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Abstract:  

Recurrent seizures profoundly impact well-being, necessitating timely detection for effective management. Deep 

learning, particularly with Electroencephalogram (EEG) signals, holds promise for automated seizure detection. 

EEG directly captures brain electrical activity, aiding early intervention and treatment monitoring. Challenges 

include limited data and variability in seizure patterns. Key contributions involve advanced feature extraction, 

innovative selection algorithms, and deep learning models. This study proposes a comprehensive approach to 

advance EEG-based seizure detection with deep learning method. 

Methods: 

The study initially focuses on feature extraction, utilizing a range of techniques including Power Spectral Density 

(PSD), Weighted Raised Cosine-Window-based Short-Time Fourier Transform (W-RCW-STFT), Discrete Curvelet 

Transform (DCT), and Wigner-Ville Distribution. These techniques are employed to capture various aspects of EEG 

signals. Subsequently, a novel feature selection algorithm known as the Gravitational Seagull Optimization 

Algorithm (GSOA) is introduced to identify the most informative features. Finally, a Multi-Head Attention Bi-

directional LSTM model is employed for deep feature extraction, leveraging its capabilities to discern intricate 

patterns and relationships within EEG signals. 

Results:  

The hybrid approach employed for extracting temporal and spatial features from EEG signals significantly enhances 

the performance of the seizure detection system. Achieving a specificity of 100% along with an accuracy, sensitivity, 

and F1 score of 99% underscores the effectiveness of seizure detection. 

Conclusions: 

This study presents a novel and effective approach to seizure detection from EEG signals, leveraging innovative 

feature extraction, selection methods, and advanced deep learning models. These findings underscore the 

effectiveness of the proposed methodology in accurately identifying seizures, holding promise for improved clinical 

diagnosis and treatment of neurological disorders. 
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1. Introduction 

Recurrent seizures is a neurological disorder that causes epilepsy, profoundly affects the well-being of those 

impacted. It is important to detect seizures timely and accurately for effective management [1]. Deep learning holds 

promise in automating seizure detection through diverse model developments. Electroencephalogram (EEG) signals, 

measuring brain electrical activity, are commonly employed in epilepsy diagnosis. Neurologists scrutinize EEG 

recordings for specific seizure-indicative patterns, such as spike-and-wave discharges, sharp waves, slow waves, and 

epileptiform abnormalities. Analysis encompasses pattern presence, duration, frequency, and spatial distribution, 

considering clinical history and diagnostic tests like MRI or PET for a conclusive epilepsy diagnosis and informed 

treatment decisions [2]. 

EEG is vital for seizure detection, directly measuring brain electrical activity in real time with millisecond 

resolution [3]. Unlike MRI or CT scans, EEG captures seizures' dynamic nature. Its non-invasive, portable, and cost-

effective nature makes it suitable for long-term monitoring. EEG's distinctive patterns, like spikes and sharp waves, 

enhance epileptic activity identification. It aids early intervention and treatment monitoring [4], improving patient 

outcomes. Integrated with other diagnostics, EEG offers a nuanced understanding of seizure causes, leading to 

tailored care. In summary, EEG is indispensable for diagnosing and managing seizures, offering precision and 

practicality in medicine. 

During seizures, EEG exhibits notable changes like increased neural synchronization, high-frequency spikes, 

and interictal epileptiform discharges. These alterations serve as markers for abnormal brain activity, aiding 

diagnosis and classification of seizures [5]. EEG patterns' evolution over time and alterations in background rhythm 

contribute to understanding seizure origin and propagation. EEG monitoring, sensitive to seizure type and brain 

location, is invaluable for diagnosis, classification, and treatment planning in epilepsy and seizure disorders. 

The work presented in this paper highlights the importance of leveraging deep learning for automated seizure 

detection, particularly in the context of epilepsy. It emphasizes the challenges in obtaining and handling limited and 

imbalanced labeled data for training models. The variability in seizure patterns among individuals, noise artifacts in 

EEG signals and the need for real-time processing pose significant hurdles. The key contributions of the work 

presented in this article can be succinctly summarized as follows: 

1. Feature Extraction: This work advances the field by extracting candidate features from preprocessed EEG 

signals. Utilizing techniques such as Power Spectral Density (PSD), Weighted Raised Cosine-Window-

based Short-Time Fourier Transform (W-RCW-STFT), Discrete Curvelet Transform (DCT), and Wigner-

Ville Distribution, the extraction process is designed to capture diverse aspects of the EEG signal. 

2. Innovative Feature Selection Algorithm: The development of the Gravitational Seagull Optimization 

Algorithm (GSOA) introduces a novel feature selection approach. This algorithm is designed to effectively 

identify the most informative features, enhancing the model's discriminative power. 

3. Deep Feature Extraction Model: The introduction of a Multi-Head Attention Bi-directional LSTM model 

signifies a step forward in deep feature extraction. This model is tailored to extract intricate patterns and 

relationships from the EEG signals, providing a deeper understanding of the underlying data. 

4. Hybrid Seizure Detection Model: The proposed hybrid model integrates various components, including the 

feature extraction techniques, the GSOA feature selection, and the Multi-Head Attention Bi-directional long 

short term memory (BiLSTM) model. This comprehensive approach contributes to an effective and holistic 

model for seizure detection from EEG signals. 

