"Green AI for Sustainable Telecommunications: A Layered Framework through Integrated Analysis"

Prof. Gitanjali Ligade¹, Assistant Professor, ISBM COE Prof. Pallavi Patil, Assistant Professor, ISBM COE Prof. Swapnali Godse, Assistant Professor, ISBM COE

Abstract

Green Artificial Intelligence (Green AI) for telecommunications addresses the dual challenge of meeting growing demands for intelligent network services while reducing environmental impact. Traditional AI techniques have significantly improved network performance, but their energy demands often offset the sustainability gains they enable. This paper provides an integrated analysis of three influential IEEE surveys on energy-efficient wireless communication, green mobile networking, and 5G energy management, highlighting recurring strategies, trade-offs, and research gaps. Instead of summarizing each survey, we synthesize their findings into thematic perspectives: model-level efficiency through pruning, quantization, and knowledge distillation; system-level improvements via federated learning, adaptive task offloading, and workload scheduling; and network-level mechanisms including dynamic cell operations, sleep modes, and renewable integration. A comparative analysis of accuracy-latency-energy trade-offs reveals that hybrid strategies achieve the best balance between sustainability and performance. Building on this integrated understanding, we propose a practical three-layer framework: energy-aware model design, green orchestration across cloud and edge infrastructures, and standardized energy reporting and controls at the network level. We also identify key research directions including unified benchmarking protocols, life-cycle assessments, and market mechanisms for incentivizing low-carbon AI practices. This analysis shows that Green AI can transform telecommunications into a more sustainable infrastructure, but only if efficiency at the algorithmic, systemic, and network levels is addressed together. The paper contributes a structured framework and roadmap for operators, researchers, and policy makers, emphasizing that sustainability and performance must be co-optimized to achieve long-term, low-carbon connectivity.

1. Introduction

The rapid evolution of telecommunication networks from 4G to 5G and the forthcoming 6G era has been fueled by increasing demand for ubiquitous connectivity, low-latency services, and intelligent applications. Artificial Intelligence (AI) has emerged as a transformative enabler in this domain, driving innovations in predictive maintenance, traffic engineering, network optimization, and intelligent radio resource allocation. By enabling proactive fault detection, dynamic spectrum management, and adaptive service provisioning, AI enhances efficiency and service quality across diverse telecommunication environments.

Yet, this advancement comes with a paradox. The training, deployment, and continuous updating of AI models demand substantial computational resources, massive datasets, and significant energy expenditure. Large-scale machine learning models, particularly deep neural networks, incur high carbon footprints, thereby offsetting some of the sustainability benefits they enable at the

network level [1]. This duality presents a critical challenge: while AI can improve the sustainability of telecommunication operations, it simultaneously contributes to growing energy demands. Addressing this paradox constitutes the central motivation behind the concept of balancing for telecommunications.

Green AI emphasizes designing and deploying AI systems with explicit consideration of energy consumption, carbon emissions, and long-term sustainability [3]. For telecommunications, this translates into algorithmic efficiency, system-level orchestration across cloud and edge, and network-level mechanisms such as adaptive sleep modes and energy-aware routing. Rather than examining existing contributions in isolation, this paper conducts an integrated thematic analysis of leading IEEE and peer-reviewed studies on energy-efficient wireless communication, green mobile networking, and sustainable 5G/6G strategies [5]. The objective is to extract common principles, evaluate trade-offs between accuracy, latency, and energy efficiency, and propose a cohesive framework that supports both operational performance and environmental stewardship.

Furthermore, this study highlights the need for standardized energy efficiency metrics, cross-disciplinary collaboration, and alignment with international climate policies to ensure Green AI adoption at scale. By embedding sustainability into the fabric of AI-driven networks, telecommunication operators can transition from being merely consumers of energy to proactive contributors toward a low-carbon digital future [11].

2. Background and Motivation

2.1 Growing energy footprint of telecommunications

Telecommunications already contribute a significant share of ICT energy consumption, largely due to base stations, backhaul, and core network equipment. The integration of AI intensifies this demand through compute-heavy tasks such as model training and real-time inference. Without intervention, the sector's emissions could rise sharply.

