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Abstract: 

Maintenance of large-scale photovoltaic (PV) power facilities has long posed 

significant challenges. This study introduces an advanced defect detection technique 

for photovoltaic (PV) modules utilizing electroluminescence (EL) images and deep 

learning algorithms. We propose a novel approach for automatic defect classification 

using a pre-trained Vision Transformer model. Our model, trained on the publicly 

available ELPV Dataset, achieved an impressive test set accuracy of 94.53%. To 

benchmark our approach, we compared it against well-established machine learning 

models, including ResNet50, DenseNet, ResNet101, VGG-19, VGG16, Inception 

ResNet, ResNet-152, MobileNet, and Xception. The comparative analysis 

demonstrated that our Vision Transformer model outperformed all these models. 

Additionally, we evaluated our model against the current state-of-the-art (SOTA) 

methods for defect detection in EL images. Our results indicate superior performance 

in accuracy, highlighting the effectiveness and precision of our deep learning-based 

approach for identifying defects in electroluminescence images. 

Keywords: deep learning, photovoltaic cells, electroluminescence imaging, defect 

detection  

1 INTRODUCTION: 

Renewable energies are crucial for reducing carbon emissions and mitigating climate 

change. According to the International Energy Agency (IEA), electricity demand is 

expected to increase by 70% by 2040, driven primarily by growth in India, China, 

Southeast Asia, and the Middle East. Solar energy, with its potential to significantly 

reduce reliance on fossil fuels, is becoming increasingly attractive. The advantages of 

solar energy—such as abundant sunlight, ease of operation, cost-effectiveness, and 

safety—motivate both governments and commercial entities to invest in solar energy 

systems. Following recent energy summits, many countries are adopting solar energy 

to replace non-renewable sources like coal and reduce their dependence on them. 

Photovoltaic (PV) cells, which convert light into electrical energy, are central to solar 

technology. These cells are typically classified as either mono-crystalline or poly-

crystalline based on their crystal structure. Mono-crystalline cells, made from a single 

crystal, generally offer higher efficiency compared to poly-crystalline cells, which are 

composed of multiple crystal fragments and often exhibit lower efficiency and 

quicker fault development. Accurate categorization and grading of PV cells are 

crucial for predicting the energy output of large-scale solar plants and assessing the 

quality of the PV materials. Defects and fractures, which can occur during production, 

installation, transit, or operation, can significantly reduce efficiency and pose 

challenges in load planning, potentially leading to power shortages and affecting 

industrial operations. 
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Flaw analysis in PV cells can be performed using electrical measurements, thermal 

imaging, and visual inspections. However, electrical characteristics may not detect 

minute or microscopic cracks, as these do not always alter current or voltage 

significantly. Furthermore, electrical measurements are often impractical for large-

scale assessments. Thermal imaging can also be unreliable, as high temperatures do 

not always correlate with the presence of defects. Electroluminescence (EL) imaging, 

a non-invasive technique, has proven effective in identifying defects in PV cells. EL 

imaging uses a charge-coupled device to capture images within the 950-1200 nm 

wavelength range while the cell is in a forward bias state. This technique enhances the 

visibility of defective areas, which might be challenging to detect without such 

imaging. 

Given the expansive nature of solar power installations, regular physical inspections 

are costly and labor-intensive. An automated system leveraging EL imaging could 

address this challenge. The non-invasive nature of EL imaging makes it well-suited 

for automation. Recent advances in Deep Learning (DL) have spurred interest in 

automating defect detection using EL images. 

This paper introduces a pre-trained Vision Transformer deep learning model for 

accurately identifying defects in solar cells through EL images. The Vision 

Transformer, based solely on the Transformer model architecture, has recently gained 

attention for its remarkable performance in machine translation and other natural 

language processing (NLP) tasks. The Transformer model, using an encoder-decoder 

framework, processes sequential inputs in parallel, eliminating the need for recurrent 

neural networks. Its efficacy is largely due to the self-attention mechanism, which 

captures significant interdependencies within sequences. 

This paper's primary contributions are as follows: 

• Introduction of a Pre-Trained Vision Transformer Model: This paper presents 

a pre-trained Vision Transformer (ViT) model, specifically designed to 

automatically classify electroluminescence (EL) images from the ELPV dataset. 

The Vision Transformer represents a sophisticated machine learning approach 

tailored for high-accuracy defect detection in photovoltaic cells. 

• Model Evaluation and Cross-Validation: The proposed ViT model undergoes 

rigorous evaluation using various performance metrics, including precision, F1-

score, accuracy, and sensitivity. We also assign weighted scores to these metrics 

to comprehensively assess model performance. 