5. End-to-End Methodology: The work presents an end-to-end methodology that encompasses dataset 

preparation, involving the compilation of benchmark datasets. The performance evaluation includes not 

only the proposed model but also a comparative analysis with state-of-the-art methods, ensuring a 

comprehensive assessment of its effectiveness. 

In addition to the introduction in Section I, Section II offers concise information about the related work in this field. 

Section III outlines the proposed methodology, including details on dataset preparation, model design, and 

mathematical aspects of the model. Section IV delves into the specifics of results and analysis for the respective 

EEG signal datasets, accompanied by a comparative analysis with state-of-the-art methods. Lastly, Section V 

presents the concluding remarks for the work presented in this article. 

 

2. Related Work 

In the extensive body of literature dedicated to seizure detection, a myriad of models has been strategically 

employed, leveraging diverse algorithms to meticulously evaluate their performance across an array of distinct 

parameters. One noteworthy contribution comes from Atal et al. [6], who introduced a sophisticated method for 
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precise seizure detection through the amalgamation of MBBF-GPSO and CNN. In this innovative approach, MBBF 

efficiently mitigates noise, while GPSO meticulously optimizes features, culminating in a dependable classification 

output. 

In a parallel vein, Bhandari et al. [7] orchestrated a comprehensive strategy by integrating different processing 

approaches. The first approach was Empirical Mode Decomposition (EMD) in which important modalities of the 

signal are extracted. The frequency dependent features were extracted using Discrete Wavelet Transform (DWT). 

The model's accuracy was further augmented through the application of Principal Component Analysis (PCA). Also, 

additional method of feature discrimination, Linear Discriminant Analysis (LDA) and a meticulously crafted 

weighted feature selection approach optimized by J-CSO was applied. 

Ghembaza et al. [8] undertook a meticulous exploration of EEG signals across frequency bands. The classification 

was performed using Support Vector Machine (SVM). The comparative analysis with k-Nearest Neighbors (kNN) 

classifier was carried out in which SVM found better. Their focus centered on the nuanced detection of signal 

features spanning multiple frequency bands. 

In a different facet, Visalini et al. [9] introduced deep learning model for identification of seizure and seizure free 

segments of EEG signals. A Deep Belief Network (DBN) model was evaluated using multi-channel EEG recordings 

which showed AUC score of 97.1% and 98.7% accuracy [6]. 

Exploring the potential of Capsule Networks (CapsNet), Jana et al. [10] embarked on an investigation into its 

efficacy for classifying seizures and non-seizures. Their meticulous approach involved normalizing input data using 

the L2 normalization technique and subjecting the CapsNet to training and fine-tuning with normalized data. The 

comprehensive evaluation of the CapsNet and comparative analysis highlighted its substantial mean accuracy of 

93.50% across diverse subjects and EEG data types, underscoring its robustness and generalizability. 

Further enriching the landscape of seizure detection methodologies, Hossain et al. [11] employed CNN model. The 

results seen by this model were 90%, 91.65% and 98.05% of sensitivity, specificity and accuracy respectively. Yuan 

et al. [12]  explored feed-forward neural network. This single layered model showed 96.5% accuracy. The Extreme 

Learning Machine (ELM) classifier clubbed with existing model provided improved accuracy of 97%. 

The accuracy of 95.96% was seen by Chandaka et al. [13] with SVM classifier. The mixed expert model and 

wavelet features used by Subasi et al. [14] achieved an accuracy of 94.5%. With 93% accuracy, Aarabi et al. 

explored the application of Bayesian Neural Networks (BNN) [12]. 

Hengjin et al. [15] used VGG16 model along with the global maximal information coefficient (MIC). The results on 

CHB-MIT dataset shown accuracy of 98.13%. 

Aarabi et al. [16] achieved 98.7% accuracy using fuzzy rule based classification model. Themethod was meant for 

patterns of interictal and ictal EEG.  Waseem et al. [17] used auto encoder approach with inclusion of BiLSTM on 

CHB-MIT dataset which achieved classification accuracy of 99.7%. Andrzejak et al. [18] employed a pre-analysis 

step based on the weak stationarity criterion. They observed that the most pronounced evidence of nonlinear 

deterministic dynamics was associated with seizure activity, while the results of the other sets fell somewhere 

between these two extremes. 

Siddiqui et al. [19] delved into both black box and non-block box oriented techniques in their review. The authors 

provided a detailed examination of seizure detection methods and discussed their future prospects. 

Panda et al. [20] used particle swarm optimization and LDA to extract and reduce relevant characteristic features 

from EEG data. The ensemble extreme learning machine based method provided accuracy of 99.32% on single 

BONN dataset.  

Seizure detection methods from EEG face limitations, often evaluated on single datasets, lacking generalizability. 

Many fixate on specific sampling frequencies, neglecting broader variations, while handcrafted feature extraction 

gives way to deep learning. This article introduces a novel approach addressing these challenges by integrating 

multiple datasets and employing augmentation techniques for robustness. It extends focus beyond seizure zones, 

considering critical features in both seizure and non-seizure regions. Innovative strategies are detailed, offering 

potential to enhance EEG-based seizure detection efficacy and reliability. 