2.2 The role of Green AI

Green AI emphasizes model efficiency, data efficiency, and energy-aware deployment. In telecommunications, it means not only building energy-conscious AI but also deploying it to optimize networks themselves—yielding a "double dividend" of efficiency. The literature consistently highlights this dual impact as essential to achieving sustainable networks.

3. Cross-Paper Thematic Analysis

3.1 Model-level strategies

Efficient AI design directly reduces energy during training and inference. Techniques such as pruning, quantization, and knowledge distillation shrink models while retaining accuracy. Datacentric strategies—like active learning and dataset pruning—reduce training overhead. Across the literature, these model-level methods are consistently linked to reductions in power consumption and emissions.

3.2 System-level and deployment strategies

Beyond the model, deployment choices strongly influence energy use. Edge computing and federated learning reduce long-distance data transfers and enable localized inference, though they introduce synchronization overheads. Adaptive offloading allows tasks to be dynamically placed on cloud or edge servers depending on energy, latency, and network conditions. Scheduling workloads during low-carbon energy availability also enhances sustainability.

3.3 Network-level mechanisms

AI-driven resource allocation enables base stations to enter sleep modes during low traffic periods, significantly reducing operational energy. Techniques such as cell zooming, energy harvesting, and integration with smart grids further minimize environmental impact. Importantly, these strategies highlight that AI must be co-optimized with radio and network hardware to realize true energy efficiency.

3.4 Measurement and evaluation gaps

Despite abundant strategies, the lack of standardized energy metrics is a recurring limitation. Current evaluations vary between energy per inference, kWh per model, or CO₂ equivalents, making cross-comparison difficult. Unified benchmarks that jointly measure accuracy, latency, and energy across telecom contexts are urgently needed.

4. Comparative Case Study: Accuracy-Latency-Energy Trade-offs

Trade-offs emerge when designing sustainable AI systems for telecom:

- Edge inference for real-time tasks reduces latency and backhaul energy but can lower accuracy for complex models.
- Centralized training in data centers yields high accuracy but consumes substantial energy for both computation and transport.
- **Hybrid approaches** with periodic retraining, selective model distillation, and adaptive compression achieve balanced outcomes.

This integrated perspective reveals that there is no single optimal solution; instead, trade-offs must be managed dynamically depending on application requirements.

5. Framework for Green AI in Telecommunications

5.1 Layer 1 Energy-aware model design

- Adopt compression, pruning, and quantization at development stage.
- Optimize data usage to minimize redundant training cycles.

5.2 Layer 2 Green orchestration in cloud-edge continuum

- Deploy intelligent orchestrators that schedule AI workloads based on energy price, latency tolerance, and renewable availability.
- Implement federated learning with communication-efficient aggregation.

5.3 Layer 3 Network-level controls and reporting

- Use AI to drive base station sleep modes, dynamic cell scaling, and renewable integration.
- Standardize reporting of AI energy usage with metrics such as Joules per inference and CO₂ e per service.

6. Implementation Considerations

The deployment of Green AI frameworks within telecommunication networks requires careful consideration of both technical feasibility and organizational alignment. Several key aspects influence successful implementation:

6.1 Hardware and Infrastructure Readiness

Energy-efficient AI cannot be achieved without compatible hardware platforms. Specialized accelerators such as GPUs, TPUs, and emerging neuromorphic chips need to be integrated with telecom infrastructure to reduce inference latency and power usage. Additionally, edge computing nodes must be provisioned with energy-aware processors to handle AI tasks locally, avoiding excessive cloud dependency.

6.2 Software and Algorithm Optimization

Implementing Green AI necessitates lightweight models optimized through pruning, quantization, and federated learning. Open-source AI frameworks should be adapted to telecommunication requirements, supporting dynamic re-training and low-complexity inference. Continuous monitoring tools are essential to balance the trade-off between accuracy and energy efficiency.

