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In smart manufacturing and mechanical automation, precise tool positioning is critical, particularly in the 

manufacturing of micro parts where accuracy at the millimeter level is essential. Thus, an attempt has been put ahead 

to put into place a low-cost and precise tool positioning system that can work directly with tool images that have been 

taken by a high-resolution camera. The goal is to calculate the positional inaccuracies of a moving lathe tool so that an 

auto-alignment system can get feedback. It also aims at estimating the lathe tool's dimensions, which can help with 

long-term wear and tear monitoring. Experimental analysis revealed that, when estimating the distances traveled by 

the tool from its origin using the Euclidean distance, the Sobel operator with a non-local means filter for denoising 

results in minimum and maximum absolute error values as 0.0011 and 0.1815, respectively. Before edge detection 

methods may be used, image denoising is necessary to improve their effectiveness. Because of this, the non-local 

means filter is particularly good at eliminating noise while keeping fine structure and features, ensuring that minute 

details and edges are preserved with the least amount of loss. But as noise levels rise, the non-local means filter's 

effectiveness declines, resulting in blurry images and a loss of clarity in the denoised output. For improved 

achievement, the Sobel operator with the (Daubechies) db1 wavelet at level 1 based on the findings of Stein's 

unbiased risk estimate (SURE) is combined. One pixel value as 0.0849 mm was achieved using level dependent 

SURE soft algorithm in earlier paper. Also, by applying the suggested technique for calculating the dimensionality of 

the lathe tool, the length of the lathe tool that is attached to the motor is 12.3105 mm, not attached to the motor is 

12.2259 mm. The left side length of the lathe tool is 4.5846 mm in length, while the right side measures 4.500498 

mm.      
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1. INTRODUCTION 
 

Tool placement that is exact and accurate apart from dimensional measurements of cutting, milling, and 

lathe tools are suitable in a variety of fields, principally mechanical engineering, manufacturing, and health. 

Such utilization require the level of accuracy as low as the millimeter range. It is necessary to use micro-level 

sensors in the present-day technology to be able to accurately figure-out the dimensions and position of 

devices.  

Using a wide range of instrument placement techniques, inclusive of coordinate measuring machines, 

laser interferometers, offset measurement techniques, and atomic force microscopes, has extended in the 

course of several years in the past. The result of this process are impacted by both static and dynamic tool 

location. Consequently, the most important factor in regulating contouring at fast traversal rates is dynamic 

data. The CNC machine makes use of error measurements in such cases, therefore setting up a position 

feedback system is needed. The adjustability of these measurements can improve a Machine’s perceived 

reversal peaks, kv factor, and other attributes can be improved by adjustments of error measurements. Linear 

axes and rotary axes fixed positioning influences both the geometric accuracy and the thermal behavior of a 

machine. In this context, a framework utilizing image processing has b`een devised for a real-time 

positioning and dimensioning system, aimed at verifying precise tool positioning within the millimeter range. 

Using an image of the tool for positioning and measuring its size, brings many advantages, especially for 

increasing the accuracy in cutting. It was observed that both the state of the tool’s wear and its orientation can 

ultimately shift the accuracy of the machinery.  

It is desirable to place an imaging tool within millimeters of its desired position and project its wear 

through optimization techniques. In most of the mechanical engineering applications, such as cutting tool 

precision and accuracy are crucial.  

The very accurate instrument represents a major step forward in the direction of more accurate micro-

machine placement and measurement. Therefore, edge detection techniques are utilized initially to figure out 

the object edges across each image. The research focuses on overcoming specified restrictions and problems 

associated with traditional tool positioning methods like a coordinate measuring machine, an offset 

measurement technique, an atomic force microscope, or laser interferometers. The accuracy of the methods is 

limited by sensor drifts and noise. It also did not produce data accurate enough to use for real distance 
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measurements, since its contact area error is large. 

