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ABSTRACT 

Semi -circle theorems that prescribe upper limits for the complex growth rate of oscillatory 

motions of neutral or growing amplitude are derived in modified double-diffusive convection in 

viscoelastic fluid of the Veronis’ and Stern’s type configurations. The limits so obtained 

naturally culminate in sufficient conditions precluding the non-existence of such motions. The 

results obtained herein significantly improve upon the earlier results derived in this direction.  
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                                                           1. INTRODUCTION 

  The thermohaline convection problem has been extensively studied in the recent past on 

account of its interesting complexities as a double diffusive phenomenon. The study is important 

because of its direct relevance in many problems of practical interest in the field of 

oceanography, astrophysics, geophysics, limnology, biomechanics and chemical engineering etc. 

For a broad and a recent view of the subject one may be referred to [1]. [2] formulated a novel 

way of combining the governing equations and boundary conditions for each of the   [3] and [4] 

thermohaline configuration and derived a semi- circle theorem prescribing upper limits for 

complex growth rate of an arbitrary oscillatory perturbation neutral or unstable.  
        The effects of flow parameters on the velocity field, temperature field and concentration 

distribution have been studied by [5] and results are presented graphically and discussed 

quantitatively on the problem of viscous dissipation effects on unsteady free convection and 

mass transfer flow past an accelerated vertical porous plate with suction. [6] have investigated 

the problem on hydromagnetic natural convection flow of an incompressible viscoelastic fluid 

between two infinite vertical moving and oscillating parallel plate The instability problem of 

magnetorotatory thermosolutal convection of the Veronis and Stern type has been examined by 

[7] taking in to account the Dufour effect and semi-circle theorems are derived, that prescribe 

upper limits for complex growth rate of oscillatory motions of  neutral or growing amplitude. [8] 

has studied the effect of rotation on thermosolutal convection in a compressible couple-stress 
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fluid through porous medium and concluded that the stable salute gradient and rotation introduce 

oscillatory modes in the system, which were non-existent in their absence. 

                      [9] in their investigation pointed out that the Rayleigh’s utilization of the 

Boussinesq approximation overlooks a term in the equation of heat conduction. This term finds 

its place on account of the variations in specific heat at constant volume due to variations in 

temperature. As a consequence of which, in the usual circumstances it cannot be ignored if the 

Boussinesq approximation were to be consistently and relatively more accurately applied 

throughout the analysis. The essential argument on which this term finds a place in the modified 

theory is this that it is the temperature differences which are of moderate amounts but not 

necessarily the temperature itself. The incorporation of this term into the calculations adequately 

completes the qualitative and quantitative gaps in Rayliegh theory. 

         Theorem  12 and 13 in [9] yields in case of Veronis and Stern’s thermohaline 

configurations upper limits for the growth rate of an arbitrary oscillatory perturbation neutral or 

unstable for the case 0ˆ 2  ,which provides  natural extension of the earlier results of Banerjee 

et al[2] These results are obviously not derivable by the methods adopted by Benerjee et al when 

0ˆ 2  on account of non-trivial coupling between  wand ,  in the equation of heat 

conduction. However, appropriate transformations can overcome this difficulty and can help in 

deriving the desired results. [10] extended the results of [9] contained in Theorem 12 and 13 for 

the modified thermohaline convection to the case when 0ˆ 2  , through the construction of an 

appropriate transformation on the solution space of the problem and the derivation of suitable 

integral estimates. 

  In all the above studies, the fluid has been considered to be Newtonian. However, with the 

growing importance of non-Newtonian fluids in modern technology and industries, the 

investigations on such fluids are desirable. The Rivlin-Ericksen [11] fluid is such fluid. Many 

research workers have paid their attention towards the study of Rivlin-Ericksen fluid. Johri [12] 

has discussed the viscoelastic Rivlin-Ericksen incompressible fluid under time dependent 

pressure gradient. Sisodia and Gupta [13] and Srivastava and Singh [14] have studied the 

unsteady flow of a dusty elastico-viscous Rivlin-Ericksen fluid through channel of different 

cross-sections in the presence of the time dependent pressure gradient. Sharma and Kumar [15] 

have studied the thermal instability of a layer of Rivlin-Ericksen elastico-viscous fluid acted on 

by a uniform rotation and found that rotation has a stabilizing effect and introduces oscillatory 
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modes in the system. Sharma and Kumar [16] have studied the thermal instability in Rivlin-

Ericksen elastico-viscous fluid in hydromagnetics. 