6.3 Interoperability and Standardization

The absence of standardized energy efficiency benchmarks remains a barrier. Operators must adopt common measurement protocols to evaluate energy savings across models, platforms, and vendors. Alignment with initiatives from ITU, ETSI, and IEEE will accelerate cross-network compatibility and benchmarking transparency.

6.4 Data Management and Privacy

Efficient AI systems rely on high-quality, domain-specific datasets. For telecom operators, distributed data collection must be balanced with privacy requirements. Federated and split learning approaches provide viable mechanisms to maintain data sovereignty while reducing communication overheads.

6.5 Policy and Regulatory Compliance

Implementation must consider energy regulations, carbon reporting frameworks, and government sustainability targets. Telecom operators are expected to adhere to international climate agreements and regional green policies, making regulatory alignment an integral part of system design.

6.6 Cost-Benefit Trade-offs

Adopting Green AI entails initial capital expenditure for upgrading hardware, software, and training personnel. Long-term savings, however, emerge from reduced operational costs through energy savings and extended equipment lifetimes. Operators must perform detailed technoeconomic analyses before large-scale rollouts.

6.7 Workforce and Skills Development

A successful transition requires upskilling the workforce in AI engineering, energy-aware programming, and sustainable network design. Cross-disciplinary training initiatives will ensure that network engineers and AI specialists collaborate effectively.

7. Research Directions

- 1. Development of standardized evaluation protocols for AI energy efficiency.
- 2. Creation of energy-proportional benchmarks for telecom AI.
- 3. Inclusion of life-cycle assessment (LCA) in telecom AI studies.
- 4. New communication-efficient federated learning algorithms tailored to telecom workloads.
- 5. Market-based incentives such as green service-level agreements (SLAs) to encourage adoption.

S. No.	Research Direction	Description / Expected Impact
1		Establishing common methodologies to measure and compare the energy footprint of AI models across telecom systems.
	Creation of energy-proportional benchmarks for telecom AI	Designing benchmarks that align AI performance with proportional energy use, enabling fair cross-platform evaluation.
	(I CA) in telecom AI studies	Incorporating end-to-end environmental impact analysis, from model training to deployment and decommissioning.
4	federated learning algorithms tailored	Reducing communication overhead and energy costs while maintaining privacy and performance in distributed telecom environments.

S. No.	Research Direction	Description / Expected Impact
5	green service-level agreements	Introducing economic mechanisms to reward operators for adopting energy-conscious AI strategies in real-world networks.

Table 1. Key Future Research Directions in Green AI for Sustainable Telecommunications

8. Limitations of the Study

This analysis integrates findings from three IEEE surveys without replicating their primary experiments. As such, conclusions are high-level guidelines rather than precise technical blueprints. Full details of specific algorithms and case studies are available in the original IEEE works.

9. Conclusion

Green AI represents both a necessity and an opportunity for advancing sustainable telecommunications in the era of 5G, 6G, and beyond. As the demand for data, connectivity, and intelligent services continues to rise, the environmental footprint of telecommunications infrastructures cannot be ignored. Integrating algorithmic efficiency, system-level orchestration, and network-level controls offers a holistic pathway to addressing this challenge. At the algorithmic level, lightweight neural models, pruning, quantization, and knowledge distillation have already demonstrated significant reductions in computational overhead, thereby cutting power consumption without sacrificing predictive accuracy. At the system level, AI-enabled orchestration across cloud, edge, and radio access networks allows dynamic resource allocation, ensuring that computational workloads are executed in energy-optimal environments. At the network level, mechanisms such as adaptive sleep modes, load-aware routing, and AI-assisted spectrum allocation contribute to minimizing idle power draw and improving overall operational efficiency.