Limitation of sensor drifts and noise are overcome by a non-contact technique based on image 

processing. The proposed technique seems to be appropriate as positioning assistance throughout the 

different applications where precise location of the tool is important for the successful results. 

2. LITERATURE REVIEW 

         The problem of tool positioning and verification established on the machine vision system is treated to 

be significant research area because of its widespread use in many industrial, aerospace, medical, and 

mechanical processes [1]. Earlier, there were instruments such as scanning electron microscopes, coordinate 

measuring machines, linear encoders, actuators, laser interferometers, atomic force microscopes, and other 

similar tools to measure and ensure the correctness of the tool positions [2]. An edge is beneficial for precise 

positioning as thresholding distinguishes and isolates a plane, an object, or a feature from other elements [3]. 

Because of the cutting tool's wear during machining, temperatures and tensions within the cutting zone vary 

constantly in robotic surgery, automated manufacturing applications, etc. [4]. As an example within the 

medical field, a robot was engineered explicitly for conducting eye surgery, demanding exceptionally high 

precision [5]. In any of these applications, tools must be replaced at specific intervals. If tools are replaced 

too frequently and prematurely, machine downtime will rise, leading to increased material and output costs. 

However, prolonging the replacement time might lead to the acquisition of low-quality or, in the worst case, 

the machines are completely broken down [6]. Micro-cutting technology has many benefits and they include 

low processing cost, flexibility, high surface finish combined with high speed and accuracy, and the ability to 

machine very small intricate parts. Due to the small size of tools and components in micro-machining 

processes, coupled with the requirement for exceptional machining accuracy, tool wear significantly affects 

processing quality [7]. Hence, several methods have been devised to determine the position and dimensions 

of tools with accuracies up to the millimeter level. 

    These techniques can be broadly divided into two categories: direct approaches and indirect ways. 

Furthermore, there are numerous of additional applications in which accurate tool dimensions and placement 

are crucial. The conditions of tool wear are frequently assessed indirectly through factors such as main shaft 

current, acoustic emission, properties of machined surfaces, and surface quality. To directly assess the degree 

of tool wear, direct tests often utilize machine vision or an optical microscope [8]. Image segmentation is a 

crucial step in computer vision, image processing, and image recognition. The extraction of the desired area 

relies on a set of criteria that divide an input image into several related images belonging to the same 

category [9]. The level of accuracy required in all the mentioned applications is at the micron scale. The 

contact method for measuring the travel distance of a piezoelectric motor's tool has several inherent 

limitations. The accuracy or error level of sensors is not assured, and the presence of flaws accelerates the 

rendering of data unusable due to drifts and noise. This study aims to achieve precise tool positioning at the 

millimeter level, with image processing selected as the method to attain this goal owing to its capability to 

improve accuracy.  

    Many researchers have delved into this research area, employing machine vision-based 

techniques to quantify tool wear. Lai and Fang introduced a hybrid image alignment method named the Fast 

Localization System utilizing the FLASH (Advanced Search Hierarchy) approach. This technique compares 

images to detect inconsistencies in pattern localization [10]. Niola et al. used a vision system for planning the 

path of the robots used in industry [11]. Nian and Tarng devised a method for a three-axis auto-alignment 

system utilizing vision-based inspection, which integrates the input-output system with feedback [12]. 

Asadpour and Golnabi explore applications and system designs for industrial machine vision [13]. Some 

authors have utilized methods such as the Horn-Schunck algorithm for real-time human motion detection and 

CMM embedded systems for movement detection [14][15][16]. Kurada et al. devised a machine vision 

technique to measure wear on the flanks. They utilized picture thresholding to highlight wear areas [17][18]. In 

numerous mechanical engineering applications, cutting tool position is a crucial factor for ensuring accuracy 

and precision. With the ongoing trend toward miniaturization in mechanical and optical products, there is a 

growing demand for exceedingly precise dimensional measurements of micro parts. Developing micro-

machines necessitates precise positioning and measurement of ultra-precise equipment [19][20][21][22]. 