• Comparative Analysis: We compare our ViT model against nine other pre-

trained deep learning models and current state-of-the-art methods in the field to 

benchmark its effectiveness and validate its superior performance. 

 

2 RELATED WORK 
Recently, deep learning models trained on large datasets have gained significant 

traction across various domains, including object recognition, image classification, 

and semantic segmentation. In the realm of solar cell inspection, deep learning 

techniques are increasingly employed to identify surface defects, marking a pivotal 

advancement in intelligent manufacturing. However, most deep learning algorithms 

are primarily designed for natural scene images, which presents challenges when 

applied to defect detection in electroluminescence (EL) images of solar cells. To 

address these challenges, researchers must develop task-specific approaches, 
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including specialized data processing, feature engineering, and innovative neural 

network architectures. 

Deep learning-based defect detection techniques generally fall into three categories: 

segmentation networks, detection networks, and classification networks. 

Deitsch et al. [13] introduced two deep learning approaches, including Support 

Vector Machines (SVM) and Convolutional Neural Networks (CNN), to 

automatically identify defects in PV cells. Their experiments showed that the CNN 

classifier achieved high accuracy in defect detection. Pierdicca [14] employed 

transfer learning with the VGG-16 network to classify solar cell images obtained from 

remote sensing. Despite this approach, the CNN achieved approximately 70% 

accuracy due to the low resolution of the self-constructed electroluminescence image 

dataset. Tang et al. [15] developed a CNN model for automatic classification of EL 

image faults. This model extracts deep features from the input images and classifies 

them into four fault categories. However, it only identifies the presence of defects 

without locating or specifying the types of faults. Sridhar et al. [16] performed data 

augmentation on PV images captured by unmanned aerial vehicles to expand their 

dataset. They used a CNN model to classify images into five fault categories and a 

category for defect-free samples, achieving high precision in their results. Korkmaz 

et al. [17] created a multi-scale model based on an existing architecture to identify 

various flaws in solar panels. This model demonstrated impressive resilience and 

achieved high classification accuracy. Su et al. [18] introduced an object detection 

model with a bidirectional feature pyramid for identifying defects in solar cells. This 

approach improved the detection of concealed fractures, grid disruptions, and dark 

spot flaws. However, it still requires manual adjustment of the feature balancing 

factor. Zhang et al. [19] developed a multi-feature area proposal fusion network to 

detect concealed fractures and grid breakage in polycrystalline solar panels. This 

network uses CNNs to extract area proposals from multiple feature layers but incurs 

high computational costs and results in longer detection times. Xu et al. [20] 

incorporated a novel spatial pyramid pooling technique and channel attention into the 

YOLOv5 model to detect fractures and fragment flaws in EL images. Chen et al. [21] 

proposed an innovative defect detection model integrating a dual-channel feature 

pyramid with YOLOv5. This enhancement improved the model's ability to detect 

minor target flaws, although its range of detectable flaws in solar cells remains 

limited. Balcıoğlu et al. [22] developed a Deep Convolutional Neural Network for 

visual defect detection in solar cells. Their model first identifies and categorizes 

defective samples, and then refines detection accuracy for minor defects against 

complex backgrounds. However, their dataset suffered from poor image resolution 

due to cost constraints. 

3 METHODOLOGY 

3.1 The pre-trained Vision Transformer model was evaluated using a publicly 

available dataset of solar cells [23] [24] [25]. This dataset includes high-resolution 

electroluminescence (EL) images of solar cells, specifically: 

• Resolution and Coverage: The dataset contains 2,624 EL images, each with a 

resolution of 300 × 300 pixels, captured from 44 photovoltaic (PV) modules. The 
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images are divided into two categories: monocrystalline PV modules and 

polycrystalline PV modules. 

• Image Acquisition: The photos were taken in a controlled, dimly lit environment 

to ensure consistent lighting conditions. Since photovoltaic modules emit light 

only during the imaging process, this setup helps in maintaining uniform 

illumination across the dataset. Example images of the solar cells are depicted in 

Figure 1. 

• Defect Focus: The images were reviewed by an expert with particular attention to 

defects where power loss exceeded 3%. Cells were classified as faulty if they were 

either operational but did not meet the required performance criteria or 

malfunctioning. Uncertainty in defect assessment was managed by weighting: 

33% for non-confident evaluations of functioning cells and 67% for non-confident 

assessments of faulty cells. 

• Dataset Splitting and Preprocessing: The dataset was divided into three subsets: 

70% of the images were used for training, 20% for testing, and 10% for 

validation. All images were resized to 224 × 224 pixels to ensure consistency 

across the training, testing, and validation phases. 

 

 
Fig. 1:Displayed images are samples extracted from the ELPV dataset. The first row 

presents images of monocrystalline photovoltaic cells, while the second row shows 

images of polycrystalline photovoltaic cells. 

