditionally delivered using solid carriers. Materials such as peat, lignite, charcoal, vermiculite, and press mud have been widely used as substrates to support bacterial survival (Herrmann & Lesueur, 2013). These carriers provide a protective medium that helps maintain microbial cells during storage and transport. In addition, they can be applied directly to seeds or soil, making them simple and relatively inexpensive to use for farmers. Despite these advantages, carrier-based inoculants present several limitations. Their microbial population often declines rapidly due to fluctuations in moisture, temperature, and pH (Bashan et al., 2014). Shelf life rarely exceeds a few months, and maintaining adequate cell counts until application can be difficult. Solid carriers are also prone to contamination by other microorganisms, which may compromise inoculant quality and effectiveness (Mishra et al., 2013). Moreover, differences in carrier properties across regions limit standardization and field performance. Because of these constraints, researchers and industries are increasingly exploring liquid formulations as an alternative to ensure higher microbial survival, longer shelf life, and consistent performance under diverse agro-climatic conditions.

Development of Liquid Bio-Inoculants:

The limitations of carrier-based inoculants have encouraged the advancement of liquid formulations, which are increasingly recognized as a more reliable option for delivering beneficial microbes. Liquid bio-inoculants are aqueous or semi-aqueous formulations that contain high concentrations of viable cells suspended in protective media. These media often include nutrients, stabilizers, polymers, and osmoprotectants that help extend the shelf life and maintain the metabolic activity of the microorganisms during storage (Bashan et al., 2014).

The production process typically involves selecting highly efficient strains of Rhizobium, cultivating them under controlled fermentation conditions, and suspending the cells in liquid formulations designed to reduce stress and enhance survival. Additives such as

glycerol, trehalose, polyvinylpyrrolidone (PVP), and gums are frequently incorporated to improve tolerance against desiccation, temperature fluctuations, and oxidative damage (Herrmann & Lesueur, 2013). Such formulations allow the bacteria to remain viable for more than a year, which is a significant improvement compared with solid carriers that often support survival for only a few months. In addition to their stability, liquid inoculants can be applied through multiple methods, including seed coating, soil drenching, and foliar spraying, making them versatile across different cropping systems (Malusá et al., 2012). They are also easier to package, transport, and mix with other biofertilizers or micronutrients, which increases their commercial appeal. These technological improvements make liquid Rhizobium inoculants a promising strategy for supporting legume production in modern agriculture.

Evaluation of Rhizobium-Based Liquid Bio-Inoculants:

The performance of liquid Rhizobium inoculants is generally assessed at three levels: laboratory, greenhouse, and field conditions. Laboratory studies usually focus on measuring microbial survival, cell count stability, and tolerance to environmental stresses such as temperature, pH, and desiccation (Bashan et al., 2014). These preliminary tests ensure that the inoculant maintains viability throughout storage and transport. Greenhouse trials are carried out to evaluate plant–microbe interactions under controlled conditions. Parameters such as seed germination rate, root development, nodulation efficiency, and chlorophyll content are often monitored to confirm the effectiveness of liquid inoculants compared with untreated controls or carrier-based formulations (Nyalemegbe, Owusu-Bennoah, & Hemeng, 2020). Such trials provide valuable insights into the physiological responses of plants before large-scale field application.

Field experiments represent the most critical stage of evaluation, as they demonstrate the inoculant's impact on crop productivity in real farming environments. Studies on legumes such as soybean, chickpea, groundnut, and pigeon pea have consistently shown improvements in nodulation, biological nitrogen fixation, and grain yield following the application of liquid Rhizobium inoculants (Bhattacharyya & Jha, 2012; Singh, Pandey, & Singh, 2011). Additional benefits include better soil fertility, enhanced microbial activity, and reduced dependency on synthetic nitrogen fertilizers. Overall, systematic evaluation from laboratory to field levels has confirmed that liquid Rhizobium formulations can serve as a

reliable biofertilizer technology, provided that quality control standards and farmer awareness programs are effectively implemented.

Advantages Over Carrier-Based Inoculants:

Liquid formulations of Rhizobium provide several benefits when compared with traditional carrier-based inoculants. One of the most important advantages is their extended shelf life. While solid carriers often lose viability within a few months, liquid formulations can maintain high bacterial populations for more than a year under proper storage conditions (Bashan et al., 2014). This stability makes liquid inoculants more practical for large-scale production and distribution. Another major benefit is the higher survival rate of microbial cells. Liquid formulations include stabilizers and osmoprotectants that protect Rhizobium against stress caused by temperature shifts, desiccation, or nutrient depletion (Herrmann & Lesueur, 2013). As a result, the inoculants remain active for longer periods, ensuring more reliable field performance. Liquid inoculants also offer flexibility in application. They can be used for seed coating, soil drenching, or foliar spraying, whereas carrier-based formulations are usually limited to seed treatment (Malusá et al., 2012).