Here, in the study, image processing and segmentation approaches employing various thresholding 

techniques as tools for visual positioning are employed. This allows for achieving the utmost precision in tool 

positioning at the millimeter level. To properly place the cutting tool at the appropriate position, it is essential 

to accurately recognize sharp edges in images [23][24]. These methods can facilitate accurate positioning in 

robotic surgery, milling machines, lathe machines, and other machinery requiring precise positional accuracy 

[25][26][27]. Accurate measurement of micro part dimensions is critical, especially with the technological 

advancements enabling the miniaturization of medical products [28][29][30][31]. In milling operations, for 
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example, the tool used to produce everyday items may experience wear over time [32][33][34]. Changes in 

tool dimensions diminish tool efficiency. Hence, the tool should be promptly replaced once its condition has 

been evaluated. Indirect tool condition monitoring using sensors such as microphones and accelerometers can 

incur high costs. Direct tool condition monitoring can be conducted using MATLAB software's image 

processing package [35][36]. Images captured by cameras undergo processing on a computer using an image 

processing algorithm. Even today, many computer vision systems commonly utilize Canny edge detection as 

a pre-processing phase. This technique is straightforward yet effective [37][38]. 

   Numerous denoising approaches and techniques, such as those introduced by Buades et al. [39], 

have been proposed. Recently, they introduced a non-local means (NL means) filter, which systematically 

leverages all potential self-predictions within the image and the similarity of local patches to calculate pixel 

weights. When the patch size decreases to a single pixel, the NL means filter effectively transforms into the 

Bilateral Filter (BF). The former excels at preserving edges and fine structures without sacrificing too many 

details, whereas the latter tends to lose details and introduce irregularities along edges. Additionally, 

Kervrann and Boulanger [40] expanded upon the previous work by introducing adaptive control over the 

neighborhood of each pixel.  All of these denoising methods demonstrate effectiveness in scenarios with 

lower noise levels (high SNR) but struggle to perform adequately when confronted with higher levels of 

noise (low SNR). Because both the target pixel and the similar local patches used to calculate pixel weights 

contain noise, the NL means filter's estimation becomes biased [41]. Addressing the issue of noisy target 

pixels, proposes adapting the central kernel weight (AKW) placed on the level of noise. Nevertheless, this 

method does not take into consideration the existence of comparable loud local patches. Consequently, 

particularly in cases of higher noise levels, the biased estimate exacerbates image degradation by 

significantly reducing image details. Therefore, over the past two decades, there has been a surge in research 

focusing on utilizing the wavelet transform for denoising due to its multi-resolution and energy compaction 

characteristics [42][43].  

   As indicated by the literature survey, contact methods for measuring the distance traveled by a 

precision DC motor-attached tool may exhibit limitations in accuracy and precision owing to sensor drifts 

and noise. In applications prioritizing precision and accuracy, non-contact methods for distance measurement 

can offer greater reliability and effectiveness.        

 Machine vision and image processing using MATLAB can be utilized to create a non-contact 

method for measuring the distance traveled by a precision DC motor-attached tool. The approach entails 

comparing the traveled distance to a predetermined target distance, facilitating error identification and 

enabling automatic alignment of the tool. Such non-contact techniques are important in the biomedical field, 

where small movements can have big effects. 

    This technology can be integrated into robotic surgical equipment and used as a positioning 

device, among other uses in the biomedical area [44]. Precisely and reliably measuring distances without 

contact can greatly enhance the precision and effectiveness of surgical tools, ultimately improving patient 

outcomes. Certainly, the applications of non-contact distance measurement using machine vision and image 

processing extend beyond the biomedical field. In smart manufacturing and mechanical automation, where 

precision and accuracy are paramount, non-contact methods of distance measurement can be exceptionally 

effective.  