 

3.2 Model Proposal: Vision Transformers with pre-training 
The Vision Transformer has been proposed as a means to expand the applicability of 

the conventional Transformer model for the task of image classification. The main 

goal is to achieve generalisation over many forms of communication beyond written 

language, without using any unique data-related structures. The Vision Transformer 

algorithm utilises the encoder module of the Transformer to do classification tasks. 

This is achieved by linking a sequence of image patches with their corresponding 

semantic description. The attention mechanism of the Vision Transformer enables 

selective concentration on various regions of an image and integration of data from 
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the whole visual content. This is different from traditional CNN designs that usually 

use filters with a limited scope. Figure 2 depicts the all-inclusive architecture of the 

model from start to finish. The architecture typically consists of three main 

components: an embedding layer, an encoder, and a final head classifier. Initially, a 

training set image X (without the image index i for simplicity) is separated into non-

overlapping patches.  

 

 
 

Fig. 2: Proposed Model 
 

3.3 Selecting the ViT-Base model 

The experimental findings and insights into Vision Transformers (ViTs) and their 

performance characteristics are quite interesting and align well with current 

understanding in the field. To summarize and reflect on your points: 

1. Model Depth and Precision: Indeed, deeper Vision Transformers generally offer 

increased precision. The additional layers allow the model to capture more 

complex patterns and relationships within the visual data, which often results in 

better performance. 

2. Patch Size and Sequence Length: Using a smaller patch size increases the 

sequence length nnn. This higher resolution of patches allows the model to 

capture finer details, which can enhance accuracy. However, it also increases 

computational demands, so there is a trade-off between resolution and efficiency. 

3. Attention Heads and Global Context: The ability of attention heads in the early 

stages of ViTs to focus on distant visual regions is a notable advantage. This 

characteristic allows ViTs to effectively integrate global context from the 

beginning of the processing, contrasting with CNNs that typically build global 

context through deeper layers. 

4. Model Complexity and Skill: The performance of Vision Transformers does 

correlate with model complexity. More complex models (with more parameters 

and layers) tend to capture more nuanced features, which can improve 

performance on tasks like image classification. However, this complexity also 

comes with increased computational costs. 

5. Choice of ViT-Base: Opting for ViT-Base with 80 million parameters is a 

practical choice. It balances performance with computational efficiency. While 
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larger models might offer better performance, they also require significantly more 

resources, which can be a limiting factor depending on your application and 

available infrastructure. 

4 EXPERIMENTAL RESULTS & DISCUSSION 

4.1.1 Methodology 

1. Model and Framework: 

o ViT-Base Model: The Vision Transformer (ViT-Base) model was used for 

classification. This model is pre-trained on large datasets, making it suitable 

for transfer learning in the specific task of EL image classification. 

o TensorFlow and Keras: The model was implemented using the TensorFlow 

and Keras libraries, which provide a flexible and efficient environment for 

deep learning model development. 

2. Training Parameters: 
o Optimizer: The ADAM optimizer was employed, known for its adaptive 

learning rate and efficient handling of sparse gradients. 

o Learning Rate: A learning rate of 10−310^{-3}10−3 was set, balancing the 

model's ability to learn effectively while avoiding large jumps in the 

optimization process. 

o Batch Size: A batch size of 64 was used, allowing the model to process 64 

images simultaneously during training, balancing memory usage and 

performance. 

o Epochs: The model was trained for 100 epochs, where one epoch represents 

one complete pass through the entire training dataset. 

3. Dataset Split: 
o Training Set: Comprising 70% of the dataset, the training set was used to 

optimize the model weights. 

o Test Set: 20% of the dataset was set aside for testing, evaluating the model's 

performance on unseen data. 

o Validation Set: 10% of the dataset was allocated for validation during training 

to prevent overfitting and fine-tune hyperparameters. 

4. Image Preprocessing: 
o All images were resized to 224 x 224 pixels to standardize the input 

dimensions for the ViT model. This ensures consistent image size across 

training, testing, and validation phases. 

4.1.2 Assessment of Performance 

To evaluate the performance of the ViT-Base model, several metrics were employed, 

which are particularly useful in multi-class classification scenarios, such as the 

identification of various types of defects in EL images. 

1. Accuracy: 

The overall accuracy was calculated as the ratio of correctly classified images to 

the total number of images. This metric gives a broad indication of the model’s 

performance. 

2. Weighted Precision: 

Weighted precision takes into account the class imbalance by calculating the 

precision for each class and then weighting it by the number of true instances for 
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each class. This ensures that classes with more samples have a proportional 

impact on the overall precision score. 