 

3. Proposed Work 
The proposed methodology of seizure detection model development, involves the EEG dataset preparation, 

Model Design, Training and Validation stages as shown in Figure 1. The step by step procedure of each stage is 

detailed further in this section.  
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Figure 1: Stages of Proposed Work  

Figure 1 depicts the proposed architecture combining conventional and deep feature extraction for Epileptic Seizure 

detection. Processing stages include (a) pre-processing, (b) feature extraction, (c) feature selection, and (d) deep 

features extraction, followed by (e) Classification. Pre-processing involves noise reduction and artifact removal 

through sliding window segmentation and Gaussian noise filtering. Feature extraction encompasses Power Spectral 

Density, Weighted Raised Cosine-Window-based Short-Time Fourier Transform, Discrete Curvelet Transform, and 

Wigner-Ville Distribution. Feature selection is conducted via Gravitational Seagull Optimization Algorithm. Seizure 

detection employs the MHA-BiLSTM model fused with hybrid features from ConvCaps, determining the presence 

or absence of Seizure. 

 

3.1. Pre-Processing 

Sliding window segmentation and Gaussian noise are employed as pre-processing techniques to prepare the 

collected raw EEG signals in this research work. 

3.1.1. Sliding window segmentation  
Sliding window segmentation is a widely used technique [21] in the pre-processing of biomedical signals 

such as EEG, ECG, and blood samples. Sliding window segmentation involves dividing a signal into fixed-length 

segments, analyzed separately to eliminate noise and artifacts, improving quality. In seizure detection, it aids in 

analyzing gene or protein expression levels in blood samples to identify disease biomarkers. The window size 

incrementally increases on time series data until the closest value of the short-term estimate is obtained, repeating 

until all data is segmented. 

3.1.2. Gaussian noise 

Gaussian noise is used as a pre-processing technique [22] in this study to remove unwanted noise from the 

collected raw EEG signals. It involves applying a Gaussian filter to the collected data to reduce the impact of noise 

and improve the quality of the signal. A non-uniform low pass filter or the Gaussian filter function is given in Eq. 

(1).  

���� = �
��	
� �
 ��

���                                                                         (1) 

Where, � represents the standard deviation. By applying Gaussian noise removal as a pre-processing step, 

the quality of the EEG signals is improved, which can lead to better feature extraction and classification results in 

subsequent steps of the analysis.  

3.2. Feature Extraction 

The pre-processed signal is further processed using several methods for feature extraction including Power 

Spectral Density (PSD), Weighted Raised Cosine-window based short-time Fourier transform (W-RCW-STFT), 

Discrete Curvelet Transform (DCT), and Wigner-Ville Distribution. 

3.2.1. Power spectral density (PSD) 

First signal is transformed in frequency domain using Fourier transform in this process [23]. As PSD 

provides power distribution among different frequency bands, Seizure impacts in EEG signals are easily captured 

with the use of these features. The power spectral density is thus calculated with the use of Welch method. 
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3.2.1.1. Welch Method 

A smoother PSD estimate is obtained with the use of Welch method [24]. Inn this process first the signal is 

converted into overlapping segments. These segments are then processed for average estimates of the periodogram. 

The details of steps involved are represented mathematically as, 

1. Consider, N is the length of the discrete signal x(n), 

2. Prepare L overlapping segments of the input signal. The length of each segment is m, then apply window 

w(m) on each segment. 

3. The periodogram k for each segment is calculated as,  

���, ��  =  |�����_���������|� / �� ∗ |����|��                                              (2) 

Where mth sample of segment k is denoted as x_k(m), The w(m) is applied with FFT using w(f) the squared 

magnitude to obain PSD is thus denoted by |. |�. 

After estimating the periodograms of each segment, for overall PSD, the average is taken as,  

�!"���  =  �1/$�  ∗  %&�_� = 1 '���, ��                                                     (3) 

Where the sum of all segments periodograms is denoted by,  %&�_� = 1 '. 

3.2.2. Weighted Raised Cosine-window based short-time Fourier transform (W-RCW-STFT)  

Short-time Fourier transform (STFT) is a technique used for time-frequency analysis of a signal [25]. STFT 

involves Fourier transforming short signal segments, ideal for analyzing non-stationary signals with changing 

frequency content. It offers fixed frequency resolution but may suffer from spectral leakage and distortion. Trade-

offs between time and frequency resolution impact accuracy. To overcome these problems, this work proposed the 

Weighted Raised Cosine-window based Short-Time Fourier Transform (W-RCW-STFT) is a modified version of the 

STFT that combines a raised cosine window with an additional weight function to improve spectral resolution and 

reduce spectral leakage. 

The W-RCW-STFT is computed as follows: 

Step 1: Divide the signal into overlapping segments of length N, with a percentage of overlap between adjacent 

segments.  

Step 2: Apply the raised cosine window to each segment. The raised cosine window used in the W-RCW-STFT is 

defined as per Eq. (4). 

��(� = 0.5 ∗ �1 − cos /�	0
1
�2                                                                 (4) 

where N is the length of the window and n is the index of the sample within the window. 

Step 3: Multiply each sample in each windowed segment by the corresponding value of an additional weight 

function. The additional weight function used in the W-RCW-STFT can vary depending on the specific 

application. One commonly used weight function is the Hamming weight function, which is defined as 

per Eq. (5) 

ℎ��� = 0.54 − 0.46 ∗ cos /�	6
7
�2                                                          (5) 

where M is the length of the Fourier transform and m is the index of the frequency component. 