3. PROPOSED METHOD AND ALGORITHM 

      Figure 1 shows the the camera captured image [45]. Which is then acquired to a computing unit 

through a controller card. The tool position (2D) before and after movement in x direction is being processed. 
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Figure 1. Pixel positions at Lathe tool Figure 2. Flow Chart of Edge Detection, Dimensions 

Calculation, Travelled distance calculation 

 

   The complete process flow is presented in Figure 2. Pre-processing of the image involves 

converting images to grayscale images, and denoising the image using Daubechies (db1) wavelet at level 1 

[46] for removing Gaussian noise. wavelet based denoising result is best for Daubechies (db1) wavelet at 

level 1 among other wavelets due to their capability of analysing the images at various levels keeping the 

sharp edge details while still trying to clean the image. Wavelet orthogonal basis is designed using the 

conjugate mirror filter H(ω) as shown in (1) and (2). 

               |𝐻∅(𝜔)2 + 𝐻𝜙(𝜔 + 𝜋)|
2

= 2                                                                                                           (1) 

                

                𝐻∅(0) = √2                                                                                                                                        (2) 

 

Wavelets are oscillations that have some amplitude value. They start at zero then increase, and again 

decrease back to 0. This looks like the brief oscillations that occur on a seismograph as shown in Figure 3. 

  
Figure 3. Representation of Daubechies Orthogonal Wavelet Family 

 

   Segmentation is performed on a Gray-scale tool image by applying a threshold value of 150 which 

converts it into a binary tool image. The threshold value of 150 was chosen because, upon testing with 

various values, this value yielded the most visually effective segmentation results. Once the tool image is 

segmented, the Sobel operator mask is employed to locate the coordinates for the tool edges. To ensure 

precise tool positioning, edge coordinates are detected along with vertices post-application of the Sobel 

Operator. Sobel operation over tool image matrix A defined by the matrices Gx and Gy is as given in (3). 

          

Journal of Engineering and Technology Management 77 (2025)

PAGE NO: 4



WEAR AND TEAR MEASUREMENT OF LATHE TOOL USING WAVELETS  

 

 

5 

   Gx = [-1 0 1; -2 0 2; -1 0 1] * A; and 
   Gy = [1 2 1; 0 0 0; -1-2-1] * A;                                                                                                             (3) 

 

   Where, A is the source image, Gx and Gy are the images obtained following the use of the Sobel 

operator. Subsequently, travelled distance are computed utilizing the Euclidean distance as specified in (4). 

 

   [sqrt((x2-x1)2+(y2-y1)2)]                                                                                                                             (4) 

 

   Where, in the provided equation, x2 represents the pixel coordinates of the second image along the 

horizontal line, x1 represents the pixel coordinates of the first image along the horizontal line, y2 represents 

the pixel coordinates of the second image along the vertical line, and y1 represents the pixel coordinates of 

the first image along the vertical line. 

   Similarly, dimensions are computed using the Euclidean distance formula directly from the pixel 

coordinates of each corner of the lathe tool. 

 
Table 1. Error in travelled distance 

(Denoising using wavelet) 
Tool 

Displacement 

(mm) 

Sobel BR 

(movement x-axis) 

(mm) 

Absolute 

Error 

(mm) 

Relative 

Error 

1 0.9999 -0.0001 -0.0001 

2 1.9998 -0.0002 -0.0001 

3 2.9997 -0.0003 -0.0001 

4 3.9996 -0.0004 -0.0001 

5 5.0904 0.0904 0.0181 

6  6.0903 0.0903 0.0151 

7 7.0902 0.0902 0.0129 

8 8.1810 0.1810 0.0226 

9 9.1809 0.1809 0.0201 
 

Table 2. Error in travelled distance 

(Denoising using Non Means Filter) 
Tool 

Displacement 

(mm) 

Sobel BR 

(movement x-axis) 

(mm) 

Absolute 

Error 

(mm) 