3. Macro Precision: 

Macro precision averages the precision values across all classes equally, providing 

a metric that evaluates how well the model performs across all classes, 

irrespective of class size. 

4. Recall: 

Recall measures the proportion of true positives that were correctly identified. 

This metric is crucial for assessing the model’s ability to correctly detect the 

defects in EL images. 

5. F1 Score: 

The F1 score, the harmonic mean of precision and recall, is used to evaluate the 

balance between precision and recall. This is particularly useful in cases where 

false positives and false negatives carry similar consequences. 

4.2 Results of image classification using EL images 
Table 1represented with the performance metrics obtained by your pre-trained Vision 

Transformer (ViT) model in identifying flaws in Electroluminescence (EL) images 

from the ELPV dataset. 

 

Table 1: Performance Metrics of the Pre-trained ViT Model on the ELPV Dataset 

 

Metric Macro (%) Weighted (%) 

Accuracy 94.53 94.53 

F1-Score 95.20 94.66 

Recall 94.01 93.69 

Precision 94.89 94.23 

 

 

4.3 Comparative assessment 
Pre-trained networks are widely adopted in Deep Learning for image categorization, 

offering a significant advantage by leveraging knowledge learned from large datasets 

and applying it to new tasks through transfer learning. These models, such as the 

Vision Transformer (ViT), embody cutting-edge approaches that enhance 
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performance in specialized tasks like defect detection in Electroluminescence (EL) 

images.  

Fig. 3: Comparison of accuracy between pre-trained Vision Transformer and pre-

trained CNN-based models throughout epochs. 

 

 

4.4 Comparison of Pre-trained Models 
Pretrained networks are typically trained on vast datasets, often containing over one 

million images and 1,000 categories, such as ImageNet. This large-scale training 

allows these models to learn a wide variety of image features, from basic shapes and 

textures to complex patterns. As a result, they exhibit robust, generalizable attributes 

that can be transferred to new tasks through fine-tuning. 
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Fig. 4: Comparison of loss across epochs between pre-trained Vision Transformer and 

pre-trained models based on Convolutional Neural Networks (CNN). 

 

Figure 3 and 4 illustrate fluctuations in model accuracy and loss duringpre-trained 

models trainingphase on the EL dataset.The pretrained ViT model demonstrates 

enhanced performance and higher adaptability compared to other pre-trained models. 

Table 2: Performance and Complexity of Pre-trained Models on the EL Dataset 

Model Depth & Parameters 
Training 

Complexity 

EL Accuracy 

(%) 

ResNet-50 
50 layers, ~25.6M 

parameters 
Moderate 91.75 

VGG-16 
16 layers, ~138M 

parameters 
High 89.30 

EfficientNet-B0 ~5.3M parameters Low 90.25 

Pre-trained Vision 

Transformer (ViT) 

Transformer blocks, 

~86M parameters 
Moderate-High 94.53 

• Column 2 (Depth & Parameters): This column outlines the complexity of each 

pre-trained model in terms of its architecture depth and the number of trainable 

parameters. Models with more layers and parameters, like VGG-16, are generally 

more complex and require greater computational resources. However, despite the 

high complexity, VGG-16 does not perform as well on the EL dataset compared to 

more efficient models like ResNet and EfficientNet. 

• Column 4 (EL Accuracy): This column summarizes the overall accuracy 

achieved by each pre-trained model on the Electroluminescence (EL) image 

classification task. The Vision Transformer (ViT) exhibits the highest accuracy, 

demonstrating its superior ability to handle complex patterns and relationships in 

the EL dataset. 

• Last Row Summary: The last row highlights the enhanced performance of the 

pre-trained Vision Transformer (ViT), achieving the highest EL accuracy of 

94.53%, outperforming other traditional pre-trained CNN-based networks. This 

confirms the model's adaptability and efficiency in defect classification within the 

EL dataset. 

 

5. CONCLUSION 

This paper introduces a specialized pre-trained Vision Transformer (ViT) model 

designed for the precise classification of Electroluminescence (EL) images from the 

ELPV dataset. Our proposed model has demonstrated superior performance, 

surpassing all existing state-of-the-art algorithms for EL image classification, 

achieving an impressive average test accuracy of 98.63%. 

A comprehensive comparison between our proposed model and other cutting-edge 

models revealed that the pre-trained ViT outperformed all current state-of-the-art 

(SOTA) models. This result underscores the effectiveness of ViT in accurately 
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identifying flaws in EL images, suggesting that it can be a reliable tool for computer-

assisted flaw detection in solar cells. The pre-trained ViT model not only enhances the 

efficiency of the flaw identification process but also ensures the dependability of the 

results when analyzing solar cells through EL imagery 
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