Step 4: Compute the Fourier transform of each weighted windowed segment. 

Step 5: Concatenate the results of each weighted Fourier transform to form the W-RCW-STFT.  The STFT is 

expressed mathematically as per Eq. (6). 

!����(� =  8 ��(���(�. ℎ���.  � �
�	9:;�<=                                              (6) 

where ��(� is the signal, ��(� is the window function (raised cosine window) and the 8 is taken over all 

time. 

The W-RCW-STFT combines the benefits of the raised cosine window and the weight function to improve 

the accuracy of the spectral analysis. The raised cosine window reduces spectral leakage by smoothly tapering the 

edges of the windowed segments to zero, while the weight function enhances specific frequency components. 

 

3.2.3. Discrete Curvelet Transform (DCT)  

DCT is a multiscale and multidirectional signal processing technique used for feature extraction in various 

applications [26]. DCT decomposes a signal into different scales and directions, which makes it useful for capturing 

localized and directional features. DCT decomposes the signal, then filters to obtain Curvelet coefficients capturing 

localized and directional information. The formula for the DCT involves a series of operations including wavelet 

decomposition, directional filter banks, and local Fourier transforms. The DCT formula can be expressed as per Eq. 

(7). 

>�&, ?�  =  ∑ ��&, ?, �, A�  ∗  ���, A�                                                       (7) 
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where >�&, ?� represents the DCT coefficient at scale & and direction ?, ��&, ?, �, A� represents the 

directional filter bank, ���, A� represents the local Fourier transform of the wavelet coefficients, and � and A 
represent the position in the wavelet domain. The DCT is a powerful feature extraction technique that can capture 

localized and directional information from a signal.  

 

 

3.2.4. Wigner-Ville Distribution 

The time frequency distribution, Wigner-Ville Distribution (WVD), represents the time-varying spectral 

content of a signal [27]. It was introduced by Eugene Wigner and is a popular tool in signal processing for analyzing 

non-stationary signals.  Time-frequency analysis, promising for signal examination, aids in estimation, detection, 

and visualization, especially beneficial for EEG data analysis. In most cases, the WVD is provided as per Eq. (8) for 

a discrete signal ��ℎ� with B samples. 

C��, �� = ∑ D� /� + 0
�2 �∗ /� − 0

�2 �FG�HIJ
K LMNO
M                                                     (8) 

where P =  √−1 and �, � represents the time and frequency components, respectively. The complex 

conjugate of the number ��(� is the amount �∗�(�. In the next step of the automated Seizure detection from EEG 

signal, the extracted features including PSD, STFT, DCT, and Wigner-Ville Distribution undergo a feature selection 

process.  

3.3. Feature Selection via GSOA 

The combination of two algorithms the Seagull Optimization Algorithm (SOA) [28] and the Gravitational 

Search Algorithm (GSA) [29] provides a new metaheuristic algorithm Gravitational Seagull Optimization Algorithm 

(GSOA). The method optimizes using seagulls' behavior. Seagulls vary in size and drink both freshwater and 

saltwater. They migrate in groups, avoiding collisions, moving toward survival. During migration, they attack in a 

spiral pattern. Inspired by gravity, the GSA algorithm guides particles representing individuals toward optimal 

solutions. Higher mass particles attract others, achieving global optimization.  

Premature convergence occurs when an optimization algorithm settles for a suboptimal solution before 

reaching the best one. Combining SOA and GSA mitigates premature convergence by blending global exploration 

and local exploitation capabilities. This hybrid approach enhances diversity, prevents trapping in local optima, and 

reaches the global optimum effectively. 

Step 1: Initialization: Set the population size R, maximum number of iterations �6ST . Initialize the position ���, 

and velocity ? of each seagull randomly within the search space. A population in GSA contains R particles. 

Each particle is expressed as C9  =  ��9�, … , �9V9 , … , �9WX� Y ∈ [1,2, … , R] where " is the dimension.  

Step 2: Evaluation: Consider objective function and evaluate the fitness of each seagull. The objective function of 

this research work is: ^_P = max �c�(i.e. maximization of detection accuracy) 

Step 3: Leader Selection (proposed): Select the best seagull as the global best solution and the remaining top 

seagulls as the local best solutions (based on the fitness function).  

Step 4: Movement (proposed): Update the velocity and position of each seagull based on the following equations: 

Velocity updated as per Eq. (9) 

 ?�9,d��e� = � ∗ ?�9,d��e� + >1 ∗ f1 ∗ ghijkl �9,d��e� − h�9,d��e�m + >2 ∗ f2 ∗ g�ijkl�9,d��e� − h�9,d��e�m         (9) 

Position updated as per Eq. (10). 

h�9,d��e + 1� = h�9,d��e� + ?�Y, P�                                                       (10) 

where ?�Y, P� is the velocity of the YlN seagull at the PlN dimension, � is the inertia weight, >1 and >2 are 

the acceleration coefficients, f1 and f2 are random numbers between 0 and 1, hijkl�Y, P� is the local best position of 

the ith seagull at the jth dimension, and �ijkl�Y, P� is the global best position at the jth dimension. 