Relative 

Error 

1 1.0040 0.0040 0.0040 

2 2.0019 0.0019 0.0009 

3 3.0011 0.0011 0.0003 

4 4.0915 0.0915 0.0228 

5 5.0912 0.0912 0.0182 

6 6.0910 0.0910 0.0151 

7 7.0908 0.0908 0.0129 

8 8.1815 0.1815 0.0226 

9 9.1813 0.1813 0.0201 
 

4. EXPERIMENTAL SETUP AND RESULTS 

      To conduct experiments and test the proposed algorithms, the experimental setup included 

imaging capabilities like PC, Piezoelectric motor, Motion card,  CCD camera, Vibration isolation table, 

MATLAB software, IEEE 1394b FireWire Controller Card. The experimental setup also included a moving 

Lathe tool and a stationary work piece. It facilitates image capture of the lathe tool at various positions, with 

increments of 1 mm. The Lathe tool is displaced in the X direction. The methodology encompasses 

calibrating the imaging system of the setup using a standard calibration grid, determining a pixel value of 

0.0849 mm [47]. It has been found that level dependent SURE soft algorithm results into best SNR and least 

value of MSE. Based on this observation, one pixel value in real world was determined. In all the positions, 

vertex c coordinates of the Lathe tool are obtained as shown in Figure 1. Edge methods for detection are 

being used to get these coordinates. Euclidian distance traveled from the starting point of the tool are 

calculted. Analysis was done for the movement of 1 to 9 mm. Here, in Table 1, an inaccuracy of millimeters 

when calculating small distances traveled by the tool is a compelling error. The absolute error is sufficient 

since it provides information about the error's significance. As stated in (5), absolute error is the discrepancy 

between tool movement based on images and actual tool movement. 

 

      Δx=x0-x                                                                                                                                                          (5) 

                                                                              

Where, x0 represents the image-based tool movement, and x represents the actual tool movement, 

and Δx is referred to as an absolute error. The range is -0.004 to 0.1810. 

 The relative error indicates the extent of the error in relation to the correct value, whereas the 

absolute error indicates how far us the error overall. (6) defines the relative error as the proportion of the 

measurement's absolute inaccuracy to the tool's actual movement. 

 

   RelativeError=(x0-x)/x=Δx/x                                                                                                                  (6)                                                          
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   In this instance, the image-based movement is represented by x0, the actual movement by x, and 

the absolute inaccuracy by Δx. MAE is the average absolute error between actual and image-based values as 

mentioned in (7).   

       

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑥|𝑛

𝑖=1                                                                                                            (7)                                                                                         

  

Where, |𝑥𝑖 − 𝑥| is absolute errors and, the number of errors is n. The closer MAE is to 0, the more 

accurate the algorithmic model is. Here, algorithmic model accuracy is 0.0702. 

(8) illustrates how to utilize variance to get the expected difference in deviations from the actual 

value. 

 

Var(X)=[(x1-x̄)2+(x2-x̄)2+(x3-x̄)2+…….+(xn-x̄)2]/n                                                                      (8)                                                   

 

Where, values are x1, x2, x3, x4,... n. The average value is x̄. The variance of 7.0138 is observed here 

and the deviation observed is 2.648358 and is a measure of how spread out the image-based values is.  

Similarly, in Table II, where an error in the traveled distance is calculated by using a non-means 

filter during the denoising process, the absolute error in the measured distance lies in the range of 0.0011 and 

0.1815.  

In the proposed method appears to perform slightly better, especially at smaller displacements (1-4 

mm), their improvements are marginal at larger displacements due to non-uniform illumination of light from 

below.  

 

 
 

Figure 4. Graph showing the error in case of horizontal movement (Denoising using Wavelet) 
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Figure 5. Graph showing the error in case of horizontal movement (Denoising using Non Means Filter) 

 

Figure 4 and Figure 5 show the graphs for absolute error in millimeters range for the tool moved at a 

distance of 1mm. The tool is moved in X directions. The positions of the tool are estimated by estimation of 

the position of the bottom right (BR) vertex of the tool at a time respectively.       