  Motivated by these considerations, the present paper investigates the problem of modified 

thermosolutal convection of the Veronis’ and Stern’s type configurations.  Semi -circle theorems 

that prescribe upper limits for the complex growth rate of oscillatory motions of neutral or 

growing amplitude are derived. The limits so obtained naturally culminate in sufficient 

conditions precluding the non-existence of such motions. The results derived herein significantly 

improve upon the results of [9] and those of [10] obtained for finding the upper limits and non 

existence of oscillatory motions respectively.               

 

2. MATHEMATICAL FORMULATION AND ANALYSIS 

           Following [9], the relevant governing equations and the boundary conditions of the 

modified thermosolutal convection instability in their non-dimensional form are given by: 

              


222222 )1( aRaRwF
p

aDaD ST 





    ,                                              (1) 

          wRTwTpRTTpaD 3202032020
22 ˆ1ˆ1     ,                                 (2)  





wp

aD 





  22   ,                                                                                              (3) 

together with the boundary conditions  

Dww  0      at z =0 and z =1            (both boundaries rigid)                        (4) 

or                                          

 wDw 20        at z =0 and z =1         (both boundaries dynamically free)     (5) 

or         Dww  0      at z =0                                                                

           wDw 20        at z =1 .                                                                                     (6) 

            ( lower boundary rigid and upper boundary dynamically free) 

The meanings of symbols from physical point of view are as follows; 
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z is the vertical  coordinate, d/dz is differentiation along the vertical direction, a2 is square 

of horizontal  wave number, σ 



  is the thermal Prandtl number, 

0  is the Lewis number, 

2
0

d
F


 is the viscoelastic parameter,


 4

1dg
RT   is the thermal Rayleigh number, 


 4

2dg
RS  is the concentration Rayleigh number, , w is the vertical velocity,   is the 

temperature,   is the concentration, p is the complex growth rate, 2  is the coefficient of specific 

heat due to variation in temperature and 2̂ is analogous coefficient due to variation in 

concentration.  

 In (1)–(6), z is real independent variable such that 0 ≤ z ≤ 1, 
dz

d
D   is differentiation 

w.r.t z , a2 is a constant, σ > 0 is a constant,   > 0 is a constant, 0<F<1, TR and RS are positive 

constants for the Veronis' configuration and negative constants for Stern's configuration,

 

3R  

is the ratio of concentration gradient to thermal gradient,  p = pr + ipi is complex constant in 

general such that pr and pi are real constants and as a consequence the dependent variables w(z) = 

wr(z) + iwi(z),  (z) = r (z) + ii (z) and  (z) = r (z) + ii (z) are complex valued 

functions(and their real and imaginary parts are real valued).  

        We now prove the following theorem:  

Theorem 1: If (p, w,  ,  ),  p = pr + ipi, pr ≥ 0 0ip  is a non -trivial solution of equations      

     (1)–  (3) together with one of the boundary conditions (4)-(6)with, 0TR  0SR , ,1F  

       11 20   T  then 

                                                
)1(4

1
2

2








F

MBR
p T , 

where   
)1(27

4
4 







F

BR
M T ,   11

ˆ

20

320







T

RTR
R T

T , B=    






 






320

20
20 ˆ

11
11

RT

T
T . 

Proof:  Equation (2) upon utilizing (3) can be written as  
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     wTaDpRTTpaD 20
22

32020
22 1ˆ1     .                            (7)       

Using the transformations 

ww ~  

 





 



320

20

ˆ

11~

RT

T
 

 
~

,                                                                                                                 (7*) 

                                                                                                           

equations (1), (3) and (7) and the associated boundary conditions (4)-(6) assume the following 

forms:  

  


222222 )1( aRaRwF
p

aDaD ST 





    ,                                (8) 

   BwTpaD   20
22 1 ,                                                                         (9)  





wp

aD 





  22   ,                                                                                    (10)  

with  

        Dww  0      at z =0 and z =1                                                                  (11) 

or 

wDw 20        at z =0 and z =1                                                                            (12) 

or            

     Dww  0      at z =0                                                                

     wDw 20        at z =1 ,                                                                                    (13) 

where 

  11

ˆ

20

320







T

RTR
R T

T , SR = SR   11

ˆ

20

320

 


T

RTRT , B=    






 






320

20
20 ˆ

11
11

RT

T
T >0  

and the symbol ~ has been omitted for convenience. 