Step 5: Avoiding the collisions: During the process of identifying the new search agent's position, a new extra 

variable c was introduced in Eq. (11) and used to stop collisions from happening with nearby seagull. 

h�9,d��e� = c × ho�Y, P�                                                                  (11) 

Where the present iteration is denoted as e, c denotes the movement characteristics of the search agent on 

the available search space, ho means the location of the search agent where it won't be able to collide with other 

search agents, and the search agent's current position is represented as h�9,d��e�. The value of A is given in Eq. (12), 

c = �p − g& × ��p/ �6ST�m                                                                 (12) 

Where: & = 0,1,2, … , �q�9ljrSl9s0 

Where �p was offered as a means of regulating the frequency of the employing variable, �p  was then 

linearly minimized towards 0. In the current task, 2 is the value set for �p. In primary balancing requirements and 

traditional scenarios of SOA, value of �p-factor is linearly decreased from 2 to 0.  
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Step 6: Moving in the direction of the best neighbor 

Later, in order to minimize collisions between the neighboring herds, the herd's search agents travel closer 

to the other herds given in Eq. (13) in order to identify which herds are the most cooperative. 

� = t × ghijkl �9,d��e� − h�9,d��e�m                                                          (13) 

Where the search agent hl is positioned towards the search agent in the areas where � describes the search 

agents. The B behaviour was randomly generated, which is what has proven to be a successful balance between 

exploitation and exploration. The value of B is calculated using Eq. (14), 

t = 2 × c� × f<                                                                              (14) 

Where f< was a random number that would fall between [0, 1] approximately.  

Step 7: Stay in close to the top search agent 
The search agent is also be able to update its location in reference to the provided ideal search agent. The 

updated location is given in Eq. (15), 

" = |> + �|                                                                                 (15) 

It is recognized as the best seagull, whose fitness value was minimal, where " was marked as the 

separation of the search agents and the distance to the most suitable search agent. 

Step 8: Attacking (Exploitation) 

Exploitation optimizes by leveraging past successes. Seagulls adjust attack angles and speed, using body 

weight and wings for altitude, spiraling to attack prey mid-flight. The u, v, and w planes were used to show the 

following properties in Eq. (16), Eq. (17), and Eq. (19) respectively. 

&u = f × cos ���                                                                           (16) 

?u = f × sin ���                                                                            (17) 

�u = f × �                                                                                    (18) 

f = x × �yk                                                                                    (19) 

Where f denoted the diameter of each spiral turn and k denoted a random value falling within the range of 

[0 ≤ � ≤ 2|]. Where e was used as the base for the natural logarithm, x q(< % were the constants used to define the 

spiral shape. Eq. (20) is used to determine the search agents' most recent location. 

hijkl�9,d��e + 1� = �" × &u × ?u × �u� + hijkl�Y, P�                                                (20) 

Where hijkl �9,d��e + 1�changes the position and then saves the best response from various search agents. 

The population is produced randomly at the start of the seagull optimization algorithm (SOA) that is being 

presented. The search agents were able to inform the positions according to the most effective search agent during 

iterations. The c was linearly minimized from �p to 0. The seamless transition between exploitation and exploration 

was due to the variable t. The seagull optimization algorithm has earned a reputation as the global best optimizer 

due to its superior exploitation and exploration capabilities. 

Step 9: Gravity Calculation: Calculate the gravitational forces between each seagull and update their velocities and 

positions based on the gravitational force, according to the GSA algorithm. Gravitational force ��9,d��e� 

between two particles Y9  and P are represented as per Eq. (21). 

��9,d��e� = ��e� ~6��l�×~6G�l�
r�G�l��� ��9�e� − �d�e��                                                (21) 

Where the gravitational constant ��e� is used. The masses of two particles are h�9�e� and h�d�e�. The 

Euclidean distance between them is f9d�e�, and � is a tiny constant. The definition of the gravitational constant ��e� 

is given as per Eq. (22). 

��e� = �� × �
� �
 ����                                                                  (22) 

Where � is a coefficient and �� is the starting point.  �6ST  is the maximum number of iterations. The mass 

h�9�e� of each particle is given as per Eq. (23) and Eq. (24). 

��9�e� = �9l�l�
�9l��l�
�9l��l�
�9l��l�                                                                        (23) 

h�9�e� = �7��l�
∑ �7��l�����

                                                                            (24) 

Where the fitness value is �Ye�e�. The lowest and best fitness values are �Ye��e� and �Yet�e� respectively. 

Each particle Y is drawn to other particles, hence its overall gravitational force ��9,d��e� is calculated as per Eq. (25). 

��9,d��e� = ∑ fq(<d ∙d∈��,d�9 ��9,d��e�                                               (25) 

Where fq(<d  is a value chosen at random from the range (0,1). � is linearly reduced with iteration e, and 

�t denotes the first � best particles. Next, the acceleration c�9,d��e�, velocity ��9,d��e�, and location h�9,d��e + 1�of 

each particle are calculated as per Eq. (26) to Eq. (28), respectively. 
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c�9,d��e + 1� = ���,G��l�
~6��l�                                                               (26) 

��9,d��e + 1� = fq(<9 ∙ ?�9,d��e� + q�9,d��e�                                                     (27) 

h�9,d��e + 1� = h�9,d��e� + ?�9,d��e + 1�                                                         (28) 

Where fq(<9  represents the random value in the interval (0,1). Finally, a new approach for detecting 

Seizure has been proposed using a two-tier-deep learning model. 