Observation reveals very small error value when denoising is performed using Sobel operator along 

with wavelet which is almost close nearly zero in comparison to the denoising performed using non-means 

filter, which is additionally around 0.090 millimeters.  

Figure 6 shows the output images at different stages of edge detection. It shows the noisy, denoised, 

filtered, edge detected and colored edge detected image for before and after movement of 9 mm when db1 

wavelet denoising along with the Sobel operator is applied. 

When millimeter accuracy is required, the Sobel operator performs better and provides more 

accurate results when pre-processed with Daubechies wavelets for denoising. 

Figure 1 displays the pixel positions at each corner of the lathe tool. Consequently, the pixel 

coordinates of the vertex of the lathe tool are calculated as displayed in Table 3.  

Table 3. Pixel Coordinates of LatheTool                                             

Vertex of Lathe tool Pixel Coordinate (x, y) 

a (1, 885) 

b (1, 1030) 

c (54, 1029) 

d (55, 885) 

 

The lathe tool is positioned horizontally, with the edges attached to the motor having corners labeled 

as a and b, and the edges away from the motor having corners labeled as c and d. Each corner (a, b, c, and d) 

has specific coordinates (x, y). The lathe tool moves either in the x direction or the y direction. The 

dimensions of the lathe tool in its original position are being calculated as demonstrated in Table 4. For all 

calculation purposes one pixel value is held as 0.0849 mm, which was achieved earlier after camera 

calibration. Using Equation (4), the length of the section ab attached to the motor between coordinates 

(1,885) and (1, 1030) comes out to be 145 pixels and is converted to real-world as 12.3105 mm based on one 

pixel value as 0.0849. The length of the section cd between coordinates (54, 1029) and (55, 885) which is 

away from the motor is 4.500498mm. The left side length bc measures 4.500498 mm between (1, 1030) and 

(54, 1029), and the right side length da is 4.5846mm between coordinates (55,885) and (1,885). These 

calculated lengths are crucial for detecting wear and tear of the lathe tool over longer period of time. 

Table 4. Pixel Coordinates of LatheTool                                             

Vertex of 

Lathe tool 

Euclidean Distance 

(pixels)  

between Vertex of 
Lathe Tool 

Euclidean 

Distance (mm)  

between Vertex 
of Lathe Tool  

Length ab 145.0000 12.3105 
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Length bc 054.0000 04.5846 

Length cd 144.0035 12.2259 

Length da 053.0094 04.5004 

 

In Table 4, hence, it is noticed that the length of ab of the lathe tool is greater in length than length 

of cd. Additionally, length of bc is greater in length than length of da of the lathe tool. Therefore, the lathe 

tool has a trapezoidal shape. 

 

 
 

 Figure 6. Edge detection for X-axis movement of Lathe tool considering (Bottom Right) BR coordinates 

(Sobel operator) 

5. CONCLUSION 

      Provide A merger of db1 wavelet established on the SURE denoising method with the Sobel 

operator gives an improvement in minimum and maximum absolute error values as -0.0004 and 0.1810 

respectively. Hence, the Sobel operator succeeds better and generates more accurate results when 

preprocessed using Daubechies wavelets when a preciseness of mm needed for denoising. Compared to other 

operators, the Sobel operator computes quickly, which facilitates the finding of clean edges. Furthermore, 

because the coefficient's magnitude does not exist, a higher weight can be imposed to the mask, results in 

sharper edges and superior edge visibility. 

   The SURE denoising technique efficiently eliminates enough Gaussian noise to reconstruct the 

details of an image when the Daubechies wavelet at level 1 is employed. 

   In the industrial, healthcare, and other fields, automation has contributed to a growing demand for 

highly precise technology. As a result of the present study, more precise robotic devices that can recognize 

and alert users to differences in the positioning and dimensions of lathe tools will be designed. These 

technologies would be image-based, low-cost, and contactless.  
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