Multiplying equation (8) by w* (the complex conjugate of w) and integrating the resulting 

equation over the vertical range of z, we get 
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  



1

0

2
1

0

22222
1

0

.**)
1

()(* dzwaRdzwaRdzw
Fp

aDaDw ST 


        (14) 

 
Taking the complex conjugate of equations (9) and (10) and using the resulting equations in 
equation (14), we get 
 
 

  






1

0

20
22

2
2222

1

0

*1*)()
1

()(* dzTpaD
B

aR
dzw

Fp
aDaDw T 


 

                                                             



 

1

0

22
2

2 .*
*

)( dz
p

aDkaRS 


                                                                                                

                                                                                                                                          (15) 
Integrating equations (15) by parts a suitable number of times, using either of the boundary 

conditions (11)-(13) and one of the following inequalities 

dzDdzD nnn

21

0

1

0

2 )1(*   ,                                                                                    (16) 

where, 

,   for n = 0, 1 and ,w  for n = 0, 1, 2, 

we have 

 

 

 
















 

1

0

2
20

*2222

1

0

222
1

0

242222

1)

1
2

dzTpaDa
B

R

dzwaDw
Fp

dzwaDwawD

T 



                                                                            

                          
1

0

2
*

2222 ) dz
p

aDaRS 


                                                                      

                                                                                                                                          (17) 
 

Equating the real and imaginary parts of equation (17) equal to zero and using 0ip , we get 
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 

 
















 

1

0

2
20

2222

1

0

222
1

0

242222

1)

1
2

dzTpaDa
B

R

dzwaDw
Fp

dzwaDwawD

r
T

r





 

                                        0)
1

0

22222   dz
p

aDaR r
S 


                                                                                                 

                                                                                                                                         (18) 
and   
 

      
 

0
1

)(
1 1

0

1

0

2
1

0

22220222 





  dzaRdza
B

TR
dzwaDw

F
S

T 



                                             

                                                                                                                                          (19) 

Multiplying equation (19) by rp and adding the resulting equation to (18), we have 

 
 
 

    0)
12

))

2

22
1

0

2
1

0

2222
1

0

2222

1

0

242222














 





dzwaDw
Fp

dzaDaRdzaDa
B

R

dzwaDwawD

r
S

T




 
                                                                                                                                               (20) 

Equation (19) implies that 

 
 1

0

1

0

22222
)(

1
dzaRdzwaDw

F
S 


 .                                                                           (21) 

Since   ,,w  vanish at z = 0 and z = 1, therefore [17] yields 

          
 
1

0

22
1

0

2
dzwdzDw                                                                                     (22)   

 
1

0

22
1

0

2
dzdzD                                                                                          (23) 
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 
1

0

22
1

0

2
dzdzD 

                                                                                    (24) 

Combining inequalities (21) and (22), we get 

       

 
 

 1

0

1

0

222
22 1

dzaRdzw
Fa

S 




                                                                 (25) 

Also upon using inequality (24), we have 

dzaRadzaDaR SS

21

0

1

0

2222222 )()(  
                                                          (26) 

Combining inequalities (25) and (26), we have 

   





1

0

2
2221

0

2222 1
dzw

Fa
dzaDaRS 




                                                  (27) 

Further, utilizing Schwartz inequality, we have 

    dzwdzDwdzwDwdzDwdzw  
1

0

22

21

0

2
1

0

1

0

2

1
22

1
1

0

2 * 
                           (using (21)) 

which on simplification yields 

 






1

0

24
1

0

22 wwD 
                                                                                                         (28) 

Inequality (22) together with inequality (28) yields 

   




 

1

0

2222
1

0

242222 2 dzwadzwaDwawD 
                                                     (29) 

Multiplying equation (9) by the complex conjugate of equation (9) and integrating the resulting 

equation over the vertical range of z, we get 

        
1

0

2
1

0

20
22

20
22 **1*1 dzwwBdzTpaDTpaD 
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Integrating the above equation by parts an appropriate number of times and using either of the 

given boundary conditions, we get 

          
1

0

22
1

0

22
20

2
1

0

222

20

21

0

22 112 dzwBdzTpdzaDTpaD r 
                                 

                                                                                                                                          (30) 

Since 0rp , therefore from equation (30) , we have 

     
1

0

22

21

0

2
20

2
21

0

22 1 dzwBdzTpdzaD                                                                          

                                                                                                                                           (31) 

Also emulating the derivation of inequalities (28) and (29) we derive the following inequality 

 

      
1

0

2222
1

0

2422

21

0

2222 2 dzadzaDaDdzaD 
                       (32) 