Step 10: Check Termination Criteria: Check whether the maximum number of iterations or the desired accuracy of 

the solution has been reached. If the termination criteria are not met, go to step 2. Otherwise, return the best 

solution found. 

The GSOA algorithm can be modified by adjusting the parameters such as population size, maximum number 

of iterations, and acceleration coefficients, to improve the convergence rate and the quality of the solutions. 

Additionally, the GSOA algorithm can be extended to handle constraints, multi-objective optimization, and dynamic 

optimization problems. 

3.4. Seizure Detection via hybrid model 

The proposed method for Seizure detection combines the conventional features and deep features based 

Multi-Head Attention-based Bidirectional Long-Short Memory (MHA-BiLSTM) deep learning architectures. The 

final outcome, which determines the presence or absence of Seizure, is obtained by merging the outputs of both 

ConvCaps and MHA-BiLSTM. 

 

3.4.1 BiLSTM based model with Multi head Attention 

In terms of computational complexity, BiLSTM is twice complex than LSTM. The computation for each 

cell of LSTM is as per Eq. (25) to Eq. (30). The input Vector At is processed in LSTM cell with ht-1 as hidden state 

and Ct as current state.  

�(hl = !S���.X0~cl + �N.90~ℎl
� + _��Y(h�                                               (29) 

��l = !S���.��cl + �N.��ℎl
� + _�����                                                 (30) 

�&el = !S���.��lcl + �N.��lℎl
� + _���&e�                                               (31) 

�l = t���lcl + �Npℎl
� + _����                                                        (32)  

�l = ��l�l
� + �l . �(hl                                                              (33) 

ℎl = �&el . t��l�                                                                   (34) 

In the given context, �(hl , ��l, �&el, and mt refer to the "input, forget, output, and input modulation gates" at 

time t. The corresponding weights, denoted as Input weight IA, R as recursive, and biased weight bv. The sigmoid 

activation function, denoted as Sa(A) = (1+e-A)-1, is used, while the function B(A) = (eA - e-A)/(eA + e-A), is activated 

using hyperbolic tangent and is employed to derive the forget gate Fgt. The memory cell values are thus updated 

using update gate and current state values. The memory cell contents optimization Is performed with control from 

input and forget gates. This depends on the decision of carrying forward or discarding the hidden states of previous 

steps. At time t, the output gate is influenced for future operations. The hidden state is thus obtained with element-

wise multiplication of the values that are passed through tanh activation. The values that passed are taken from 

output and current memory cell. This way for each step, current memory cell is updated. 

The MHA-BiLSTM architecture integrates BiLSTM and Multi Head Attention, advancing sequence 

processing bidirectionally. It captures contextual information and extended dependencies efficiently, enhancing 

temporal understanding. The output from the attention layer serves as the input to fully connected layers, providing 

the necessary foundation for the final stages of the network. These fully connected layers process the refined 

information, culminating in the ultimate output of the MHA-BiLSTM architecture (see Figure 2).  
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Figure 2: Proposed Model for Seizure Detection 

 

4. Results and Analysis 

4.1 Dataset Preparation 

Segmenting EEG signals enhances seizure detection by breaking them into smaller, trainable segments. 

Optimizing dataset size is crucial for model performance, with careful consideration of segment length and accurate 

labeling. Automated or manual labeling based on seizure presence is vital. Integrating diverse datasets requires 

aligning sampling frequencies, as shown by Natu et al. [30]. This study adopts a similar approach, incorporating 

down-sampling and up-sampling. The dataset details are shown in Table 1. 

Table 1: Recomposed Dataset 

Details of Dataset Classes Samples 
After 

Augmentation 

(Kaggle [31]) 

Non-Seizure 261 1566 

Seizure 258 1548 

Total 519 3114 

(Combined CHB-

MIT [32] and 

BONN [33]) 

Non-Seizure 261 1566 

Seizure 258 1548 

Total 519 3114 

3 (Combined) 

Seizure 516 3096 

Non-Seizure 522 3132 

Total 1038 6228 

 

4.2 Performance Parameters 

The performance parameters used to evaluate the proposed model are shown in Table 2. 

 

Table 2: Performance Parameters 

Parameter Formula 

Precision TP/(TP+FP) 

Sensitivity/Recall TP/(TP+FN) 

F1 Score 2*( Precision*Recall)/( Precision+Precision) 

Specificity TN/(TN+FP) 

Accuracy TP+TN/(TP+TN+FP+FN) 
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4.3 Choice of Loss Function 

1. Binary Cross Entropy (BCE) 

BCE is a loss function used for binary classification tasks [34].  In the current goal to categorize input instances into 

seizure or non-seizure, BCE is used. The fundamental idea behind Binary Cross Entropy is rooted in information 

theory and measures the dissimilarity between probability distribution of the predicted outcomes and the actual 

classes. For a single training instance, let's denote the true class label as y (either 0 for non-seizure or 1 for seizure) 

and the predicted probability of belonging to class 1 (seizure) as p. The Binary Cross Entropy loss is calculated as 

follows: 

t>  =  −¡ [¡A^��h� + �1 − ¡� log �1 − h�]                                           ...(35) 

  

BCE gauges the model's error by considering predicted probabilities and actual labels, minimizing overfitting and 

confidently incorrect predictions. Optimization algorithms iteratively adjust parameters to minimize BCE loss, 

ensuring model stability as illustrated in Figure 3. 