This versatility improves ease of use and allows integration into different farming practices. Additionally, liquid formulations are easier to standardize, less prone to contamination, and compatible with other biofertilizers or micronutrients, which enhances their adoption in modern agricultural systems (Mahanty et al., 2017). Together, these advantages highlight why liquid Rhizobium inoculants are considered superior to conventional carriers in terms of efficiency, stability, and commercial potential.

Challenges and Limitations:

Although liquid Rhizobium inoculants have clear advantages, several limitations still restrict their widespread adoption. One of the major concerns is the requirement for strict quality control during production and storage. If sterility is not maintained, contamination by unwanted microorganisms may reduce the viability and effectiveness of the inoculant (Herrmann & Lesueur, 2013). Maintaining adequate bacterial populations for long durations also depends on formulation components, packaging material, and storage conditions. Another challenge lies in the inconsistency of field performance. The success of inoculation is influenced by soil characteristics, such as pH, organic matter content, and the presence of native microbial communities. In soils where indigenous Rhizobium strains are abundant but less efficient, competition with introduced strains may reduce the effectiveness of the liquid

inoculant (Jaiswal et al., 2017). Similarly, adverse climatic conditions such as drought, salinity, and extreme temperatures may interfere with bacterial survival and nodulation efficiency (Bhattacharyya & Jha, 2012). In addition, limited farmer awareness and lack of training on proper handling and application methods often hinder adoption. Many smallholder farmers are more familiar with traditional carrier-based inoculants and may hesitate to shift to liquid formulations without clear demonstrations of benefits (Singh et al., 2011).

Finally, regulatory frameworks for biofertilizer quality vary across countries, leading to difficulties in maintaining uniform standards and ensuring farmer confidence (Malusá & Vassilev, 2014). These limitations highlight the need for continued research on strain improvement, formulation stability, farmer outreach programs, and supportive policies to make liquid Rhizobium inoculants a more reliable tool for sustainable agriculture.

Future Prospects and Sustainability Aspects:

The development of liquid Rhizobium bio-inoculants represents a promising strategy for achieving sustainable agricultural intensification. Future research is expected to focus on strain improvement through advanced molecular and genomic tools to identify highly efficient and stress-tolerant isolates (Hungria & Mendes, 2015). Such improved strains could enhance nitrogen fixation and maintain productivity even under adverse conditions such as drought or salinity. Another area of interest is the integration of liquid inoculants with other beneficial microorganisms, such as phosphate-solubilizing bacteria and plant growthpromoting rhizobacteria (PGPR). Co-formulated bio-inoculants may provide multiple benefits including improved nutrient uptake, resistance to soil-borne pathogens, and better tolerance to environmental stress (Timmusk et al., 2017). This "consortia approach" could significantly increase the reliability and impact of biofertilizers in legume-based cropping systems. From a sustainability perspective, liquid Rhizobium inoculants can play a major role in reducing the heavy reliance on chemical nitrogen fertilizers. By naturally supporting biological nitrogen fixation, they help lower production costs for farmers while minimizing negative impacts such as nitrate leaching, soil acidification, and greenhouse gas emissions. Their adoption also fits within the framework of climate-smart agriculture, promoting ecofriendly practices that protect soil health and improve long-term productivity (Liu et al., 2010).

However, future success will depend not only on scientific innovation but also on policy support, effective extension services, and farmer participation. Capacity-building initiatives, farmer training programs, and subsidies for biofertilizer adoption may encourage broader use and help establish liquid inoculants as an integral part of sustainable agriculture worldwide (Adesemoye & Kloepper, 2009).