                
 

Using inequality (32) in equality (31), we get 

 

   
 

dzwBdz
a

Tp
a

21

0

2

21

0
222

2
20

2
222 1

1  















 




                                                          (33) 

Now,  

 

    
1

0

22
1

0

222
*  aDdzaD                    

                                

                                  dzaD  22
1

0

                                 
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                                 2

1
1

0

222
2

1
1

0

2


















  aD  

                                                                          (using Schwartz inequality) 

                             

                                 
 

 
 

dzw
a

Tp
B

a

21

0

2
1

222

2
20

2

2

22

1
1

1





















 




 

                                                                                                                                 (34) 

 

                                                            ( using inequalities (31) and (33) ) 

 

 Making use of inequalities (27), (29) and (34), equation (20) yields 

 

 

 
   

 

 

























1

0

2
1

0

222
2

1

0 2

1

222

2
20

2
22

2
2222 1

1
1

dzw
Fa

dzw

a

Tp
a

BaR
dzwa T









  

 

                            + dzwa
Fpr

21

0

22 )(
12







 < 0                                                                (35) 

Since, 0rp , it follows from inequality (35) that 

 
   

 

0

1
1

11
1

0

2
1

0 2

1

222

2
20

2
22

2
2222 


























   dzw

a

Tp
a

BaR
dzwFa T







  

or   

   

  TR
a

Tp

Ba

aF































 
2

1

222

2
20

2

2

322 1
1

1







.                                                        (36) 
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Since, minimum value of  
 

2

322

a

a
 with respect  2a   is ,

4

27 4
 it follows from inequality (36) 

that  

 

  TR
a

Tp

B

F





























 
2

1

222

2
20

2
4 1

1
4

271







 

or                                                                                                                                                                                 

 

 
    )(

127

4
1

4

2

1

222

2

M
F

BR

a

p
T 





























                                                                 (37) 

Therefore, we have                    

  1222  Map                                                                                                       (38) 

 

Further, since   
 

11
2

1

222

2

















a

p


, therefore it follows from inequality (36) that 

 
  222

2
22

a

BaR
a T









                                                                                            (39) 

Now, the maximum value of 
 222

2

a

a


 with respect to 2a  is

24

1


, therefore inequality (39) 

yields 

              








F

BR
a T

14 2
22    .                                                                                (40) 

Using inequality (40) in inequality (38), we get 

                 






F

MBR
p T

14

1
2

2

. 

        This completes the proof of the theorem. 

       Theorem 1 from the point of view of hydrodynamic stability theory may be stated as: 
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 The complex growth rate ir ippp  of an arbitrary oscillatory perturbation of growing 

amplitude ( 0rp ) in elasticoviscous modified double-diffusive convection problem of Veronis’ 

type configuration lies inside a semi- circle in the right-half of the ir pp - plane whose centre is at 

the origin and whose radius is 

 

                           





F

MBRT

14

1
2

2

. 

Corollary 1.  If (p, w,  ,  ),  p = pr + ipi, pr ≥ 0 0ip  is a non -trivial solution of equations          

     (1)–  (3) together with one of the boundary conditions (4)-(6) with, 0TR 0SR , 

      F<1,   11 20   T  and M 1 , then 

                                              0rp  . 

Proof.  Follows from Theorem 1. 

Corollary 1 implies that oscillatory motions of growing amplitude are not allowed in modified 

  thermosolutal convection problem of Veronis type if M   


















F

BRT

127

4
4

 1  . 

Theorem 2: If (p, w,  ,  ),  p = pr + ipi, pr ≥ 0 0ip  is a non -trivial solution of equations      

     (1)–  (3) together with one of the boundary conditions (4)-(6)with, 0TR  0SR ,F<1 

        11 20   T  then 

                                                
 

)11(4

11

20
2

2
120





TF

MTR
p S




 , 

where
 

)11(27

14

20
4

20
1 



TF

TR
M S




 . 

Proof: Replacing TR and SR , by - TR  and - SR  respectively in equation (1) and proceeding 

exactly as in theorem1, mutatis mutandis, we get the desired result. 

Journal of Engineering and Technology Management 75 (2025)

PAGE N0: 12



Corollary 2. If (p, w, , ),  p = pr + ipi, pr ≥ 0 0ip  is a non -trivial solution of equations          

     (1)–  (3) together with one of the boundary conditions (4)-(6) with, 0TR , 0SR ,      

     F<1,   11 20   T  and 1M 1 , then 

                                              0rp  . 