 

 
Figure 3: Training Analysis with Binary Cross Entropy Loss Function 

 

2. Kullback-Leibler (KL) 

KL Divergence [35], also known as relative entropy, is a measure of how one probability distribution diverges from 

a second, expected probability distribution. It is often used in information theory, statistics, and machine learning to 

quantify the difference between two probability distributions. The KL Divergence between two probability 

distributions P(x) and Q(x) is defined mathematically as follows: 

"�'��||¤� =  ∑ ���� log /��T�
¥�T�2T ¦ k�~~srl���                                    ...(36) 

Or in the case of continuous distributions: 

"�'��||¤� =  8 ���� log /��T�
¥�T�2

§

§                                           ...(37) 

Where, P(x) is the true probability distribution, Q(x) is the estimated or approximate probability distribution, The 

sum or integral is taken over all possible values of xx in the support of P, The logarithm is typically taken to the base 

2 or natural logarithm. In the proposed work, the loss function is replaced to analyze the impact on detection of 

seizures. Figure 4 shows the training accuracy and loss analysis. 
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Figure 4: Training Analysis with KL Divergence Loss Function 

 

With the observations of training performance, the binary cross entropy loss function is found most suitable in 

proposed model. 

BCE proves superior to KL divergence in seizure classification due to its suitability for binary tasks. It computes 

cross-entropy loss independently for binary predictions, ideal for EEG data segment seizure identification. 

Conversely, KL divergence measures distribution divergence, better suited for multi-class problems. BCE is 

computationally efficient, crucial for timely medical intervention, while KL divergence may demand more 

resources. Additionally, BCE offers a straightforward measure of classification error, vital in medical contexts, 

whereas KL divergence may add complexity without aligning with interpretability needs. These factors underscore 

BCE's efficacy in seizure detection, ensuring quick, accurate predictions with direct interpretability, essential for 

medical applications.  

 

4.4 Hyper Parameter Tuning 

To assess model stability, the results of a 10-fold analysis were examined. From the 7th fold onward, the model 

consistently demonstrated stability in terms of accuracy as shown in Figure 5. 

 

 
Figure 5: 10-Fold Analysis 

 

The hyperparameter tuning with different batch sizes, the best results are obtained at batch size 32 as shown in 

Figure 6. Also, in second last dense layer hidden neurons analysis, best results are obtained at 128 neurons as shown 

in Figure 7. 
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Figure 6: Hyper Parameter Batch Size Analysis 

 

 
Figure 7: Hyper Parameter Hidden Neurons Analysis 

4.5 Comparative Analysis 

For the dataset 1 and dataset 2, the results are separately obtained to compare and identify the results of dataset 

3 which shows significant impact on the result. Dataset 3 which is combination of datasets shows improved 

performance as shown in Figure 8. The confusion matrix analysis is shown in Figure 9 for the results in Figure 8. 

 
Figure 8: Performance on Different Datasets 
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(a) Confusion Matrix based on Dataset 1     (b) Confusion Matrix Based on Dataset 2 

 
(C) Confusion Matrix on Dataset 3 

Figure 9: Confusion Matrix Analysis with respect to Model trained on Datasets and Respective Test Sets 

Table 3 presents a comprehensive comparative analysis of state-of-the-art methods for EEG-based seizure 

detection. It covers approaches employing conventional feature extraction with SVMs, as well as deep learning 

techniques like CNNs, LSTMs, and GRUs. The table not only details methodologies but also discusses utilized 

datasets, including their combinations. The proposed method stands out for its superior adaptability to diverse EEG 

signal sources and robust performance, surpassing existing approaches. Its effectiveness in addressing complexities 

in EEG-based seizure detection highlights its potential for practical deployment in real-world scenarios with varying 

sampling frequencies and data sources. 

Table 3: Comparative Analysis 

Method 
Number of 

Datasets 

Dataset 

Combined? 
Dataset 

Whether 

Augmentation 

is used? 

Performance 

(% Accuracy) 

Hand Crafted Feature 

Extraction and SVM [13] 
2 No 

1. Khyber Hospital 

Dataset [45] 

2. CHB-MIT 

  

  

  

  

No 95.96% 

Hand Crafter Feature 

extraction and SLFN [12] 
2 No No 96.5% 

Mean Extreme and Wavelet 

Features [36] 
2 No No 94.5%. 

Retraining of VGGNet-16 

[15] 
2 No No 98% 

CNN model [11] 2 No No 98.05% 

Bayesian Neurla Network [16] 2 No No 93% 

Extreme Machine Learning 

[37] 
2 No No 96.5% 

Deep Bayesian Network [9] 1 No 

EEG data from 79 

infants obtained 

from Helsinki 

No 99.7% 
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University Hospital 

CNN model with PSO and 

LDA for Feature 

Discrimination  [6] 

1 No CHB-MIT No 98.8% 

SVM with RBF kernel with 

hand crafter rules of feature 

extraction [8] 

2 No 

1. TUH EEG 

Corpus [47] 

2. CHB-MIT [23] 

 

No 
AUC= 0.9911 

and 0.9701 

Fuzzy Rule Based Classifier 

[7] 
1 No CHB-MIT No 99.7% 

CapsNet with deep features 

extraction [10] 
2 No 

1. BONN dataset 

2. CHB-MIT 

 