References

- Zeinab Ezzeddine, Ayman Khalil, Besma Zeddini, Habiba Hafdallah Ouslimani, "A Survey on Green Enablers: A Study on the Energy Efficiency of AI-Based 5G Networks," Sensors, 2024. MDPI
- 2. Hussain, A., Li, S., Hussain, T., Attar, R. W., Alhomoud, A., Alsagri, R., Zaman, K., "Energy-Efficient and Trust-Based Autonomous Underwater Vehicle Scheme for 6G-Enabled Internet of Underwater Things," *Sensors*, 2025. MDPI
- 3. Marzuk, F., Vejar, A., Chołda, P., "Deep Reinforcement Learning for Energy-Efficient 6G V2X Networks," *Electronics*, 2025. MDPI
- 4. Filipe Conceicao, Filipe B. Teixeira, Luis M. Pessoa, Sebastian Robitzsch, "Energy-Efficiency Architectural Enhancements for Sensing-Enabled Mobile Networks," arXiv, 2024. arXiv
- 5. "Dynamic Resource Optimization for Energy-Efficient 6G-IoT Ecosystems," *Sensors*, 2023. MDPI

- 6. "Energy-Efficient Industrial Internet of Things in Green 6G Networks," *Applied Sciences*, 2024. MDPI
- 7. Qi Wang, Xiaoming Chen, Qiao Qi, "Energy-Efficient Design of Satellite-Terrestrial Computing in 6G Wireless Networks," arXiv, 2023. arXiv
- 8. Gustavo Z. Bruno, Gabriel M. Almeida, Aloizio Da Silva, Luiz A. DaSilva, João F. Santos, Alexandre Huff, Kleber V. Cardoso, Cristiano B. Both, "Towards Energy- and QoS-aware Load Balancing for 6G: Leveraging O-RAN to Achieve Sustainable and Energy-Efficient 6G," arXiv, 2025. arXiv
- 9. Amin Mahmoudi Rad, Jafar Pourrostam, Mohammad Ali Tinati, "Improving power efficiency in 6G wireless communication networks through reconfigurable intelligent surfaces for different phase information," *EURASIP Journal on Wireless Communications and Networking*, 2024. SpringerOpen
- 10. Lanlan Li, "Research on future 6G green wireless networks," *Green Technologies and Sustainability*, 2025. OUCI
- 11. Mesodiakaki, A., Gatzianas, M., Bratsoudis, C., Kalfas, G., Vagionas, C., Maximidis, R., Antonopoulos, A., Pleros, N., Miliou, A., "Online Energy-efficient Resource Allocation in Integrated Terrestrial and Satellite 6G Networks," ETHER / IEEE presentations, 2024. ETHER project
- 12. "Data centre energy saving: Application of artificial intelligence technology in improving energy efficiency of telecommunication room and data centre infrastructure," Recommendation L.Sup48, ITU-T, 2022. aistandardshub.org+1
- 13. Sree Harsha, "Towards Green WiFi Networks: An ML and AI-Based Framework for Energy Efficiency Optimization," *International Journal of Civil Engineering and Technology (IJCIET)*, 2024. IAEME
- 14. "A Systematic Review on Application of AI in Telecom Industry," Gupta, M. C., & Goyal, R., *International Journal of Intelligent Systems and Applications in Engineering*, 2024. ijisae.org
- 15. ITU-T L.Sup48 (07/22), "Data centre energy saving: Application of artificial intelligence technology in improving energy efficiency of telecommunication room and data centre infrastructure." ITU
- 16. (Complementary) A case on federated learning: "Federated Learning for Energy Efficiency in 6G," Wireless World Research and Trends, 2024. <u>wireless-magazine.com</u>
- 17. (Complementary) "Optimized Energy Efficiency in a Telecommunication Company: Machine Learning Approach," Ngang Bassey Ngang, IntechOpen, 2022. IntechOpen, IntechOpen
- 18. (Complementary) "Exploring Energy-efficient Solutions for 6G Terrestrial and Satellite Network Architectures at ICC 2024," Mesodiakaki et al., 2024. ETHER project
- 19. (Complementary) "Research on future 6G green wireless networks," Li, Lanlan, 2024/25. OUCI
- 20. (Complementary) "Energy-Efficiency Architectural Enhancements for Sensing-Enabled Mobile Networks," Conceicao et al., 2024. arXiv