Proof.  Follows from Theorem2. 

Corollary 2 implies that oscillatory motions of growing amplitude are not allowed in modified 

  thermosolutal convection problem of stern’s type if     1
)11(27

14

20
4

20
1 










TF

TR
M S . 

Special case: It should be noted that results derived in Theorems 1 and 2 are valid for the case 

when 0ˆ 2  in view of the transformation (7*). However, for the case when 02   the 

governing equations (1)-(3) and boundary conditions (4) - (6) assume the following form: 

 

           


222222 1
aRaRw

Fp
aDaD ST 







 
   ,                                                 (41) 

         wTTpaD 2020
22 11     ,                                                                          (42)  





wp

aD 





  22   ,                                                                                               (43) 

together with the boundary conditions  

Dww  0      at z =0 and z =1            (both boundaries rigid)                        (44) 

or                                          

 wDw 20        at z =0 and z =1         (both boundaries dynamically free)     (45) 

or         Dww  0      at z =0                                                                

           wDw 20        at z =1 .                                                                                     (46) 

            ( lower boundary rigid and upper boundary dynamically free) 
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Consequently, Theorem1 and Theorem 2 and their respective corollaries can be easily seen to 

assume the following form: 

Theorem 3: If (p, w,  ,  ),  p = pr + ipi, pr ≥ 0 0ip  is a non -trivial solution of equations      

     (41)–  (43) together with one of the boundary conditions (44)-(46)with, 0TR  0SR , 

      F<1,   01 20  T  then 

                                                
 

)1(4

11
2

2
220









F

MTR
p T .                                                (47) 

Theorem 4 : If (p, w,  ,  ),  p = pr + ipi, pr ≥ 0 0ip  is a non -trivial solution of equations      

     (41)–  (43) together with one of the boundary conditions (44)-(46)with, 0TR  0SR , 

        01 20  T  then 

                                                
 

)11(4

11

20
2

2
320





TF

MTR
p S




 .                                            (48) 

Corollary3.  If (p, w, , ), p = pr + ipi, pr ≥ 0 0ip  is a non -trivial solution of equations          

     (41) –  (43) together with one of the boundary conditions (44)-(46) with, 0TR ,     

      0SR , F<1,   01 20  T  and 2M 1 , then 

                                              0rp  .                                                                                      (49) 

Corollary 4. If (p, w, , ), p = pr + ipi, pr ≥ 0 0ip  is a non -trivial solution of equations          

     (41) –  (43) together with one of the boundary conditions (44)-(46) with, 0TR ,     

      0SR , F<1,   01 20  T  and 13 M , then 

                                              0rp  .                                                                                      (50) 

The essential contents of Theorem3 and Theorem 4 and their respective corollaries are the same 

to that of Theorem1 and Theorem2 and their respective corollaries. 

3. CONCLUSIONS 
               Modified double-diffusive convection in elasticoviscous fluid of the type described by 

Veronis and Stern’s configuration is investigated in the present paper. Semi-circle theorems are 
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established that prescribe upper limits for the complex growth rate of oscillatory motions of 

neutral or growing amplitude in such a manner that it naturally culminates in sufficient 

conditions precluding the non- existence of such motions .  The analysis made brings out the 

following main conclusions: 

(i)    The complex growth rate ir ippp  of an arbitrary oscillatory perturbation of growing 

amplitude ( 0rp ) in modified double-diffusive convection in elasticoviscous fluid of Veronis’ 

type configuration lies inside a semi- circle in the right-half of the ir pp - plane whose centre is at 

the origin and whose radius is 

 

                          





F

MBRT

14

1
2

2

. 

(ii)  The oscillatory motions of growing amplitude are not allowed in modified double-diffusive 

convection in elasticoviscous fluid of Veronis’ type configuration if M   


















F

BRT

127

4
4

 

1  . 

 (iii)    The complex growth rate ir ippp  of an arbitrary oscillatory perturbation of growing 

amplitude ( 0rp ) in modified double-diffusive convection in elasticoviscous fluid of Stern’s 

type configuration lies inside a semi- circle in the right-half of the ir pp - plane whose centre is at 

the origin and whose radius is 

 

                            
 

)11(4

11

20
2

2
120





TF

MTRS




. 

(iv) The oscillatory motions of growing amplitude are not allowed in modified double-diffusive 

convection in elasticoviscous fluid of Stern’s type configuration. if                        

                                              1
)11(27

14

20
4

20
1 










TF

TR
M S  
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