Conclusion:

The development of liquid Rhizobium bio-inoculants offers a practical and ecofriendly solution for improving legume productivity and soil fertility. Unlike traditional carrier-based formulations, liquid inoculants provide longer shelf life, better bacterial survival, and ease of application, making them more suitable for modern agricultural practices (Herrmann & Lesueur, 2013). By enhancing symbiotic nitrogen fixation, they can significantly reduce the dependency on synthetic fertilizers, thereby lowering production costs and contributing to sustainable farming systems (Bhattacharyya & Jha, 2012). Despite these advantages, challenges such as inconsistent field performance, limited farmer awareness, and inadequate regulatory frameworks remain barriers to large-scale adoption. Addressing these issues will require continued research on strain selection, formulation stability, and integration with other beneficial microbial inoculants (Hungria & Mendes, 2015). At the same time, strong policy support and farmer training are essential to build confidence and encourage adoption at the grassroots level. Overall, liquid Rhizobium inoculants hold great promise as a vital component of sustainable agriculture. With scientific innovation, effective quality control, and supportive extension services, they can play a central role in improving legume crop productivity while safeguarding environmental health for future generations.

REFERENCES

- 1. Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. *World Journal of Microbiology and Biotechnology*, 28(4), 1327–1350. doi:10.1007/s11274-011-0979-9
- Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A.,
 & Tribedi, P. (2017). Biofertilizers: A potential approach for sustainable agriculture

- development. Environmental Science and Pollution Research, 24(4), 3315–3335. doi:10.1007/s11356-016-8104-0
- 3. Nyalemegbe, K., Owusu-Bennoah, E., & Hemeng, O. B. (2020). Comparative effectiveness of carrier-based and liquid *Rhizobium* inoculants on soybean yield. *Legume Research*, 43(1), 107–113. doi:10.18805/LR-4365
- Singh, J. S., Pandey, V. C., & Singh, D. P. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development.
 Agriculture, Ecosystems & Environment, 140(3–4), 339–353.
 doi:10.1016/j.agee.2011.01.017
- 5. Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571–586. doi:10.1023/A:1026037216893
- 6. Hungria, M., & Kaschuk, G. (2014). Regulation of N₂ fixation and NO₃⁻/NH₄⁺ assimilation in nodulated and N-fertilized legume crops. Plant and Soil, 382(1–2), 1–26. Doi:10.1007/s11104-014-2079-9
- 7. Oldroyd, G. E. D. (2013). Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 11(4), 252–263. doi:10.1038/nrmicro2990
- 8. Ott, T., van Dongen, J. T., Günther, C., Krusell, L., Desbrosses, G., Vigeolas, H., ... & Udvardi, M. K. (2005). Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Current Biology, 15(6), 531–535. doi:10.1016/j.cub.2005.01.042
- 9. Udvardi, M., & Poole, P. S. (2013). Transport and metabolism in legume–rhizobia symbioses. Annual Review of Plant Biology, 64(1), 781–805. doi:10.1146/annurev-arplant-050312-120235
- Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). *Plant and Soil, 378*(1–2), 1–33. doi:10.1007/s11104-013-1956-x

- 11. Herrmann, L., & Lesueur, D. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. Applied Microbiology and Biotechnology, 97(20), 8859–8873. doi:10.1007/s00253-013-5228-8
- 12. Mishra, J., Singh, R., & Arora, N. K. (2013). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 4, 319. doi:10.3389/fmicb.2013.00319
- 13. Malusá, E., Vassilev, N., & Freitas, R. D. (2012). Contributions of biofertilizers to agriculture and sustainable development. In E. Lichtfouse (Ed.), Sustainable agriculture reviews (Vol. 11, pp. 23–46). Springer. doi:10.1007/978-94-007-5449-2 2
- 14. Singh, J. S., Pandey, V. C., & Singh, D. P. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. *Agriculture, Ecosystems* & *Environment, 140*(3–4), 339–353. doi:10.1016/j.agee.2011.01.017
- 15. Jaiswal, D. K., Verma, J. P., Prakash, S., Meena, V. S., & Meena, R. S. (2017). Mechanisms of plant–microbe interactions and the role of microbial inoculants in sustainable agricultural productivity. International Journal of Environmental Research and Public Health, 14(7), 1–22.
- 16. Adesemoye, A. O., & Kloepper, J. W. (2009). Plant-microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology, 85(1), 1–12. doi:10.1007/s00253-009-2196-0
- 17. Hungria, M., & Mendes, I. C. (2015). Nitrogen fixation with soybean: The perfect symbiosis? In F. J. de Bruijn (Ed.), *Biological nitrogen fixation* (pp. 1009–1024). Wiley. doi:10.1002/9781119053095.ch97
- Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., ... & Zhang, F. (2010).
 Enhanced nitrogen deposition over China. *Nature*, 494(7438), 459–462.
 doi:10.1038/nature11917
- 19. Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A. C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 49. doi:10.3389/fpls.2017.00049