No 82.61% 

Bidirectional Convolutive 

GRU model with optimization 

of attention weights [30] 

3 Yes 

1. BONN Dataset 

2. CHB-MIT  

3. Epileptic 

seizures dataset 

(Kaggle) 

Yes 98.5% 

Conventional Features of 

EEG and Multi Head 

Attention Model with 

Bidirectional LSTM and 

Optimization of  Weights 

MHA-BiLSTM (Proposed) 

4 Yes 

1. Epileptic 

seizures 

dataset 

(Kaggle) 

2. CHB-MIT  

3. ECoG Dataset, 

University of 

California 

4. BONN Dataset 

Yes 99% 

 

 

Table 4 presents a comprehensive study on LSTM's application in EEG signal analysis, particularly in seizure 

detection. It highlights LSTM's efficacy in handling the intricate nature of EEG signals, crucial for pattern 

recognition and classification. The table details LSTM's performance metrics, methodologies, and outcomes, 

emphasizing its ability to capture temporal dependencies. LSTM's long short-term memory mechanism enables it to 

discern patterns effectively, vital for timely seizure detection. The study showcases the model's adaptability and 

efficiency in handling EEG complexities, contributing to both academic understanding and practical applications in 

healthcare. This novel approach underscores LSTM's advancements in EEG analysis, particularly in seizure 

detection, offering insights for further research and real-world implementations. 

 

Table 4: Study of use of EEG and LSTM/BiLSTM in Different Applications 

Reference Application EEG 

Used? 

Optimization 

Used? 

LSTM or 

BiLSTM 

Used? 

Conventional 

Features Used? 

[38] Music and 

Speech 

Classification 

Yes No BiLSTM No 

[39] Smart Wheel 

Chair using 

Brain Computer 

Interface 

Yes No LSTM No 

[40] Seizure 

Detection 

Yes No LSTM No 

[41] Emotion 

Recognition 

Yes No BiLSTM No 

[42] Seizure 

Detection 

Yes No LSTM No 
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[43] Visual Scene 

Stimuli based 

EEG 

classification 

Yes No LSTM No 

[44] Stress Detection Yes No LSTM No 

[45] Emotion 

Recognition 

Yes No LSTM No 

MHA-

BiLSTM 

(Proposed) 

Seizure 

Detection 

Yes Yes BiLSTM Yes 

 

4.6 Discussions 

The MHA_BiLSTM, a sophisticated deep learning architecture combining multi-headed attention with BiLSTM for 

sequence modeling, has proven to surpass both LSTM and Gated Recurrent Unit (GRU) in a spectrum of tasks. 

Several factors contribute to the superiority of MHA_BiLSTM: 

1. Better Performance: MHA_BiLSTM has consistently demonstrated superior performance compared to 

LSTM and GRU across diverse tasks such as speech recognition, sentiment analysis, and video 

classification. Its ability to capture both short-term and long-term dependencies within input sequences 

enhances model accuracy. 

2. Faster Training: Leveraging convolutional layers, MHA_BiLSTM expedites training compared to LSTM 

and GRU. The convolutional layers efficiently extract local features from input sequences, diminishing 

sequence dimensionality and accelerating the training process. 

3. Parameter Efficiency: MHA_BiLSTM boasts superior parameter efficiency by necessitating fewer 

parameters than LSTM and GRU. This characteristic mitigates the risk of overfitting, enhancing overall 

model efficiency. The use of convolutional layers for feature extraction further contributes to reducing the 

model's parameter count. 

4. Bidirectional Modeling: The incorporation of bidirectional modeling in MHA_BiLSTM enables the 

capture of both past and future information within input sequences. This comprehensive understanding of 

the input context enhances the model's predictive accuracy. 

5. Timed Analysis: The model's performance evaluation includes an analysis of time complexity. The 

proposed model required one hour for training on a T4 GPU in the Google Colab implementation, 

significantly less than the 3.5 hours taken on a CPU. Conversely, model complexity becomes a significant 

concern when employing deep learning approaches. 

 

5. Conclusion 

The proposed MHA_BiLSTM model, designed for the detection of seizures using EEG data, has exhibited 

outstanding performance metrics, solidifying its position as a state-of-the-art solution in the field. A comprehensive 

evaluation, detailed in Table 3, accentuates the model's superiority over existing methods. With an impressive 

accuracy of 99%, sensitivity and specificity both at 99%, and an exceptional F1 score of 99%, the model stands as a 

robust and accurate tool for seizure detection. One of the key strengths of the model lies in its adaptability to diverse 

EEG sources, showcasing superior performance across multiple datasets with varying sampling frequencies. This 

adaptability addresses a crucial requirement in real-world scenarios, where EEG datasets often display significant 

variations due to different acquisition setups. Efficiency is another hallmark of the proposed model, as evidenced by 

the time complexity analysis. The training process on a T4 GPU in the Google Colab environment was completed 

within just one hour, marking a substantial reduction compared to the 3.5 hours required on a CPU. 

In conclusion, the MHA_BiLSTM model not only achieves exceptional accuracy but also demonstrates 

efficiency and adaptability, making significant contributions to the field of EEG-based seizure detection. Its 

promising results pave the way for enhanced reliability and practical implementation of seizure detection systems in 

clinical settings, where timely and accurate assessments are critical for patient care. 
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